ON THE %£-COCHAINS OF A SPECTRUM

BY
Danier M. Kan?

1. Introduction

Just as a group may be described by generators and relations, so the homo-
topy type of a connected CW (or semisimplicial) complex X may be described
([4], [5]) by the homotopy groups =;(X) and a sequence of cocycles
K3, k', -+, k", ... Here each k*** is a cochain on a space whose homotopy
type depends on the groups m(X), - -, :(X) and the cocycles &°, - - -, k™",
while 7;;1(X) is the coefficient group. The %" are usually called “k-in-
variants”, although “k-cocyeles” might be a more appropriate name.

It is our purpose to give a similar result for homotopy types of (semi-
simplicial) spectra. It will be shown that, using a suitably generalized notion
of cochain, the homotopy type of a spectrum Y may be described by the
homotopy groups m; ¥ (— o < 7 < ) and a collection of cochains k} (one
for every pair of integers (7, j) with ¢ < j), where each k! is a cochain on a
spectrum which depends only on ; ¥, while the coefficients depend only on
m; Y.

The paper is written semisimplicially, and we shall freely use the results
of [2].

§82 and 3 deal with the analogues for spectra of the notions path space,
fibre map, and loop space, while §4 is concerned with the inverse of ‘“taking
loops”.

In §5 cochains are generalized. This generalization is mainly based on the
facts that (i) a cochain complex may be considered as a chain complex (if the
degree of a g-cochain is taken to be —¢), and (ii) a chain complex determines
[2, §5] an essentially unique abelian group spectrum containing it. The
cocycles of a cochain complex then correspond exactly with the simplices (of
the corresponding abelian group spectrum) of which all faces are = *, and
the cochains with those of which all faces, except possibly the 0-face, are = *.
This suggests considering the other simplices of the abelian group spectrum as
well.

Decomposing a spectrum into abelian group spectra one gets a string of
diamond-shaped diagrams which we call a ‘‘decomposition’’. These decompo-
sitions are considered in §6. With each decomposition one may associate a
collection of (generalized) cochains, and it is shown in §7 that under suitable
circumstances a decomposition is completely determined by these cochains.
In §8 we then use this to show that the homotopy type of a spectrum Y may be
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described by the homotopy groups m; ¥ and a suitable collection of cochains
k3.

2. Path spectra

2.1 DeriniTioN. Let Spz denote the category of set spectra which satisfy
the extension condition [2, §7]. For Y e $pg its path spectrum AY will be
the spectrum which has a simplex Ay for every simplex y e Y ; the face and
degeneracy operators and the gradation are given by

di Ay = Adi1 y for all 7,
s; Ay = As;y for all 4,

degree Ay = degree y — 1.
Clearly AY € Spx .
Similarly for a map w : ¥ — Z ¢ Spr we define a map Aw : AY — AZ by
Ay — Awy for all y ¢ Y. The function A so defined then is a functor
A : Spr — Spz, the path functor.

Then [2, §10] we have
2.2 ProPOSITION. Let Y € Spr. Then m; AY = 0 for all <.

This follows at once from the fact that for every simplex Ay ¢ AY of degree
1 with d; Ay = = for all j, we have dy Aspy = y and d; Aspy = * forj > 0.

The remainder of this section will deal with some natural transformations
between iterated path functors, which will be used in §5.

2.3 DErFintTION. For every object Y e Spx, simplex y ¢ Y, and map w e Spg’
let A°Y = ¥V, A% = y, and A"w = w, and let

A"Y = AA™T'Y, A" = AA™Yy, and A"w = AA"'w
for » > 0. Then for every pair of integers (¢, n) with 0 < 7 < n, maps
8:Y 1 A"V - A"Y and ;Y i A"TY —AMTY
may be defined by the formulas
(5; V)A" My = A"d,;y and (o YIA™ My = A5,y

The functions 8; and ¢; clearly are natural transformations 8; : A" — A™ and
oit An+1 — An+2'

A straightforward calculation yields
2.4 ProrositionN. The natural transformations §; and o; satisfy the identities
6;0; = 6;-10; for ¢ < j,

8;0; = 0j_10; for 7 < j,

It

identity for 1=4,74+1,
= ¢70;1 for 1>35+1,

;05 = 0 01 fOI' 7 > j.
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2.5 PROPOSITION. Let YV € Spr, and let 0 = ¢ = n. Then the maps
8:,(AY) 1 A™TY — A"Y
cotncide for all j with 0 = j = n — ©.  The same holds for the maps
ai(AY) : AMTY — APy

2.6 Notational conveniton. Instead of §; Y and o; Y we will often write §;
and o;. In view of Proposition 2.5 this will cause no confusion.
Another immediate consequence of the definitions is

2.7 ProPOSITION. Let Y € Spr, and let 0 = ¢ = n. Then the maps
A Y) : A"PY > A™'Y and 6 Vi AMPY - A™TY
coincide. The same holds for the maps A(e: YV), 0oz ¥ 2 A"V — A™F?Y,
3. Loop spectra

We first consider for spectra the notions of fibre map and homotopy sequence
of a fibre map.

3.1 DerinrTioN. Let p : E — B € 8p (the category of spectra), and let
2, §84] Ps p = {ps} : {Ei} — {Bi} e ®s. Then p is called a fibre map
if p; : BE;— B;eSyisafibre map forall<. If {«*} C B denotes the subspectrum
consisting of the base points only, then the subspectrum p~'{*} < E is called
the fibre of the fibre map p : £ — B.

As for set complexes [4] we have

3.2 ProrosITION. Let p : E — B € $p be a fibre map with fibre F. Then
F ¢ Spr. Moreover I € Spy if and only iof B € $px .

3.3 DeriNiTION. Let p : E — B € Spg be a fibre map with fibre F, and let
Psp = {ps : {E:} — {Bs}. Then [2, §10]

Tn(Fi) = mpa(Fipn),  m(B:) = mp(Eiqn) and m(Bi) = mpp(Bia)

for all n > 0 and 2. Moreover the boundary maps 8,,; : m.(B:) — mna(F;)
in the exact homotopy sequences of the fibre maps p; [4] are such that
On,i = Ony1, is1, 1., commutativity holds in the diagram

9, :

wn(Bs) ——— ma(F)

Jia Jia
7rn+1(Bi+1) M—) Tn(F,;+1).

Hence the homotopy sequences of the fibre maps p; give rise to a sequence

9

oo > T B 9 > T I Tnd mn B TP B — -




482 DANIEL M. KAN

where j : F — E is the inclusion map. It is called the homotopy sequence of
the fibre map p : E — B. Clearly we have

3.4 PropPoSITION. The homotopy sequence of a fibre map in Spx ts exact.
‘We now turn to loop spectra. As for set spectra one readily verifies

3.5 ProPOSITION. Let Y € Spx, and let (2.3) 6 : AY — Y € Spg be the map
given by 6o Ay = doy forally e Y. Then & is a fibre map.

We therefore may state

3.6 DeriniTioN. The loop spectrum of a spectrum Y e Spy is the fibre
of the map & : AY — Y. It will be denoted by QY. Similarly for a map
w: Y — Z e Spr we define a map Qw : QY — QZ as the restriction of the map
Aw. Clearly the function @ so defined is a functor @ : $pz — Spz, the loop
Sfunctor.

Propositions 2.2 and 3.4 imply

3.7 ProPOSITION. Let YV € Spr. Then the map 9 : wpn Y — w, QY in the
homotopy sequence of the fibre map 6, : AY — Y is an tsomorphism for all n.

Another useful property of the loop functor is given by

3.8 ProrosiTioN. The functor @ : Spz — Spx preserves homotopies, t.e., maps
homotopic maps into homotopic maps.

Proof. By 3.7 and [2, 10.5], @ maps homotopy equivalences into homotopy
equivalences. The proposition now follows from

3.9 ProrosiTiON. Let T : Spr — Spz be a functor which maps homotopy
equivalences into homotopy equivalences. Then T maps homotopic maps into
homotopic maps.

Proof. Let $px be the category obtained from 8py by identifying two maps
whenever they are homotopic, and let @ be the identification functor. The
proposition now follows from [2, 9.1] and the fact that [2, 9.2] QT is a homo-
topy functor.

4. The functor @

Given Y € Spz , consider the problem of finding a Z € $pg such that @Z = Y.
It will be shown that for group spectra this can be done in a functorial manner,
by using the analogue of the W construetion of [3].

4.1 DerFiniTION. For B € Sps (the category of group spectra [2, §5]) we
denote by @™'B the spectrum of which a simplex of degree ¢ is any infinite
sequence of simplices of B

¢ = (b, -+, bi, )
such that

(i) degree b; = ¢ — 7 for all ¢,

(ii) b; = = for all but a finite number of +’s.
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Its faces and degeneracies are given by
dic = (dic1bs, -+, (dobi)biya, bigs -+ +),
si¢ = (8i-1b1, <+, 80bs, %, bipa, +--).
For ¢z = 0 this should be interpreted as (bz, - --) and (*, b1, --+). A straight-
forward calculation shows that Q7'B e Spx .
Similarly for a map v : B — B’ € $pg let @7 : @7'B — Q'B’ be the map
given by (b1, -++) — (b1, ---). Then clearly the function @ so defined

is a functor @ : $pe — Spz. The use of the symbol " for this functor is
justified by

4.2 ProposiTiON. Let B e Spg. Then the map B — QQ'B e $py given by
b— A(b, *, ---, %, -+-) for all b € B is natural and is an isomorphism.

An argument similar to the one used in the proof of Proposition 3.8 yields

4.3 ProposiTioN. The functor € : Spe — Spr maps homotopic maps into
homotopic maps.

We end by showing that the functors @ and Q' give rise to a functor
Q" : $pa — Spa (Spa is the category of abelian group spectra [2, §5]) for every
integer n.

4.4 DeriniTiON. Let B € Spa. Then the addition on B induces an ad-
dition on AB and QB turning them into abelian group spectra. Similarly
Q7'B may be turned into an abelian group spectrum by coordinatewise ad-
dition. For a map v : B — B’ ¢ $p4 the maps Av, Qv, and @ '» then become
homomorphisms. The resulting functors $p, — Sp4 will also be denoted by
A, @, and Q7' as no confusion will arise from this.

A consequence of this definition is that for any B e $p4 and pair of integers
(2, n) with 0 = 7 = n, the maps

8:;: A""'B— A"B and o, : A""B — A""B
are also in $py .

4.5 Notational convention. We will write Q° : Sps — Spa for the identity
functor and Q" = Q0" and 7" = Q7@ for every integer n > 0. Also
for every B e $p4 and b ¢ B we will identify b with the simplex

A(b, #, coe, % o0 ) € QQTB.
Then clearly we have

4.6 ProposITION. Let ¢ and j be integers = 0. Then
Qo =07 8Ppa — Spa .
5. Cochains on a spectrum

The cochain complex C*(Y; r) of a spectrum Y with coefficients in an
abelian group = may be defined as for set complexes.
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5.1 DerFiNiTION. For YV e $p let {C, Y, 4} denote the mormalized chain
complex of Y, i.e., C, Y is the abelian group with a generator Cy for every
y € Y5 and a relation Cy = 0 whenever y is degenerate; the boundary homo-
morphisms 9 : €, ¥ — C,y Y are such that 9Cy = D io(—1)°Cd; y for all y.
The normalized cochain complex C*(Y; ) then is defined by CU(Y; x) =
Hom(C, Y, ) and 6 = Hom(9, ¢x).

This definition will be generalized in two respects. In the first place one
may, as for set complexes [4] establish a one-to-one correspondence between
the elements of C%(Y; 7) and the maps ¥ — AQ™“'Kr where Kr denotes a
suitably defined ‘‘Eilenberg-Mac Lane spectrum of #”’. This suggests con-
sidering maps ¥ — AQ “'B for an arbitrary abelian group spectrum B.
Furthermore C*(Y; 7) may be considered as a chain complex (ifthe degree
of a g-cochain is taken to be —gq), which in view of [2, §5], determines an
essentially unique abelian group spectrum containing it. The cocycles of
C*(Y; =) then correspond exactly with the simplices of which all faces are
= x, and the cochains with those of which all faces, except possibly the 0-face,
are = *. This suggests that the other simplices might equally well be worth
considering. We will call them cochains too and therefore state

5.2 DeErFINTTION. Let YV e $p and B e 8pa , and denote by Hom (Y, B) the
abelian group of the maps Y — B ¢ 8p, where the addition is induced by the
addition on B. For every integer ¢ the inclusions (see 4.6)

QBC .- Cc A 'BC .-
induce inclusions
Hom(Y, Q@™“B)  --- € Hom(Y, A’Q""B) < ---

The union of these groups will be denoted by C?(Y; B); its elements will be
called g-cochains of Y with coefficients tn B. Furthermore for every g¢-cochain
ce C'(Y; B) and integer 7 = 0 we define a (¢ + 1)-cochain é;cand a (¢ — 1)-
cochain o; ¢ as the compositions

Yy £, Noip 0, pFlgmiB,

y —&, pigreip %, Aol

for suitably large j. That these are well defined, i.e., independent of j,
follows from 2.5 and the naturality of &; and o;. The groups C*(Y; B)
together with the operators 8; and o; will be denoted by C*(Y; B). An im-
mediate consequence of Proposition 2.4 then is

5.3 ProposrrioN. C*(Y; B) is an abelian group spectrum if the 8; and o; are
considered as the face and degeneracy operators respectively, and the degree of a
g-cochain 1s taken as —q.

The following proposition is also readily verified.
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5.4 ProposirioN. Letce CU(Y; B). Thence Hom(Y, A’Q"’B) if and
only if ;¢ = 0 for 1 = j.

In view of this proposition we may make the following notational con-
vention.

5.5 Notational convention. LetceC'(Y;B) besuchthatq < 0andéd;c =0
for i = —q, and let ¢/ ¢ C"(B; B'). Then ¢ may be represented by a map
c:Y — AB, and ¢ by a map ¢ : B — A’Q" B’ for suitably large j.
We then denote by ¢'c e C**"(Y; B') the composition

y ¢, ymp AT yerigrrip

We end with defining the Eilenberg-Mac Lane spectrum K= of an abelian
group 7 and relating cochains with coefficients in K with normalized cochains
with coefficients in .

5.6 DeriNniTION. Let 7 be an abelian group. For every integer 2 = 0 and
element « ¢ 7, identify « with the corresponding ¢-simplex of the Eilenberg-Mac
Lane complex K(, 7) €8x [4]. Let {K(w, ), k:} be the prespectrum [2, §3]
such that k;(a, ¢o) = ae K(m, ¢ + 1) for every i-simplex a« e K(7, 7). Then
the Eilenberg-Mac Lane spectrum of w is the spectrum K defined by K= =
Sp {K(w, ©), k:} [2, §4]. Tt is not difficult to verify that the addition of the
K(w, %) induces an addition on K, turning it into an abelian group spec-
trum. In fact, as for the K(m, ¢), this is the only way in which K= can be
turned into a group spectrum.

Now for Y eSp and ce CU(Y; «) denote by he: Y — AQ ™ 'KreSp the
(unique) map such that for every yeY of degree ¢

Al(he)y = (—1)%[c(Cy)] ifqgz0,
or
(he)y = (—=1)"A""[c(Cy)] ifg =0.
Then we have

5.7 ProposrrioN. If C*(Y; w) is considered as a chain complex, and
C*(Y; Kr) as an abelian group spectrum, then the function h is an isomorphism

h:(C*(Y;m) ~MC*(Y; Kr)
where the chain complex MC*(Y; Kr) is as in [2, §5).

It is easily verified that hce MC*(Y; Kx) for all ce C*(Y; ), ie.,
8;hc =0 for ¢ > 0, and that degreewise h is an isomorphism. It thus remains
to show that h is a chain map, i.e., that 8,(hc)y = h(dc)y for every c e C'(Y; )
and ye Y. If g =0, let ze Q7" 'Kr be such that (h¢)y = Az. Then
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Az = A% Az = A%i(he)y = (—1)%e(Cd; )]
for i = 0. Moreover », A®d;z = 0. Consequently
A™M8o(he)y = A8 Az = Adoz = — X AT i 2

= (=1)™[X e(Cdiy)] = (—1)™[(8c)(Cy)] = A™h(5¢)y,

and hence &(hc)y = h(dc)y. The proof for ¢ < 0 is similar and will be
omitted.

6. Decompositions of spectra and cochain systems

One often tries to reduce a problem on spectra to one on abelian group
spectra (which one then hopes to be able to solve) by decomposing one or
more of the spectra involved into abelian group spectra. It is this kind of
decompositions which will be studied in more detail in this section and the
next. It turns out that one can associate with such a decomposition a
collection of cochains (in the sense of §5) and that, under suitable conditions,
these cochains completely determine the decomposition.

6.1 DEFINITION. A decomposition is a commutative (infinite) diagram

AY; N AYin N
/ /
hi__1 0 hz
\\ /// \i //’ '\Q //
. Yi_l\ Y: \ Y¢+1\
/ /
i i—1 i ; N
SN . Yz g ) //g

such that for every integer %
(1) YieSps,
(ii) As;eSpa,
(iii)  f;is induced by g., ie., for every a ¢ A; and v ¢ AY 4y with g;a = o v,
there is exactly one simplex y ¢ Y; such that f;y = @ and h;y = v. Sucha
decomposition will be denoted by (Y, 4., fi, gi, h:).

6.2 DermNiTION, Let ---, A;1, A;, -+ be a collection of abelian group
spectra indexed by the integers, and for every pair of integers (7, j) with
0 =< 4 = jlet be given a cochain k% ¢ C*™77(4; ; A;). Then the set {£} will
be called a cochain system if (see Notational Convention 5.5)

bkl =0 forn=j—1i—1,
ou i = klyyqn KETHET forn <j— 14— 1.

6.3 DErmNiTION. Let (Y;, As, fi, g, hs) be a decomposition. For every

pair of integers (%, j) with 0 < ¢ =< j denote by m} the composition

. X j—i—ly j—igp.
Y.' ———>h1 AY.'+1 Ah‘“ e A h]_l ————>A d

ATY; ATA;,
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and by k! the composition (now ¢ < j)

. ) .
A,; /5 Y;+1 Mmi41 AJ—'L—IAj X

Clearly mie C*™(Y:; A;) and ki e C*™9(A;; A;). The set {ki} then will
be called the cochain system of the decomposition (Y, Ai, fi, gi, hi).

This terminology is justified by

6.4 ProrositioN. The cochain system of a decomposition s a cochain
system.

Proof. In view of 2.7 and the naturality of 6, , the following diagram is
commutative

An+l j—i—2—n

n
A'Riyisn Mitotn A 4,

+1
A'Yijiin A" Y iom

J/ Anfi+1+n ‘1/ An( do Yi+2+n ) = 0, l O

An j—i—2—n

A"g; m? i
n +1+n n +2+n =2
A Ai+1+n ———1———) A Yi+2+n d A AJ .

This readily implies that 8, k! = kijynki™ " for n < j — ¢ — 1. That
8, ki = 0forn= j — ¢ — 1 is a direct consequence of 5.4.

7. Locally finite decompositions and cochain systems

7.1 DerFinrTioN. A decomposition (Y, A:, fi, ¢:, ki) will be called
locally finite if for every integer ¢ and every y e ¥, there is an integer s (de-
pending on y) such that miy = = for j > s. Similarly a cochain system
(ki}, where kieC*™™"(A;; A;), is called locally finite if for every ¢ and
every a e A; there is an integer s (depending on a) such that ka = =forj > s.

Clearly we have

7.2 ProrosiTioN. The cochain system of a locally finite decomposition is
locally finite.

The following two propositions now essentially assert that there is a one-
to-one correspondence between locally finite decompositions and locally
finite cochain systems.

7.3 ProrosiTioN. Every locally finite cochain system is the cochain system
of a locally finite decomposttion.

7.4 Propostrion. Let (Y, Ai, fi, gi, he) and (Yi, A:, fi, gi, hi) be
locally finite decompositions which have the same cochain system. Then there
are unique isomorphisms v; 1 Y; — Y1 such that fiv; = f;, gi = vip1g:, and
hivi = (Avis)hs for all 4.

Proof of Proposition 7.3. Let kieC™(A; ; A;) be a cochain system.
For every integer ¢ define a spectrum Y, as follows. A simplex of Y; of
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degree ¢ is any infinite sequence (a’, ', --.) such that
(i) a’eA'4; forallj = <,
(ii)) o’ = x for all but a finite number of s,
(iii) degree a’ = ¢ forallj = 4,
(iv) 8.0’ = klyna™ foralln <j — 4.
Its faces and degeneracies are
dn(ai, ai_H; wee) = (dn ai: dn a'iH’ )
sn(ai, at o) = (spdf, s a0,
They clearly are also in Y;, and hence Y is a spectrum.
Define maps f; : Yi — A;and ¢; : A; — Yip by

f;(ai’ ai+1, . ‘) — at’
g:a'i — (k::+la’i’ k::+2ai, .. .).

If we denote a simplex A™(a, @™, ---) e A"Y} also by (A"a’, A", --+),
then we can define a map hi : Yi — AY i, by the formula

h;(ai’ a'H-l’ . .) = (a’i-l-l, ai+2, . ).

A simple computation then yields that fi, i, and ki are indeed maps of
spectra, that & hi = gif: for all 4, and that f; is induced by ¢g: (Definition
6.1(iii)). The proof that Y;eSpg is also straightforward although some-
what longer and uses the fact that the A, satisfy the extension condition
[2, §56]. The details are left to the reader.

That the decomposition (Y3i, Ai, f+, gi, hi) is locally finite and has
{kI} as cochain system now follows from the fact that

. .
m,?‘(az,a'l«-l-’ .'.) — a.?

] +1 ! . .

for all (o', a™, ---)eYiandj = 3.

Proof of Proposition 7.4. Let {k}} be the cochain system of
(Y., Ai, fi, gi, h:). Then it suffices to prove the proposition for the case
that (Y5, As, fi, g, ki) is the locally finite decomposition from the proof
of Proposition 7.3.

For every integer 7 and y e Y; let

viy =(miy, miy, ).
Then a simple calculation yields that fi v; =f;, gi = vi;19:, and hiv; =
(Avig1)h; , while iterated application of 6.1(iii) yields that the v; are iso-
morphisms v; : Y; — Y.

In order to prove the uniqueness of the v; , assume that w; : ¥; — Y| are
maps such that fi w; = fi, gr = Wi gsand hi w; = (Awga)hsforall i. These
conditions clearly imply that w,y = (miy, mity, ) foralliand ye Y, ,
ie., w; = v; for all <.

7.5 Remark. It should be noted that the only property of the 4, used in
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§86 and 7 is that they satisfy the extension condition. No use was made of
their addition.

8. Application to homotopy types

8.1 DEFINTTION. A cochain system {k? } where &k} e C*777( A4, 5 4;) is called
an elementary cochain system if A; = Q'K (my; A;) for every 1.

Clearly we have
8.2 ProrosiTION. Every elementary cochain system is locally finite.

We shall now associate with every locally finite cochain system {ki} a
spectrum L{k!} e Spr and show that every homotopy type in Spz can be
obtained in this manner. In fact for every spectrum X e Spp there is an
elementary cochain system {k!} such that L{k!} has the same homotopy type
as X. Thus every homotopy type of spectra may be “described”’ by means of an
(in general not unique) elementary cochain system.

First we state

8.3 DEFINiTION. Let P be as in [2, §2]. Then for Y e 8p, its suspension
is the spectrum of which the simplices of degree ¢ are the base point and all
pairs (¢, y) such that ¢ e P,y e Y, y 5 %, and dim ¢ + degree y = ¢ — 1;
the face and degeneracy operators are given by

dl(d’, y) = (dl ?, Z/), 8i(¢7 y) = (si o, y); T = D,
= <¢7 d’i—p—l y)a = (¢') Si—p-1 Z/), T > p

(where p = dim ¢) whenever this has a meaning, and d;(¢, y) = * otherwise.
Similarly the suspension of a map w : ¥ — Z e $p is the map Sw : SY — SZ
given by (¢, y) — (¢, wy) whenever this has a meaning, and (¢, y) — *
otherwise. The function S so defined is a functor S : Sp — $p, the suspension
functor. We shall sometimes denote by S’ the identity functor of $p, and for
every integer n > 0 by S” the composite functor SS*™ : §p — $p.

8.4 PROPOSITION. Let Y € Spx, let ¢o € P be as in [2, §2], let ¢ be an integer
> 0, and let Q" : Spx — Spx be the i-fold loop functor. Then there is a unique
map t: S'QY — Y such that t(¢o, -+ (do, A'y)---) = y for all A’y e QY.
Moreover this map s natural and is a weak homotopy equivalence.

Proof. Existence, uniqueness, and naturality may be verified by a straight-
forward computation. That ¢ is a weak homotopy equivalence is proved just
as in the proof of [2, 5.3].

8.5 DEriNtTION. Let the cochains k) € C*77/( A4, ; A;) form a locally finite
cochain system, and let (Y, A;, fi, gi, h;) be the essentially unique de-
composition associated with it (§7). The maps f;: Y, — A, are easily
verified to be fibre maps. Denote the fibre of f; by F;, and let L’{k}} be the
spectrum obtained from the union of the spectra Yo, SY_y, 8°Y_,, --- by
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identifying, for every integer ¢ > 0, S‘F_; with its image under the composite
map
T i—1
Sr S, gigy ST gy L
Then we define the spectrum L{kl} e Sps by L{kl} = FL'{ki}.

8.6 ProposITION. Let X € Spx , and for every integer i let A; = Q'K (m:i X).
Then there exists a (not necessarily unique) elementary cochain system {k:} with
kie CP'(A; 5 A;) such that Lk} has the homotopy type of X.

Proof. We will outline the proof of Proposition 8.6 but leave to the reader
many details which are merely analogues for spectra of “well known” results
on set complexes [4].

For every integer ¢ let £; X denote the ¢-Eilenberg subspectrum of X, i.e.,
the largest subspectrum which has no simplices of degree < ¢ except the base
points, and let P; X be the ¢-Postnikov quotient spectrum, i.e., the spectrum
obtained from X by identifying two simplices whenever they have the same
iterated faces of degree 7. In view of [2, §8], X may supposed to be minimal.
For every integer 7 < 0 let ¥, = Q'E,; X, and for every integer 7 = 0 let
Y; be a minimal spectrum such that Q°Y; = E;X. The existence of the
latter follows readily from §4 and [2, §5 and §8]. For every integer ¢ let
A; = Py Y;,and let f; : Y; — A, be the projection. Clearly 4; is minimal,
7 Ad; = m; X, and mj A; = 0 forj # 2, ie., A; = QK (m: X). Also f; is
a fibre map with QY as fibre. Let Y/ be the spectrum obtained from Y
by identifying all simplices of QY ,.; with the appropriate base point, and
let hi: Y; — AY . be a map which is the identity on QY. Such a map
exists in view of the contractibility of AY ;1 (§2). Then the composition
Sohi 1 Yi; — Yy induces a map b : Y; — Y, and the map f: : ¥ — A
induces a map fi : Yi — A;. The latter is a weak homotopy equivalence
(by the argument used in the proof of [2, 5.3]). As Y1 € Spr, this readily
implies the existence of a map ¢; : A; — Y41 such that g;fi ~ k! and hence
gifi = S hi. 1In exactly the same manner as for set complexes [1] one may
prove a homotopy lifting theorem for fibre maps of spectra. Applying this
we get a map h; : ¥, — AY .y such that ¢g;f; = 8 h;, and a straightforward
calculation yields that (Y, , 4;, f:, g; , h:) is a locally finite decomposition,
and that its cochain system {k’} is an elementary cochain system.

Finally let w : L'{}} — X be the unique map such that for every integer
7 < 0 and simplex y e S7'Y; = STQE; X we have wy = ty ¢ E; X C X.
Then it is not difficult to verify that w is a weak homotopy equivalence, and
that hence L{k} and X have the same homotopy type.
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