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1. Introduction

For probability distributions on the real line there are three main theorems
on which the entire study of limit theorems for sums of independent random
variables is based. These are (1) the Lvy-Khinchin representation of an
infinitely divisible distribution, (2) the criteria for weak convergence of such
distributions, and (3) Khinchin’s theorem on sums of infinitesimal summands
stating that these converge weakly if and only if certain associated infinitely
divisible laws converge. For a precise statement of these results we refer
to Kolmogorov and Gnedenko [3].
During the last two decades or so these results have been extended by

many authors to varying degrees of generality. We mention in particular
the works of Lvy [12], Kawada and It [17], Takano [9], Bochner [1], [2],
Hunt [4], Urbanik [13], [14], Kloss [16]. In this paper we study probability
distributions on a locally compact abelian (separable) group and obtain
definitive extensions of all the three main results mentioned above.
The preliminaries are developed in Section 2. We mention in particular

the concept of shift-compactness introduced therein and the important role
that Theorem 2.1 plays in our study. A slightly modified notion of an in-
finitely divisible law is given in this paper to take into account the fact that
the group may not be divisible.
The main results of the paper are the following. Weak limits of sums of

uniformly infinitesimal random variables (with values in a group) are infinitely
divisible. These limits can be obtained from certain accompanying infinitely
divisible distributions if they have no idempotent factors. If t is any in-
finitely divisible distribution without an idempotent factor, then its charac-
teristic functional (y), defined on the character group, has the form

(xo y) exp {f [(x, y) i ig(x, y)] dF(x) (y)}
where (x, y) is the value of the character y at x, x0 is a fixed element of the
group, g(x, y) is a fixed function independent of #, F is a z-finite measure
which integrates the function (x, y) 1- ig(x, y) and has finite mass
outside each neighborhood of the identity, and (y) is a nonnegative con-
tinuous function satisfying the equality

(yl + y2) - (yl y2) 2[(y) - (y.)].
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Distributions t with characteristic function of the form

(x0, y) exp (-(y)),

where b(y) has the above mentioned property, are precisely those charac-
terized by the following algebraic property: t a , where is a (gener-
alized) Poisson distribution and t is infinitely divisible, implies that is
degenerate at the identity. We call them Gaussian since they are really
so in the case of finite-dimensional Euclidean spaces.
One interesting feature of the representation of an infinitely divisible dis-

tribution without idempotent factors is its nonuniqueness. However, the
Gaussian component is always unique. If F1 and F. are two measures which
occur in two different representations, their difference is always concentrated
in a subgroup H of X characterized by the following property: H is the
smallest closed subgroup containing all compact subgroups of X. Thus
nonuniqueness is due to the prevalence of compact subgroups. If, however,
we take a weakly continuous one-parameter convolution semigroup of meas-
ures {t}, then there exists a unique representation

:(y) (x,,y)exp It (f [(x, y) l ig(x, y)] --In the last section we prove the following generalization of a result due to
Khinchin [5] on the factorization of arbitrary probability distributions.
Any distribution is the convolution of the normalized Haar measure of a
compact subgroup, a finite or a countable number of indecomposable dis-
tributions, and an infinitely divisible distribution without indecomposable
factors.

2. Preliminaries

2.1. All groups considered in this paper are locally compact abelian sepa-
rable metric groups. Let X denote such a group, and let Y be its character
group. For x e X and y e Y, let (x, y) denote the value of the character
y at x. By duality theory the relation between X and Y is perfectly sym-
metric, i.e., X is the character group of Y. Further, if G is a closed sub-
group of X and H is the annihilator of G in Y, i.e., the set

H-- [y:(x,y) lforallxG],

then G and Y/H are character groups of each other. These facts and some
well-known results on the structure of locally compact abelian groups will
be freely used in the sequel. For these details we refer to A. Weil [10], and
Pontriagin [18].

2.2. By a measure on X we shall mean a nonnegative completely additive
set function defined on the Borel z-field of subsets of X. We shall refer to
probability measures as distributions. Let denote the class of all dis-
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(1)
(2)
(3)
(4)
(5)

of Y,
(6)

tributions. For , e we write

(x )(E) f (E ) d

for any Borel set E. k, is a distribution obtained by the convolution
operation. With this operation !gt becomes a commutative semigroup.
If is the distribution degenerate at a point x e X, then we write k x for
k . We call k x the shift or translate of k by the element x. If hi, k2,.., kn are some n distributions, then the distribution hi ,..., kn
has an obvious meaning. We denote t by II-- k. If all the distributions
hi are identically equal to a single distribution k, we write ks. These
definitions can obviously be extended to all measures, and we shall have
occasion to use them.
For any measure t we write (A) (-A) where -A is the set of all

inverses of elements in A. Then is also a measure. We denote by [ 12
the measure .
We introduce in ! the weak topology, defined as follows: For tn, t e !gt,

t is said to converge to (or n t) if f f dtn -- f f dt for each bounded
continuous function f on X. We assume some familiarity with this con-
vergence and in particular the description of compact subsets in this topology.

2.3. For each e !gt its characteristic function (y) is a function on the
character group Y, defined as follows:

(Y) fx (x, y)d(x).

Some of the basic properties of the characteristic function (y) are given
below.

(y) is a uniformly continuous function of y,
t(y) determines t uniquely,
(t * k)^(y) (y),(y) for all y e Y, and t, k e !gt,
(y) t(y),
t t if and only if (y) -- (y) uniformly over compact subsets

if (y) converges to a limit uniformly on each compact subset of Y,
then there is a e !gt such that

(i) (y) limn_ n(Y) and (ii)

2.4. A distribution is said to be idempotent if 2= ,x for some
xeX. If we write k =,(-x), then it is clear that k2= k, so that
(y) 0 or 1. From the inequality

(2.1) 1 R(x, y -- y2) <-_ 2[(1 R(x, y) -- (1 R(x, y.) )]

(R denoting the real part) it is clear that the set of all y for which ,(y) 1
is a both open and closed subgroup of Y. It is not difficult to see that the
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annihilator G of this subgroup is compact and is the normalized Haar
measure of G. Thus is the translate of the Haar distribution of a compact
subgroup.

2.5. For a, e, a is said to be a factor of (a-( in symbols) if
there is a e such that a, . A distribution t whose only factors
are either degenerate distributions or translates of t is said to be indecom-
posable. We denote by F() the collection of all factors of
Two distributions a, are said to be equivalent (a-- in symbols) if

each is a shift of the other. "" is an equivalence relation. For each
5 denotes the equivalence class containing a. The collection !F of equiva-
lence classes forms a semigroup. !Ft will be endowed with the quotient
topology.

DEFINITION 2.1. A subset c is said to be shift-compact if its image
in !} is conditionally compact.

The following theorem proved in [8] (see Section 3) plays a fundamental
role in our study.

THEOREM 2.1. Let be a conditionally compact subset of J. Then F()
consisting of the totality of all factors of elements belonging to is shift-compact.

COROLLARY 1. A subset c is shift-compact if and only if the set
consisting of all elements a e 2 of the form t with t ), is condition-

ally compact.

COROLLARY 2. For any distribution , F() is shift-compact.

COROLLARY 3. Suppose 1 "( as .( ....( o, -< and a -< for all
n. Then there is a translate , of o for every n such that o,, is weakly conver-
gent.

Proof of Corollary 3. Since an e F() for each n, {a} is shift-compact.
Suppose that f and ’ are any two limits of shifts of a. Then the fact that
a < a+l implies that and ’ are translates of each other. The corollary
is an easy consequence of this fact.
The following corollary is proved in a similar manner.

COROLLnY 4. Suppose a >- a.... Then there exists a translate

of o for each n such that a, weakly converges to a limit.

Remark. Corollaries 2-4 have been obtained earlier by It5 [11] for dis-
tributions in the real line.

3. Two axilicr, Iemmas
LEMMA 3.1. For each compact set C Y there are a neighborhood No of the

identity in X and a finite set E C such that

supc [1 R(x, y)] =< M.sup [1 R(x, y)]
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for all x e No, where M is a finite constant depending on C.
denotes the real part of (x, y).)

(Here R(x, y)

Proof. From the inequality

1-- R(xl - x y) <- 2[(1- R(xl y) + (1- R(x y)

it is clear that if the lemma is valid in two groups X1 and X., it is valid for
y’their direct sum X1 @ X. Let now denote the closed subgroup gen-

erated by C, and its annihilator in X. If r denotes the canonical homo-
morphism from X onto X’ X/, it is obvious that R(x, y) R(r(x), y)
for all x e X and y e yr. It is thus sufficient to prove the lemma when the
groups concerned are X’ and Y’ instead of X and Y. Since Y’ is compactly
generated, it is of the form V @ C @ I where V is a finite-dimensional vector
group, C is a compact group, and I is the product of r copies of the integer
group. Hence X’ is of the form V @ D @ K where D is a discrete group and
K" is the product of r copies of the circle group. Since the lemma is trivially
valid in the case of the real line, discrete group, and compact group, the proof
of the lemma is complete.

LEMMA 3.2. For any y Y there is a continuous function h.(x) on X with
the following properties:

(1) h x <= for all x e X, and h x h x
(2) (x, y) exp (ih(x) for all x N where

N [x’l (x,y) 1] =< 1/2].

Proof. Let (x, y) exp (i(x)) where - =< (x) < r. Then it is not
difficult to verify that (x) is a continuous function of x in the closed set
N. Now choose any continuous extension of (x) to X such that the first
condition is fulfilled. This will serve our purpose.

LEMM/k 3.3. There is a.function g(x, y) defined on the product space X )< Y
possessing the following properties"

(1) g(x, y) is a continuous, function of both the variables x and y.
(2) supx supc g(x, y) < for each compact set C c Y.
(3) g(x, y A- y) g(x, y) A- g(x, y) for each x X and y y e Y, and

g(--x, y) --g(x, y).
(4) If C is any compact subset of Y, then there is a neighborhood Nc of the

identity in X such that x y) exp Jig x y) for all x e Nc and y C.
(5) If C is any compact subset of Y, then g(x, y) tends to zero uniformly in

y C as x tends to the identity of the group X.

Proof. We shall reduce the proof of the proposition to the case of certain
simple groups by making use of the structure theory. Suppose that the
proposition is true for an open subgroup G of X. Let H and Y be the char-
acter groups of G and X respectively. Since H can be obtained as a quotient
group of Y by taking the quotient with respect to the annihilator of G in Y,
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there is a canonical homomorphism from Y to H. Suppose g(x, h) has
been defined for x e G and h e H with the required properties. We extend
the definition of g as follows. For x e G and y e Y we define

For x G, we define
g(x, y) g(x, ’(y) ).

g(x,y) 0 for allyeY.

Since an open subgroup is closed, the continuity of g(x, y) follows imme-
diately. The rest of the properties of g(x, y) are immediate consequences of
their validity in G X H.

In the case of a general group X we take G to be the group generated by
a compact neighborhood of the identity. This is both open and closed in X.
This group G has the simple structure, V @ C I where V is a finite-dimen-
sional vector group, C is a compact group, and I is the product of the integer
group taken r times. We now observe that if functions gl(x, y) and g(u, v)
with the properties mentioned in the lemma exist in groups X and U with
character groups Y and V respectively, then a function g(, v) with the same
properties exists for e X U and v e Y V. We have only to define

g(, ) g(x, y) -F g(u, v)

where x and u are projections of into X and U respectively, and y and v
are projections of v into Y and V respectively. Thus it is enough to construct
g(x, y) in the case of a real line, a compact group, and the integer group. In
the case of the integer group we can take g(x, y) to be identically zero. In
the case of the real line we can take g(x, y) O(x)y where

O(x) x, x e[-1, 1],
1, x > 1,
--1, x < --1.

(Note that the character group of the real line is itself.) Thus, in order
to complete the proof of the lemma it is enough to consider the case of a
compact group X.

Let X be a compact group with Y as character group. Let X0 be the com-
ponent of identity in X, Y1 the annihilator of X0 in Y, X1 X/Xo, and
Yo Y/Y1 Then Y0 is the character group of X0, and Y1 is the character
group of X1. Since X0 is connected and compact, Y0 is a discrete torsion-
free group. Let {d,} be u maximal family of mutually independent elements
in Y0. Then for d e Y0 there exist elements d,1, d, from the maximal
family and integers n, nl, nk (n > 0) such that

(3.1) nd nl d, -[- -t- nk d,

This representation is unique except for multiplication by an integer on both
sides.
Each element of Y0 is a coset of Y1 in Y. We take the coset d, and pick
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out an element y, of Y from this coset. We fix the elements y,. We define

g(x, y,) h.(x)

for every a where h.(x) is as in Lemma 3.2. Let now y e Y be arbitrary.
Then y belongs to some coset of Y1 which is an element of Y0. If this ele-
ment is denoted by d, then there exist integers n, hi, n (n) 0) and
elements d,1 ,’", d. from the collection {d.} such that equation (3.1) is
satisfied. We define

g(x, y) (nl/n)g(x, y,) + + (nk/n)g(x, y,).

We shall now prove that the function g(x, y) constructed in this way has
all the required properties.

Since g(x, y) is continuous in x for each fixed y and Y is discrete, the con-
tinuity of g(x, y) in both the variables follows immediately. Properties (2)
and (3) are obvious from the nature of the construction.

Since compact sets in Y are finite sets, it is enough to prove property (4)
for each y e Y. For any y e Y, let [y] denote the coset of Y0 to which y be-
longs. Then [y] is an element of Y0. If we write [y] for d and [y,] for d,,
then equation (3.1) can be written as

(3.2) n[y] n[y,] +... + nk[y,].

For any two elements y, y2 e[y] it is clear that Yl Y2 e Y. Since Y is
the character group of X/Xo which is totally disconnected, every element
of Y1 is Of finite order. Hence, for any y e Y there exists a neighborhood of
the identity in X where (x, y) 1. Thus for any two elements y, y e [y]
there exists a neighborhood of the identity in X where (x, yl) (x, y.).
Making use of the remarks made in the previous paragraph we shall com-

plete the proof of the lemma. From the construction of g(x, y) and Lemma
3.2 it is clear that, for each y,, there exists a neighborhood of the identity in
X where eg(’") (x, y,). Let now y e Y be arbitrary. From (3.2) it is
clear that there exist elements y,.i, Y,jnj in [y,j], for j 1, 2,...
such that

(3.3) ny

___
(y. + +

From the remarks made in the previous paragraph it follows that there exists
a neighborhood of the identity in X (depending on y,., and y,.) where

(x, y,,) (x, y,.).

Denoting by N the intersection of all the neighborhoods corresponding to
y,, (r 1, 2, ..., n andj 1, 2,..., k) we have

(3.4) (x, y,) (x, y,)
From (3.3) and (3.4) we have

(x, y)" (x, ny) II= (x, ya.i) ni for x e N.
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Since there are neighborhoods of the identity where (x, y.) exp {ig(x, y)},
it follows that there exists a neighborhood of the identity where

(x, y)n eing(x,y).

Since (x, y) and e(’) are continuous functions nonvanishing at the identity
of X, there exists a neighborhood of the identity where

(x, y) e(’).

Property (5) is obvious from property (1) and the fact that g(x, y) vanishes
when either x or y is the identity of the corresponding group. This com-
pletes the proof of the lemma.

In the following paragraphs we give examples of the function g(x, y) for
some particular groups.
Example 1. Let X Y R". If x (x,..., x)eX and

y (y, y,..., y,)e Y, then

where (t) (i 1, 2, n) are bounded continuous functions on the real
line such that (t) in a neighborhood of 0 and (-t) -(t).
Example 2. Let K denote the circle group, and let X K and

Y I, I being the integer group. Let

X [(x,..., Xn)" --1 <Xi --< 1 for i 1, 2,’’’, n]

addition being taken modulo 2. Then if y (y, y) e I,
g(x, y) (x)y

where the functions (t) are as in Example 1.
Example 3. Y additive group of rationals, and X is its character group.

Let (x) be a bounded continuous function on X such that exp (i(x))
(x, y0) for x in a neighborhood of the identity in X, where y0 is a fixed element
of Y, other than the identity. Then

g(x, y) (x)y/yo.

Example 4. If X is totally disconnected, then every homomorphism of Y
into the real line is trivial, so that in this case g(x, y) 0 for all x e X and
yeY.

4. Infinitely divisible distributions

We shll now introduce the definition of infinitely divisible distributions
and study some of their elementary properties.

DEFINITION 4.1. A distribution t is said to be infinitely divisible if, for
each n, there are elements x e X and n such that t h * x.
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We remark that the definition given here is slightly different from the
classical definition in the case of the real line. Such a modification is neces-
sary if we want to avoid the role of divisibility of elements from the group.
As yet it is not clear whether there exists a single element x of the group X
with the property t ), * x for every n. That such is the case for every
infinitely divisible distribution will be obvious from the representation which
we shall give later in Section 7.

THEOREM 4.1.
group of . The infinitely divisible distributions form a closed subsemi-

Proof. If h and are infinitely divisible, it is obvious from the definition
that is also infinitely divisible. Let now tk, ]c 1, 2, be a se-
quence of infinitely divisible distributions weakly converging to . For
any fixed integer n, let

From Theorem 2.1 it is clear that there exists a subsequence of hkn which after
a suitable shift converges to a distribution h. Since , it is obvious
from (4.1) that there exists an element xn such that t h ,x. This
completes the proof.
The normalized Haar measure of a compact subgroup is an example of

an infinitely divisible distribution. We shall now prove a result concerning
the absence of zeros for the characteristic function of an infinitely divisible
distribution without idempotent factors.

THEOREM 4.2. Let (y) be the characteristic function of an infinitely di-
visible distribution tt. If (yo) 0 for some character yo, then t has an idem-
potent factor.

Proof. From the definition of infinite divisibility it follows that, for each
n, there exist an element x e X and a distribution ),n such that h x.
Since (y0) 0, n(YO) also vanishes for every n. By Theorem 2.1, h is
shift-compact. Let , be a limit of shifts of hn. Then (yo) 0 and is
hence a nondegenerate distribution. It is also clear that every power of },

is a factor of . Thus the sequence },n is shift-compact, and any limit of shifts
is a nondegenerate idempotent factor of . This completes the proof.

DEFINITION 4.2. If F is any totally finite measure on X the distribution
e(F) associated with F is defined as follows:

e(F) e-[ + F + F/2! + + F/n! +
where 1 is used to denote the measure with unit mass and degenerate at the
identity.

e(F) is obviously an infinitely divisible distribution since e(F) [e(F/n)
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Its characteristic function is given by

(e(F))^(y) exp If ((x,y)- 1)dF(x)1
Suppose F is a sequence of totally finite measures and we form the se-

quence e(F,). We shall now obtain a necessary condition (which will be
shown to be sufficient in Section 9) for the shift-compactness of e(F,).

THEOREM 4.3. Let , e(F,) where F, is a sequence of totally finite meas-
ures. Then, in order that

(a) , be shift-compact,
(b) if is any limit of shifts of I,}, then have no idempotent factor,

the following conditions are necessary"

(i) For each neighborhood N of the identity the family {F,} restricted to
X N is weakly conditionally compact.

(ii) For each y e Y

sup f [1 R(x, y)] dF, < ,
R(x, y) denoting the real part of (x, y).

Before proceeding to the proof of this theorem we shall prove the following.

LEMMA 4.1. Let F, be as in Theorem 4.3, and suppose sup F,(N’) <= tc
where N’ denotes the complement of a symmetric neighborhood N of the identity.
If the sequence e(Fn) is shift-compact, then the sequence of measures F, is tight
when restricted to N.

Proof. Let G denote the restriction of F to N’. Then e(G,) is a factor
of e(F,). Since le(F)} is shift-compact, so is the sequence {e(G)} by
Theorem 2.1. Let H G (. Then, by Corollary 1 of Theorem
2.1, the sequence {e(H)} is compact. Hence, for any e > 0 there exists a
compact set C such that e(Hn)(C’) < . Since e(H,) e-(x)[=0 H/r !],
we have

_-In(x) e-2Un> e(Hn)(C’) >= e :nkC’) > (C’)

=> e-G, C’)

for all n. Since / is a constant not depending on n and e is arbitrary, it
follows that the family {Gn} is tight.

Proof of Theorem 4.3. Since any neighborhood of the identity contains a
symmetric neighborhood, we can assume that N is symmetric. Suppose
(a) and (b) are valid. Let, if possible, sup F,(N) . We can then
choose a subsequence for which

(4.2) Fn(N’) >= 2/c for/c 1, 2, ....
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Let L, ] 1, 2, be measures such that

L(A) <__ (1/t)Fn:(A) for every Borel set A,

(4.3) L(N) O,

L(N’) 1.

The distribution h e(Lk) is a factor of e(F,), and the shicompactness
of e(F,) implies the shift-compactness of /},} by Theorem 2.1. Let h be
any limit of shifts of h. From (4.2) and (4.3) it follows that any power of
h is a factor of . Thus the sequence h is shift-compact, and any limit of
shifts of ,n is a factor of t. Since these limits will be idempotent and has
no idempotent factors, it follows that any such limit must be degenerate.
Since h is an increasing sequence (in the order < ), it follows that h itself
must be degenerate. Thus the sequence ]h ] converges to the distribution
degenerate at the identity. Hence

e(L + )(N) 0 as k .
But

e(L + L)(N’) e-(+)()
(L + L) (N’) > e- L(N) e-r

which is a contradiction. Thus we have sup F(N’) < . Now an appli-
cation of Lemma 4.1 shows that condition (i) of the theorem is necessary.

In order to prove the necessity of (ii) we observe that e(F )
]e(F) is a compact sequence, and an application of Theorem 4.2 shows
that any limit of e(F) has a nonvanishing characteristic function. Thus,
for any y,

lim exp{f [R(x,y)-l] d(F f)} O,

which implies condition (ii). The proof is thus complete.

5. General limit theorems for sums of infinitesimal summands
In the case of the real line a well-known result due to Bawly and Khinchin

(see [3, Chapter 4]) asserts that the limit of sums of infinitesimal random
variables is infinitely divisible, and it can be obtained as the limit of a certain
accompanying sequence of infinitely divisible distributions. The purpose of
this section is to introduce the notion of infinitesimal distributions in a group
and prove a generalized version of the above-mentioned result in the case
when the limiting distribution has no idempotent factor.

DEFINITION 5.1. A triangular sequence {On3"}, j 1, 2,..., kn of dis-
tributions is said to be uniformly infinitesimal if

limn-. supl_<_’_k supper 5n’(y) 1 0

for each compact set K c Y.
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Before going to the statement of the main result of this section we shall
prove a lemma which will be often used in the sequel.

LEMMA 5.1. Let t II5l ,j where the sequence {n’} is uniformly in-
finitesimal. If the distribution is a limit of shifts of n then the set of char-
acters [y:(y) 0] is an open subgroup of Y, and consequently the normalized
Haar measure o] the annihilator of this subgroup in X is a factor of .

Proof. Since is a limit of shifts of , it is clear that for a subsequence
(which we shall denote by itself) ] ] ]:, and hence

(5.1) limH (y) [2 I(Y) ]2.
If (y) 0, it is obvious that (-y) 0. (5.1) implies that a necessary
and sufficient condition that (y) 0 is that

(5.2) sup 5 (1 -[5(y)I) < .
Thus if we make use of the inequality

1 (y + y) 2[(1 (y)) + (1 -(y))]

for any real-valued characteristic function , it is clear that the validity of
(5.2) for y and y: implies its validity for yl + y. The continuity of (y)
now implies that the set [y’(y) 0] is an open subgroup of Y.
We choose and fix a function g(x, y) defined on X X Y and satisfying all

the properties mentioned in Lemma 3.3. The main theorem of this section
can now be stated as follows:

EOREM 5.1. Let {a} be a uniformly infinitesimal sequence of distribu-
tions, and let

Suppose that {n} is shift-compact such that no limit of shifts of has an idem-
potent factor. Let

where x is that element of the group X defined by the equality

ex, i

lim sup () () 0

for each compac e K of Y.

Proof. During he course of he proof of he heorem we shall adopt, ghe

following conventions: We denote by , ,.-. constants depending
only on ghe eompaeg se K (and no on ). All he saemens ha we make
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are for sufficiently large n. By N we denote any arbitrarily small neighbor-
hood of the identity in X.

Turning to the proof of the theorem, we observe that the elements
are well defined, since, from the properties of g(x, y), it follows that
exp [-i f g(x, y) da] is a character on Y for any distribution a. Further,
for any neighborhood N of the identity all the points xn. are in N for suffi-
ciently large n. Therefore the uniform infinitesimality of {an’} implies the
uniform infinitesimality of the sequence {/3n’}. Thus X(y) and t(Y) are
nonvanishing in K, and hence we use the logarithmic notation freely. Since
no limit of shifts of g has an idempotent factor, it follows from Lemma 5.1
that the sequence (y) is uniformly bounded away from zero for all y K.
Thus it is enough to prove that

limn supy log ,(y) log tn (Y) 0.

We have

3n (U) (Xn 

E" log nj(Y) 2F i E1 f g(x, y) dnj(X). [(an., x.) (y) 1] + i f g(x, y) da,(x),
J

and
log

Writing 0,, a, Xnj we obtain

log Xn(Y) log (y) i (Onj(y) 1) + i EJ f g(x, y) da,. log O,(y) + ], log (x,., y)

E (O,(y) 1) E log O,(y)

<- C( 1 O.(y)[) sup 1

Since {O.j} is uniformly infinitesimal, it is clear from the above inequality that
it is enough to prove that

(5.3) sup, supu, [E 1 O,(y)l] < .
We have, for any neighborhood N of the identity in X

]1- On(y) .f (1- (x,y)) don1 + .fr, (1--(x,y)) dOnj

(5.4)
+ 20n(N’).fz(1- (x, y) dO,
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From property (4) of g(x, y) in Lemma 3.3 it follows that there exists
neighborhood of the identity in X where

(x, y) eg(’y) for y e K.

In such a neighborhood we have, for y e K,

(5.5) 1 (x, y) - ig(x, Y) <- C2 g2(x, y).

(5.4) and (5.5) imply

(5.6) I 0()1 <- fN g(x, y) dOnj g2(x, y) dO,j + 20j(N’)

for all y e K. By property (2) of g(x, y) in Lemma 3.3

(5.7)

Since all the Xnj will be in any small neighborhood of the identity after a
certain stage, and since eg(*’y) (x, y) for x e N and y e K, we conclude, by
making use of property (5) of g(x, y) in Lemma 3.3, that

(5.8) g(x + x:, y) g(x, y) + g(x,, y)

forx eNandyeK. Further

e(*"’) (x, ,y)= exp{--i f g(x,y) da,,j}
for all y e K and sufficiently large n. By property (5) of g(x, y) in Lemma
3.3, we get

(5.9) g(x, y) f g(x, y) da,

(5.8) and (5.9) imply

f g(x + x, y) da,j

Ca Oni(N’).
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The above inequality together with (5.7) implies that

(5.10) f g(x, y) dOnj C5 (nj(N’) for y e K.

(5.6), (5.10), and property (2) of Lemma 3.3 give

1 Onj(Y)l < C2 f g2(x, y) dOnj -- Co Oni(N’) + C7 nj(Yt)

for y e K. Thus, in order to complete the proof of the theorem we have only
to show that

(5.11) lim sup O(N’) < ,
(5.12) lim sup a(N’) < ,

SUpn sup, f g(x, y) dO < .(5.13) lim

To this end we consider the distribution

Since ] ] is compact and no limit of [, ] has an idempotent factor, ac-
cording to Lemma 5.1, (y) [ is bounded away from zero uniformly for
yeKandinn. Thus

lim sup sup (1 a(y)) < .
This is the same as (5.3) with a replacing On, and hence

lim sup [exp( (] 5(y)] 1)) n(Y)] O.

Thus the sequence e( ]an [) is compact. We now appeal to Theorem
4.3. Then

(5.14) lim sup a I:(N’) < ,
(5.15) lim sup f (1 R(x, y)) d a < .
We now choose a neighborhood V of the identity such that V + V N.
Then

E .(N’) "n((V + V)’)
i.((V + x)’) i.(V’ + z)

5 [-(V)]- f (V’ + x) d.

(sup [n(V)]-) . [(V’).
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Since {O/n j} is uniformly infinitesimal, sup. [O/n3"(V) ]-1 < 1 + e, for ny given
e > 0 nd all sufficiently lrge n depending on . The above inequality and
the vlidity of (5.14) for ny neighborhood N of the identity imply (5.12).
Since O/n3" On" and {On} is uniformly infinitesimal, the sme rgument
leads to (5.11).
From (5.15) we hve, for any neighborhood V of the identity in X,

(5.16) lim sup ff [1 R(x x, y)] dOn(X) dOn(X)
j" oarXV

We now choose Vsuchtht V- V N. Then

R(Xl x2, y) cos g(x x., y).

Since 1 cos > 0/4 for sufficiently small , we have from property (5) of
g(x, y) in Lemma 3.3,

1 R(x x, y) 1/4g(xl x, y)

for y e K. Since e(*’) (x, y) for x e N and y e K, the same property of
g(x, y) gives

g(x x., y) g(x y) g(x., y), x,xe V, y eK.

Thus, for x, x e V, y e K,

(5.17) 1 R(x x: y) >- 1/4[g(x y) + g:(x. y) 2g(x y)g(x y)].

(5.16) and (5.17) imply

(5.18) liraSUPn suP{3’y,K. fY g2(xay) dOnj(X) (J; g(x, y)dOnj)2}< oO

(5.10), (5.12), and (5.18) imply (5.13). This completes the proof of the
theorem.

THEOREM 5.2. If a,} is uniformly infinitesimal, t Ia and ,
then t is infinitely divisible.

Proof. If has no idempotent factor, then it is also a limit of the sequence
}, where h is constructed as in Theorem 5.1. Since h is infinitely divisible
for each n, t is also infinitely divisible.
Now let us consider the general case. By Lemma 5.1 the set [y" t(y) 0]

is an open subgroup H. If G is the annihilator of this subgroup in X, then the
normalized Haar measure of the compact group G is a factor of t. Let r be
the canonical homomorphism from X to X/G. Then the sequence {a- r-1}
is uniformly infinitesimal in X/G, and n 7"--1 T-1. /T

-1 has no idempotent
factor and hence is infinitely divisible. For y e H, t(y) tv-(y) and
(y) 0 for y e H. Thus itself is infinitely divisible.

Remark. In the statement of Theorem 5.2 we have assumed that [an} is
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uniformly infinitesimal. However, it is enough to assume the existence of a
sequence {Xnj} of elements from the group with the property that {a. x} is
uniformly infinitesimal. This is equivalent to the statement that any limit
of shifts of a. is degenerate.

6. Gaussian distributions
In this section we give an algebraic definition of a Gaussian distribution

and obtain its representation. This definition is also consistent with the
classical definition of Gaussian laws in the case of the finite-dimensional vector
spaces. Another definition of a Gaussian law is due to Urbanik [14] who also
discussed some of its properties.
From the point of view of limit theorems, the Gaussian laws arise very

naturally as follows. Suppose F is a sequence of finite measures on the
group X such that (1) outside each neighborhood of the identity F -- 0 as
n -- , and (2) e(F,) converges to a limit after a suitable shift. If the total
mass of F is not uniformly bounded, e(F,) may actually converge to a non-
degenerate distribution. These are precisely the Gaussian laws.

DEFINITION 6.1. A distribution is said to be Gaussian if it has the fol-
lowing properties" (i) is infinitely divisible, and (ii) if e(F) a where
a is infinitely divisible, then F is degenerate at the identity.

THEOREM 6.1. A function on Y is the characteristic function o] a Gaussian
distribution on X if and only if it has the form

(x, y) exp [-O(y)

where x is a fixed point of X and (y) is a continuous, nonnegative function on Y
satisfying the equality

(yl + y2) + (yl y2) 2[(y) + (y.)]

for all y. y in Y.

Proof. Let be Gaussian. Then cannot have a nondegenerate idempo-
tent factor. For, otherwise, the Haar measure of some compact subgroup
will be a factor of , and hence if F is any measure concentrated in that sub-
group, then e(F) . This contradicts property (ii) of Definition 6.1.
From the definition of infinite divisibility it follows that, for each n, there
exist a distribution an and an element g of X such that as g.

Since has no idempotent factors, any limit of shifts of a is degenerate, and
hence an’s can be Shifted so as to converge to the distribution degenerate at the
identity. All these shifts may be absorbed into gn, so that as itself can be
assumed to converge to the distribution degenerate at the identity. We now
write (as in the proof of Theorem 5.1)

On-- an * Xn n e( On), n * (--nXn) * gn
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where the element Xn is determined by the identity

(xn y) exp [-i f g(x, y) d,1
The absence of idempotent factors for implies

lim SUpn supyK ,n(Y) (Y) 0
by Theorem 5.1.
Thus

(y)[ li+m exp (n f JR(x, 71)--1] don).
We shall first show that the function

satisfies (6.1). We write P. nO.. Then e(P.) is a shff of M, and hence
e(P.) is shift-compact. Now Theorem 4.3 implies ha P. restricted o N’ is
igh for every neighborhood N of he ideniy. Bu any limi P of P. re-
stricted o N’ will be such ha g e(P) a where a is also infinitely divisible.
From condition (ii) of Defingion 6.1 i follows ha he mass of P. outside
every neighborhood of he ideniy ends o zero. Thus

lim [ [1 R(., V)] dP.(6.2) (Y)

for every neighborhood N of the identity. (6.2) and the following identity

lim[1 R (x,y + y)] +[1 R (x,y y)]
1

2[ n (x, y)] + 2 [ n (x, y)]

(e denoting the identity element of the group X) imply

(y + y) + (y y) 2[(y) + (y)1.

Thus, in order to complete the proof of the theorem it suffices to show that
(y)/] (y)[ is a character on Y. Let us denote this by x(Y). It is not dif-
ficult to verify that, for every neighborhood N of the identity,

x(Y + Y2)[x(Y)x(Y2)]-(6.3) ( f )exp .limj[I(. g +g) I(. g) I(. g.)] dP

where I(x, y) denotes the imaginary part of (x, y). For any given > 0, we

Since both the numerator and denominator can vanish, this limiting relation is to
be interpreted as follows: the numerator lies between (1 ) and (1 + ) times the
denominator, if x is near enough to e.
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choose a neighborhood N of the identity such that

[I(x, yl)] < e, I(x, y:)[ < e
forx eN. Since

I(x, yl + y) I(x, yl) I(x,

<= I(x, Yl) i n(x, y.) W I(x, Y)II 1 R(x, yl)[
and

sup f [1 R(x, y)] dP, <lim

(by Theorem 4.3), we have

f [I(x, yl -[-- y) (x, y) (x, y)] dP, <I I C.e

where C is a constant depending only on y and y.. Since is arbitrary, the
right side of (6.3) is equal to unity. The continuity of x(Y) is obvious. This
shows that x is a character on Y. Thus there exists an element x e X such
that

(y) (x, y) exp (-(y)).

This proves the necessity part.
Conversely, let (y) (x, y) exp (-O(y)) where (y) is a nonnegative

continuous function of y satisfying (6.1). Let y, yk be some/ char-
acters. Then it is easily verified that exp [-(n y + + nk y)], con-
sidered as a function of integers nl, n, is positive-definite in the product
of integer group taken / times. This implies the positive-definiteness of
exp (-(y)), and hence this function is the characteristic function of a meas-
ure. Since (y) 1 at the identity of Y, the measure is a distribution. The
infinite divisibility of is obvious. We shall now prove property (ii) of
Definition 6.1. Let, if possible, t(Y) (y)(Y), where t e(F) and t is
infinitely divisible. Since (y) does not vanish for any y, (y) also does not
vanish, and hence by Theorem 5.1, t is a limit of distributions of the type
e(H). From (2.1) it is clear that for any finite measure H

--log (e(g))^(Yl + Y)I log l(e(H))^(Y
(6.4)

-< 2J--log l(e(H) )^(y) log I(e(H) )^(y)

Thus (6.4) is also valid when e(H) is replaced by either tl or t.. Substituting
t and for e(H) in (6.4) and adding, we get (y y.) (y y) =<
2[(y) (y)]. Since equality holds good in this case, we must have

(x, yl -t- y)] +- (x, y- y)])R [1 R dF

2 f ([1 R (x, y)] + [1 R (x,y)]) dF
J
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for each yl, y2 Y, i.e.,

R (x, y)] [1 R (x, y2)] dF O.

Since F is a measure, this implies that F must be degenerate at the origin.
This completes the proof.

Remark. 1. Consider real-valued continuous functions (yl, y) defined
for yl, y e Y possessing the following properties"

(i) (y., y) (y, yl),
(ii) (yl + y2, y) (y, y3) + (y, y),
(iii) (y, y) -> 0.

Clearly for any such function , (y) (y, y) satisfies the identity (6.1).
Conversely, any nonnegative continuous function satisfying (6.1) can be
obtained in this way. In fact, (y, y) can be recovered from (y) by the
relation

b(y, y) 1/2[(y - y) -(y) -(y2)].

Remark 2. If X0 is the component of the identity in X, then its annihilator
Y0 is the smallest closed subgroup containing all compact subgroups of Y.
Consequently any (yl, y) with the properties stated above vanishes identi-
cMlyinY0, i.e., (y, y) 0if y or y2 e Y0. Thus iftisa symmetric
Gaussian distribution on X, then t(Y) 1 for y e Y0. In other words is
necessarily concentrated in X0. Theorem 6.1 and Remark 1 above also show
that every connected locally compact group has nontrivial Gaussian measures
defined on it.

7. Representation of infinitely divisible distributions

As we have mentioned in the introduction, the characteristic function of any
infinitely divisible distribution on the real line possesses the famous Lvy-
Khinchin representation [3]. The purpose of this section is to obtain such a
canonical representation in the case of a general locally compact abelian group.

DEFINITION 7.1. An infinitely divisible distribution h is said to be a
proper factor of another infinitely divisible distribution t, if t }, * a and a is
infinitely divisible.

LEMMA 7.1. The set of proper factors of an infinitely divisible distribution is
closed.

:LEMMA 7.2. If e(F,) converges to the distribution degenerate at the identity,
then Fn(N’) 0 as n ---+ for every neighborhood N of the identity.

The proof of both the lemmas is quite elementary and is left to the reader.
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THEOREM 7.1. If is an infinitely divisible distribution without idempotent
factors, then (y) has a representation

(7.0) (y) (xo,y) exp[f [(x,y) l-ig(x,y)]dF(x) -(y)1
where Xo is a fixed element of X, g(x, y) is a function on X X Y which is inde-
pendent of t and has the properties mentioned in Lemma 3.3, F is a (r-finite
measure with finite mass outside every neighborhood of the identity in X which
satisfies

R (x, y)] < for every y,dF

and (y) is a nonnegative continuous function satisfying

(yl + y.) + (yl y.) 2[(y) - (y.)]

for each y y e Y. Conversely, any function of the type (7.0) is the character-
istic function of an infinitely divisible distribution.

Proof. Let be any infinitely divisible distribution without an idempotent
factor. Choose and fix a sequence {Nk} of neighborhoods of the identity in
X descending to the identity. Let t be that proper factor of t which is of the
type e(F) and for which F(N) 0 and F(Nrl) 0 and F(N) is maximum.
Such an e(F) exists because of Theorems 2.1 and 4.3 and Lemma 7.1. Let the
F at which the maximum is attained be F, and let k and e(F1).
Since kl is infinitely divisible and without idempotent factors, the same argu-
ment can be applied to },1 and the neighborhood N. Thus there exists
a measure F for which F(N2) O, F(N) is a maximum, e(F),
,1 },, and },: is infinitely divisible. Repeating this procedure we can
write

(7.1) p k,

(7.2)

(7.3) tn- e(Fn), Fn(Nn) O.

k is infinitely divisible, and F,(N’) is a maximum in the sense explained
earlier. Thus by Theorem 2.1 there exist shifts of n and con-
verging to , and k respectively, and k. We now assert that ), cannot
have a proper factor of the type e(F). Suppose, on the contrary, e(F) is a
proper factor of h. Then it will have a positive mass outside some Nk. Fur-
ther, since the sequence ), is descending (in the order < ), e(F) is a proper
factor of hk. kk e(F) where 0 is infinitely divisible. If F is the re-
striction of F to N, then (7.2) and (7.3) imply that

h,_ e(F + F’) e(F F’) t.
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This is contradiction since the total mass of F -t- F’ exceeds that of F.
Thus ), hs no proper factor of the type e(F) nd is therefore Gussin distri-
bution. An ppliction of Theorem 6.1 leads to the existence of function
(y) nd an element x e X for which

(7.4) (y) (x, y) exp [-(y)]

and
(y W y) W @(y y.) 2[(y) W (y)], y, y e Y.

Now we write H F + F + + F. From the construction of the
distributions , it is clear that

,(y) (x, ,y)exp If [(x,y)- 1] dH,(x)1
for some element x. e X. Since exp [if g(x, y) dH,(x)] is a character on Y,
it can be considered as an element of X. Thus there exists an element z. e X
such that

,(y)=(z,, ,y)exp If [(x, y)--1-ig(x,y)]dH,,(x)].(7.5)

Since e(H,) is a factor of and H increases as n -- , it follows from the
shift-compactness of e(H,), Theorem 4.3, and Lemma 2.1 that H increases
to a z-finite measure H for which H(N’) < for every neighborhood N of
the identity and

f sup [1 R(x, y)] < ,dH

for every compact K Y. Since [(x, y) 1 ig(x, y) is bounded uniformly
in y e K, by property (2) of g(x, y) in Lemma 3.3, we have, for every neighbor-
hood N of the identity,

f [(x,y) 1--ig(x,y)]dH,, f [(x,y) 1 ig(x,y)]dH,lim

uniformly in y K. When N i ufficienly mll, we hve, by he properie
(4) nd (5) of g(x, y) in Lemm 3.3,

(x,y) e(’) for xeN, yeK,

g(x, y) <= C[1-R(x,y)], x N, y K,
where C is a constant depending on K only. Thus

(7.6) ](x,y) 1-ig(x,y)] <= C:[1-R(x,y)], x eN, y eK,
where C is a constant depending on K only. Thus

f sup I(x, y) -1 --ig(x, y)IdH, <= C. f sup [1 R(x, Y)] dH.
yK ,IN yK
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The above inequality implies the convergence of

f[(x,y) 1 ig(x,y)]dH to f[(x,y) 1-- ig(x,y)] dH

uniformly in y e K. Now (7.5) implies that (y), after a suitable shift,
converges uniformly over compact sets to exp f [(x, y) 1 ig(x, y)] dH.
This completes the proof of the first part since converges to after a suitable
shift, , and }, satisfies (7.4).
To prove the converse, we first observe that if F is a totally finite measure,

then exp[i f g(x, y) dF] is a character, and hence t(y) given by (7.0) is the
characteristic function of an infinitely divisible distribution. In the general
case we consider a sequence F of totally finite measures increasing to F. If
K is any compact subset of Y, then, according to Lemma 2.1, 1 R(x, y) is
uniformly integrable with respect to F for y e K. (7.6) implies the uniform
integrability of [(x, y) 1 ig(x, y)] for y e K. This shows that the func-
tion

(xo y) exp (f [(x, y) -1- ig(x, y)] dF, (y))
converges uniformly over compact sets to t(y). Thus, by Theorem 5.2’
t(Y) is infinitely divisible.

Remark. If the group X is totally disconnected, then the representation
takes a simpler form. For in such groups (y) 0 (see Remark 2 following
Theorem 6.1), and g(x, y) 0 (see Example 4 at the end of Section 3). Thus
every infinitely divisible distribution without idempotent factors has the
representation

(y) (Xo, y)exp If [(x, y)-l] dF1
where F is a a-finite measure which has finite mass outside each neighborhood
of the identity.

8. Uniqueness of the representation
In the case of the real line it is well known that the canonical represeatation

of an infinitely divisible distribution is unique. However, this is not true in
the case of a general group. We shall show that the nonuniqueness is es-
sentially due to the presence of compact subgroups in the original group or
equivalently due to the disconnectedness of the character group.

Before proceeding to the statement of the main result of this section we
shall explain a few conventions and prove an elementary lemma. If t is any
infinitely divisible distribution without idempotent factors, we say that has
the representation (x0, F, ) where x0, F, and b are as in Theorem 7.1. If F
is any signed measure, we denote by F the measure given by

F(A f [1 R(x, y)] dF.
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LEMMA 8.1. Let t be a totally finite signed measure. If (y) is constant on
the cosets of a closed subgroup Yo of Y, then vanishes identically on the comple-
ment of the annihilator of Yo in X.

Proof. Let Y Y/Yo, and let X be the annihilator of Y0 in X. (y),
being constant on cosets of Y0, can be considered as a function on Y. Then
t(yl), y e Y is the characteristic function of a signed measure on X. Since,
for x e X, (x, y) remains constant on cosets of Y and (y) has the same prop-
erty, we can write

;(y)
X "X

where yl denotes that coset of Y1 to which y belongs. This shows that the
signed measures t and , are identical, and hence vanishes identically on the
complement of X.
THEOREM 8.1. If (X F1, 1) and (x. F2 2) are two representations of the

same infinitely divisible distribution without idempotent factors, then i) 2,
and (ii) the signed measure F1 F vanishes identically on the complement of
the annihilator of the component of identity of the character group Y.

Proof. Writing F F1 F2, b bl 2, and Xo x2 x, we have

(8.1) exp f [(x, y) 1 ig(x, y)] dF (Xo, y) exp (y),

(8.2) (yl -b y2) + b(yi y2) 2[b(y) + (y2)] 0, y, y2 e Y.

Equating the logarithm of the absolute value on both sides of (8.1) we
obtain

(8.3) 4)(y) f JR(x, y) 1] dF.

Substituting the values of the above expression at y y2, yl y, yl, and
y2 in (8.2), we get

(8.4) f (1 R(x, y))(1 R(x, y.)) dR 0.
J

(8.4) can be rewritten as

R(x, y)] dFy

Since Fy is totally finite, we have

0, for y,y_eY.

(8.5) f (x, y) d(F. -[-- ’) 2F2(X).

Since the right side of (8.5) is constant when y. is fixed, we conclude that the
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signed measure F + F is degenerate at the identity. But the mass of
F at the identity is zero. Thus F F 0. In particular F(X) 0,
i.e.,

(8.6) f [1 R (x, y2) dF 0 for every

(8.3) and (8.6) imply the equality of 1 and 2.
In order to prove the second part of the theorem we make use of the equality

of 1 and . and rewrite (8.1) as

(8.7) exp f [(x, y) 1 ig(x, y)] dF (Xo, y), y e Y.

Substituting y yl y2 y y2 and y successively in (8.7) and dividing
the product of the first two by the square of the third, we obtain

(8.8) exp f (x, y)[1 R(x, y2)] dF 1, yl y2 Y,

or equivalently

f (x, yl)[1 R(x y2)] dF 2vn(y, y2)

where n(y, y2) is an integer-valued continuous function of yl and y.. We
fix y2 for the present. Then n(y, y2) remains constant on every connected
subset of Y and, in particular, on the cosets of the component of identity in Y.
This implies, by Lemma 8.1, that the signed measure F vanishes identically
on the complement of the annihilator in X of the component of the identity of
Y. Since this is true for each y2, it follows that F itself vanishes identically
outside this annihilator. This completes the proof of the theorem.
Remark 1. It is not difficult to show that the annihilator of the component

of the identity of Y is the smallest closed subgroup containing all compact
subgroups of X. This reflects the role of compact subgroups in making the
representation nonunique. In particular, if the group X has no compact
subgroups, then the representation is unique.

Remarlc 2. It was shown in the course of the proof of Theorem 8.1 that
the measure F is antisymmetric for each character y, i.e., F(A) F( A)
for every Borel set. But if every element in the group were of order two, then
such a measure would be identically zero. Coupling this with Remark 1 we
can say that if the group X is such that every compact subgroup of X consists
only of elements of order two, then the representation is unique.
Remark 3. Conversely, if X is a compact group such that not all elements

of X are of order two, then the representation is not unique as can be seen
from the following example. We take an element y0 in the character group
which is not of order two and consider the function

f(x) 2ri[(x, y0) (x, y0)].
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f(x) is real and not identically zero.
measure of X, we have

If h denotes the normalized Haar

f (x,y)f(x) dh(x) 2rri if y- y0,

--2vi

=0

Writing f+ and f- to denote the positive and negative parts of f(x), we define
the two measures

FI(A f. f+(x) dh, F.(A f. f-(x) dh.

Then F1 F, but

exp J [(x, y) 1 ig(x, y)] dF (Xo, y) exp J [(x, y) 1 ig(x, y)] dF

where (x0, y) exp [i f g(x, y) d(F F1)] is a character on Y and hence
an element of X. Thus (e, F,, 0) and (x0, F, 0) are two representations of
the same infinitely divisible distribution.

9. Compactness criteria

When the group is the real line, necessary and sufficient conditions that a
sequence of infinitely divisible distributions may converge to a given infinitely
divisible distribution have been obtained in terms of their representations (cf.
Gnedenko and Kolmogorov [3]). Such a result fails to be valid in the general
case because of the nonuniqueness of the representations. However, it is
possible to obtain conditions for the compactness of a family of infinitely
divisible distributions in terms of their representations.

Before proceeding to state the main result of this section we shall investigate
what happens to the representation when we pass over from a group to its
quotient group. Let G c X be some closed subgroup of X, and X’ X/G
the quotient group. Let r denote the canonical homomorphism from X to
X’. If Y’ is the character group of X’, we choose and fix a function

X’ Y’defined on X and satisfying all the properties of Lemma a.a. We ob-
serve that Y’ is the annihilator of G in Y and hence a subgroup of Y. Any
infinitely divisible distribution t* on without idempotent factors has a
representation (x’, F’, ’) (with g replaced by g’) according to Theorem 7.1.

LEMMA 9.1. Let t* be an infinitely divisible distribution on X with a representa-
--1 F’tion (x, F, ). If t* ttr x rx, Fr-, and is the restriction of

to Y’, then t* is an infinitely divisible distribution on and is a shift of the
distribution represented by (x F’, ).
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Proof. Let # # . where is the unique Gaussian component of #.

Clearly ’ tT- --1 --1
1 r * 2 r Since e() r

-1 e(r-1) for every finite
--1measure a, it follows easily that r and the distribution represented by

(x’, F’, 0) are shifts of each other. Thus r- is the Gaussian component of
’. This completes the proof.
We shall now prove the following.

THEOREM 9.1. Let .} be afamily of infinitely divisible distributions without
idempotent factors and with representations {(x,, F,, .)}. Necessary and
sucient conditions that {#.} be shift-compact and any limit of shifts of {.} be
devoid of idempotent factors, are

(1) The family {F.} of measures is compact when restricted to N’ for every
neighborhood N of the identity.

(2) sup. lf [l R(x,y)] dF. + 4.(y)l < oo for all y.

Proof. The necessity of the above two conditions is obvious in view of
Theorem 4.3. Regarding sufficiency we first observe that if {.} is a shift-
compact family, then condition (2) is sufficient to ensure the absence of
idempotent factors in any limit of shifts of .. We shall now prove shift-
compactness.
We have only to prove the compactness of the family {I t. ]2}. We now

observe that if (x, F, ) is a representation of an infinitely divisible distribu-
tion t in a group X and r is a continuous homomorphism of X onto another
group X’, then tit

-1 is a shift of the distribution represented by (rx, Fr-1, )
where ’ is the restriction of to the character group of X’ (which is a sub-
group of Y). Further if {(x., F., 4.)} satisfies conditions (1) and (2), so
does the family {(rx., F.r-, 4)’.)}. Making use of these remarks we shall
reduce the proof of the general case to that of certain simple groups.

In order that a family of measures be compact, it is necessrry and sufficient
that the family be tight. If C is a compact subgroup of X, and if the family
of measures induced by the canonical homomorphism on X/C is tight, then
the original family itself is tight. We now choose the group C in such a
manner that X/C has the structure V D @ K where V is a vector group,
D a discrete group, and K the r-dimensional torus. The existence of such a
compact subgroup is well known. But a family of measures in the product of
two topological spaces is tight as soon as the two marginal families are so.
Thus it is enough to prove the sufficiency of (1) and (2) in the case of the
real line, discrete groups, and compact groups. In the case of the real line

Xthe boundedness of f [1 R(x, y)] dE. implies the boundednessof fill<, dE.
for a suitable e, which together with condition (1) implies the equicontinuity
of the family of functions exp{- f (1 R(x, y) dE.}. Since .(y) assumes
the form a. and hence a. is bounded, it is clear that {] .(y)]2} is equicon-
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tinuous. But equicontinuity implies compactness. In the case of a discrete
group, identity itself is an open set, and hence the family IF,} is compact
outside the identity. This, together with the fact that every infinitely
divisible distribution without idempotent factors is a shift of e(F) for some F
with zero mass at the identity, implies the required result. In the case of
compact groups any family of measures is compact. This completes the
proof of the theorem.

COROLLARY 9.1. In addition to the conditions (1) and (2) of Theorem 9.1
the condition that {x,} be a conditionally compact set is necessary and sufficient to
ensure the conditional compactness of ,} with representations

(x,, F,, ,).

Proof. From (7.6) we have

I(x, y) 1 ig(x, Y) <= C[1 R(x, y)]

for all x e N, y e K where C is a constant depending on K only, N is a suf-
ficiently small neighborhood of the identity in X, and K is a compact subset of
Y. This implies the equicontinuity of the family of functions

exp If [(x, y)-i --ig(x, y)] dF,-- ,(y)l.
Hence Ix,} is conditionally compact if and only if t,} is so.
For any a-finite measure F which has finite mass outside every neighborhood

of the identity and integrates the function 1 R(x, y) for every y, we write

(9.1) (E(F))^(y) exp f [(x, y) 1 ig(x, y)] dF.

Theorem 7.1 implies that (E(F))^(y) is the characteristic function of an in-
finitely divisible distribution. By proceeding along the same lines as in the
proof of Theorem 9.1 it is possible to prove the following.

THEOREM 9.2. Let } be a sequence of infinitely divisible distributions with
representations (x F ). Let ,, converge to after a suitable shift, and F,,
to F outside each neighborhood of the identity. Then has a representation
(x, F, ) for a suitable choice of x and .

10. Representation of convolution semigroups
We have observed earlier that the representation of an infinitely divisible

distribution is not unique. We shall now consider the representation problem
for a one-parameter convolution semigroup of distributions. By such a
semigroup we mean a family {tt} of distributions indexed by _-> 0 such that
t * t, t+. We shall further assume that t converges weakly to the
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distribution degenerate at the identity when - 0. Obviously, for such semi-
groups tt(y) 0 for any > 0 and y e Y. That such a semigroup has
unique canonical representation is the content of the following.

THEOREM 10.1. Let ttt} be a one-parameter convolution semigroup of distri-
butions such that tt converges weakly to the distribution degenerate at the identity
as ---, O. Then t(y) has the canonical representation

t(Y) (xt y) exp (t f [(x, y) l ig(x, y)] dF t(y))
where F and are as in Theorem 7.1 and Ixt} is a continuous one-parameter semi-
group in X. Moreover, {x t}, F, and are uniquely determined by

Proof. Since t (t/,) , t is infinitely divisible. As remarked at the
beginning, t(y) is nonvanishing at any point and hence has no idempotent
factor. Thus by Theorem 7.1, tt has a representation (zt, Ft, t). The
uniqueness of Ct implies that 4)t t4). We write 4) 4) and ,t(y) t(y)et.
Then {),t} is a weakly continuous convolution semigroup, and ),t has neither
idempotent nor Gaussian factors. For any a-finite measure F which has
finite mass outside every neighborhood of the identity and integrates the
function 1 R(x, y), we define the distribution E(F) as in (9.1). We now
observe that the distribution E(n!F1/,!) is a shift of for every n. By
Theorem 4.3 the sequence of measures n!F1/,! is compact outside every
neighborhood of the identity. Thus we can choose a subsequence n!F/,
which converges to a measure F outside every neighborhood of the identity.
Thus by Theorem 9.2, hi has a representation (z, F, 0) for some z e X. We now
define

t(y) exp (t f [(x, y) l ig(x, y)] dF)
If p/q is rational, then E((p/q)n! F/n!) is a shift of h/q for all suf-
ficiently large n. Since (p/q)n!F/! converges to (p/q)F outside every
neighborhood of the identity, another application of Theorem 9.2 shows that
/q is a shift of P/q. By the continuity of the semigroups it is clear that,
for every t, ht is a shift of Pt. Thus ,t(y) can be written as (xt, y)Pt(y).
Then xt automatically becomes a continuous one-parameter semigroup in X.

If now (xt tF, re) and t, tF, t) are two representations of the semigroup
tt}, then by proceeding in the same way as in the proof Theorem 8.1 we obtain

exp It f (x, y)[1- R(x, y)] d(F F’)I 1

for every t. But this can happen only if F F’ 0. Thus the representa-
tion of the semigroup is always unique.
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COOLLAnY. /f #t is symmetric for each t, i.e., t(A) (-A) for each Borel
set A, then the representation stated in Theorem 10.1 takes the simpler form

t(Y) exp lt f [(x, y) 1] dF t(y)l
where F is a symmetric measure which integrates [1 (x, y)] for each y, and
(y) is continuous, nonnegative, and satisfies (6.1).

Remark. The above corollary could be used to give a representation for
the "negative definite" functions of Herz [15, p. 198]. (The problem of
obtaining such a representation for "negative definite" functions is raised by
Herz on page 207 of [15].) A function (y) on Y is said to be "negative
definite" if

(i) (y) is continuous, (y) (-y), and (y) _-> (0) 0, and
(ii) if yl, y are arbitrary elements of Y and cl, c, c. are real

numbers such that c 0, then

E E <_ o.
From the corollary above and Theorem 3.1 of [15, p. 198], it follows that

(y) is negative definite if and only if it is of the form

’(Y) fx [1 (x, y)] dF - (y)

where F and have properties stated in the above corollary.

11. A decomposition theorem
According to a theorem of Khinchin [5] any distribution on the real line can

be written as the convolution of two distributions one of which is the convolu-
tion of a finite or countable number of indecomposable distributions, and the
other of which is a distribution without indecomposable factors. Further,
any distribution which is not infinitely divisible has an indecomposable factor.
The object of this section is to extend this result to the general case with a
slight modification to counteract the existence of idempotent factors.

TIEOnEM 11.1. Let # be any distribution on X. Then it can be written as

ha * h where h is a distribution without any idempotent factor and ha is the maxi-
mal idempotent factor of #.

Proof. Let H be the group generated by the set of all characters y at which
t(y) 0. H is open, and hence its annihilator G in X is compact. The
normalized Haar measure ha of G is the required maximal idempotent factor.
If we denote by r the canonical homomorphism from X to X/G, then the
distribution tr

-1 in X/G has no idempotent factors. We now choose a Borel

The authors wish to thank the referee for pointing out that this representation
could be derived from the results of the paper.
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set A c X such that r restricted to A maps A onto X/G in a one-to-one
manner. The existence of such a Borel set follows from a result due to V[ackey
[7, Lemma 1.1, p. 102]. By a result of Kuratowski [6, p. 251] it follows that
the inverse of r from X/G to A is a measurable map. Hence
measure on A. This , satisfies the requirements of the theorem.
We shall now introduce a function 0(a) defined for all factors of a distribu-

tion and similar to the function introduced by Khinchin. Let be a dis-
tribution without any idempotent factor. Then there is a sequence yl, y.,
of characters in Y such that (yi) 0 for i 1, 2, and the smallest
closed subgroup generated by this sequence is Y. Since -log (Yi) is well
defined, we can choose a sequence en > 0 such that

7= en log[ t(Y.)] <
This implies at once that, for every factor a of t, the function

0(0) E:=I en log c(

is well defined and has the following obvious properties:

(i) O(a) _>- O.

(ii) O(a) 0 if and only if a is degenerate.

(11.1) (iii) O(a , a) 0() q- O(a.).

(iv) If , , then 0(,) -- 0(a).

(v) 0() 0() if is shift of

THEOREM 11.2. Let be a distribution without any indecomposable or idempo-
tent factors. Then is infinitely divisible.

Proof. In view of the remark made under Theorem 5.2 it is enough to
factorize t in the form

(11.2) g anl * : Oln2

where {a,} is such that any limit of their shifts is degenerate. From the
properties (i)-(v) of the 0 function it is clear that it is sufficient to factorize
in the form (11.2) with 0(a,.) 2-n0(#). If u satisfies the conditions stated
in the theorem, then any factor of u also satisfies them. Thus it suffices to
prove that u can be written as Ul * it2 with 0(m) 0(/.t2) 1/20(g). A repeti-
tion of this argument will then complete the proof. In order to do this we
first observe that

infv(,).0()0 0(a) 0

where F(g) is the class of all factors of t. For, otherwise, the class F(g) being
shift-compact, the infimum would be attained at an indecomposable distribu-
tion. But this is a contradiction. Thus there are factors of u with arbi-
trarily small 0-values. We now take two distributions m, g2 for which g



368 K. R. PARTHASARATHY R. R. RAO S. R. S. VARADHAN

tl * t2 and 0(tl) 0(.)I is minimum. From the shift-compactness of
F(t) it follows that the minimum is attained. This minimum has to be zero.
For, otherwise, by transferring a factor of 1 or 2 with an arbitrarily small
0-value to 2 or t we can make 0(tl) 0() smaller. This completes the
proof of the theorem.

THEOREM 11.3. Any distribution on X can be written as k, . where
is the maximal idempotent factor of , k is the convolution of a finite or a

countable number of indeconposable distributions, and is an infinitely divisible
distribution without indecomposable or idempotent factors.

Proof. An application of Theorem 11.1 shows that t can be written as. where h. is the maximal idempotent factor and h has no idempotent
factors. Thus we can define a 0 function on F(},) satisfying the properties
(i)-(v) of (11.1). Let now tl be the maximum of 0(a) as a varies over the
indecomposable factors of . If 1 is greater than zero, we write h a P1
where a is indecomposable and 0(a) -> /2. We now denote by . the maxi-
mum of 0(a) as a varies over the indecomposable factors of P. If > 0,
then we write P1 a P2 where a is indecomposable and 0(a.) >= ./2.
We repeat this argument. If the process terminates at the nh stage, then

al P and n+ 0, which means that P has no indecomposable
factors. Otherwise the process continues ad infinitum. Since ]o O(a) is
convergent, 0(a) -- 0 as n -- . The sequence al an being monotonic
(in the order -< converges after a suitable shift. Absorbing this shift in a,

we can assume that a a converges to a distributionh. Automatically
Pn will converge to a distribution },. If 2 has an indecomposable factor a,
then it is a factor of Pn. Thus 0(a) =< for each n. But _-< 20(a,) and
hence tends to zero. Therefore 0(a) 0, or equivalently h. has no inde-
composable factors.

12. Concluding remarks
In obtaining the representation for an infinitely divisible distribution as

well as in the proof of the theorem on accompanying laws (Theorems 5.1 and
7.1), we have assumed that the distributions under consideration do not hve
any idempotent factors. If a distribution has an idempotent factor, then,
as in the proof of Theorem 11.1, we can construct a compact subgroup G such
that the measure induced by the canonical homomorphism onto X/G has no
idempotent factors. Since uniform infinitesimality and infinite divisibility
are preserved by this map, these results can now be discussed in the quotient
group X/G.
Another assumption we have made in the paper is that the group is separable

(i.e., satisfies the second axiom of countability). All the results of Sections
3-10 are easily extended, with little essential modification in the proofs, if in
place of this restriction on the group, we suppose that the measures under
consideration have supports contained in a -compact subset.
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