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Consider an n n mtrix of absolutely continuous functions on n intervM
S of rel numbers. If ech of G nd H is lso such mtrix, then, s is well
known (cf. [2, p. 352] for comments nd references), the differentiM require-
ment that

G’ (s) G (s)’ (s) 0\ almost everywhere S,onH’ (s) -k ’ (s)H (s) oj

where 0 is the n n zero mtrix, is equivalent to the (Stieltjes) integral re-
quirement that if c is in S then for 11 x and y in S

a() a(c) + a.d4, and H(z) H(c) + d4.H;

moreover, there is a fundamental matrix W of eonginuous functions on S N S
which saisfieswihout exception

(i) W(x,y) 1 + W(x, ).d 1-k d.W( ,y)

where 1 is the n n unit matrix, and provides G and H in the form

G(y) G(c) W(c,y) and H(x) W(x,c)H(c).

The relationship (i) has been extended by H. S. Wall [9], [10], with the
condition of absolute continuity on replaced by that of continuity and
bounded variation, the intrinsic nature of the harmonic matrices W so ob-
rained being determined explicitly; the reciprocal formulas (involving sum-
and product-integrals)

(ii) q(y) (x) W( c) .dW(c, ), W(x, y) I-IY[1 +
were discovered, respectively, by Wall [10] and this author [4]. The con-
tinuity condition on has been relaxed, in two different directions, by T. H.
Hildebrandt [2] and by the present author [5], [6].

This paper is concerned with connections between additive and multiplica-
rive integration processes, where the integration is directed along intervals
in some linearly ordered system and the functions involved satisfy various
conditions of boundedness, having their values in a normed algebraic ring
which is complete as a metric space.
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For a linear (=<) ordering 0 of a nondegenerate set S, and a complete
normed ring N (with unit 1 such that I1 1), we determine classes Oa
and o)lZ of functions V and W (from S X S to N) such that the integral-
like formulas

(iii) V(a,b) a[W- 1] and W(a,b) =,II[1+ vl
are mutually reciprocal; the notation indicates the limit, through refinement
of 0-subdivisions {tv}’ of {a, b}, of finitely continued sums , [W (tv_, tv) 1]
and products II [1 -4- v (tv_x, iv)].

This determination leads to an integral-equation theory (of Cauchy-left
and Cauchy-right integrals) which, in case S is the real line, properly extends
our earlier results [5], [6] and complements the theory developed by Hilde-
brandt [2]. In Section 10 we give a detailed description of all these inter-
related results.

If arises canonically from a semigroup operation z on S ({z, z} being in
0 only in case z(x, y) z for some y in S, and z(z(x, a), b) z(x, c) only
in case z (a, b) c), we obtain some connections between additive and multi-
pllcative homomorphisms from this semigroup into the ring N. Some funda-
mental facts about such semigroups are obtained in Section 8, and Section 9
is devoted to the aforesaid connections, these being corollary to the theory
developed in Sections 1 through 7.

1. Continuously continued sums and products
Suppose S is a nondegenerate set and V is a linear ordering of S, i.e., a sub-

set of S X S with the following properties:

(i) if each of {x, y} and Y, z} is in V, then {x, z} is in V,

(ii) if{x,y} is in Vand{y,x} is in V, thenyisx, and

(iii) if {x, y} is in S X S, then {x, y} or {y, x} is in V.

A function fi from S X S to any (algebraic) ring, is O-additive provided that,
if each of {x, y} and/Y, z} is in V, then

f(x, y) -4- f (y, z) f (x, z) and f(z, y) -4- f (y,: x) f(z, x),

and is V-multiplicaive provided that for all {x, y} and {y, z} in V

f(x, y)f(y, z) f(x, z) and f(z, y)f(y, x) f(z, x).

If g is a function from S to a ring, then dg denotes a function f from S X S
such thatf(x, y) g(y) g(x) for all Ix, y} in S X S.
Note that if N is a ring, each of g and h is a function from S to N, and f is

a function from S )< S such that f(x, y) g(y) g(x) for {x, y} in V and
f(x, y) h(y) h(x) for {y, x} in V, then f is 0-additive; conversely, each
0-additive function from S X S to N arises in this way. On the other hand,
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if g is a function from S to a ring, then dg is fully additive, in the sense that
if f dg, then f (x, y) -4- f (y, z) f (x, z) for all x, y, nd z in S.
An O-subdivision of a member {x, y} of S X S is a sequence {t} such that

{to, t} is {x, y} and

(i) if {x, y} is in (9, then {t_, to} is in (9 (p 1, n), and

(ii) if{y,x} is in (% then{tv,tv_} is in (9 (p 1,...,n).

A refinement of the c%subdivision of the member {x, y} of S X S is an c0-sub-
division of Ix, y} of which is a subsequence.

Suppose, finally, that N is a ring, with additive identity element denoted
by 0 and multiplicative identity element denoted by 1, and that I. is a
norm for N, with respect to which N is complete, such that 1 is the number
1. If h is a function from S X S to N and {a, b} is member of S X S,

(i) ah denotes a member Z of N with the property that, for each
positive number c, there is an (%subdivision s of {a, b} such that if Its} is a
refinement ors then Z t h < c, where t h denotes the continued
sum (in the ring N)

h (tv_., to) h (to, t) A- - h (t_, t).

(ii) IIh denotes a member Z of N with the property that, for each
positive number c, there is an (0-subdivision s of {a, b} such that if {to} is a
refinement of s, then Z I-It h < c, where IIt h denotes the continued
product (in the ring N)

II h(tv_l, to) h(t0, tx) h(t_, t).
We assume tacit definitions of corresponding ideas involving functions

from S X S to the set of real numbers. It should be noted, however, that
N is not assumed to be an algebra over the real or complex numbers and is
not assumed to be commutative.

2. The numerical case

Let (9a+ denote the set of ll (9-dditive functions from S X S to the set
of nonnegative real numbers, and let 9E+ denote the set of all (9-multiplica-
tive functions from S X S to the set of real numbers not less than 1.

LEMMA 2.1. If a is in (+ and a, b} is in S X S, then

al-I [1 + a] L.V.B.IXt [1 -t- a] for all -subdivisions of {a, b}.

Indication of proof. [1 A- v -4- v2] _-< [1 -t- v][1 + v2] =< Exp {Vl A- v2} for all
nonnegative real numbers vx and v2.

LEMMA 2.2. I,f is in 9E/ and a, b} is in S X S, then

[g 1] G.L.B.t [g 1] for all -subdivisions of {a, b}.

This is contrary to the convention adopted by Masani [7].
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Indication of proof. If {x, z} is in S X S, then

0-<_ [t(x, y) 1][(y, z) 1]

[t(x, z) 1]- lira(x, y) 1] + [t(y, z) 1]}

for ll y in S such that {x, y, z} is n V-subdivision of x, z}.
THEOREM 2.1. If a belongs to a+, then the conditions

(a, b) [1 + ] for each {a, b} in S S

define a member of +; conversely, for in +, the conditions

a(a, b) [-- 1] for each {a, b} ins S
define a member a of Va+.
THEOREM 2.2. There is a reversible function +, from Oa+ onto +, such

that each of the following is a necessary and sucient condition for the member
{, } of a+ + to belong to +"

(i) (a,b) [1 + a] for each {a, b} in S S.

(ii) a(a, b) [-- 1] for each a, b} in S S.

Proof. If a is in Va+ nd (i) is true, then 1 + a, nd, for ech x, y}
in S X S nd ech V-subdivision {t} of {x, y},

0 t[-- 1]- a(x,y) t[-- 1 a]

[u(t-, t) 1 a(t_, t)]- [1 + a (tq_, tq)]} [u (t_, t) 1 a (t_, t)]

(t_, t) [1 + a(t_x, t)] g(x, y) [1 +
whence (ii) is true. Conversely, if g is in + and (ii) is true, then
a g 1, and, for each such (x, y} and t,

0 (x, y) [1 + a] (t_, t) [1 + a(t_, t)]

{H- [1 + a(tq_, tq)]}[g(tv_, tv) 1 a(tv_, tv)]

< E {H-1 . (tq_x tq)}[.(t_x t) 1 a(t_x t)]

,(x, [,

whence (i) is true.
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There emerges from the preceding argument fact which will be useful
in the subsequent development, and which we now record.

THEOREM 2.3. If a is in (+ and + (a), then, for each Ix, y} in S X S
and each -subdivision of Ix, Yl,

Et [ 1] a(x, y) =< (x, y) IIt [1 + a].

3. The fundamental correspondence
Let (oa denote the set of 11 (O-dditive functions V from S S to the

(complete normed) ring N such that, if a, b} is in S X S, there is number
u such that if Its} is an (0-subdivision of [a, b}, then

V t )l =< u.

Let (Ogl denote the set of all (9-multiplicative functions W from S X S to N
such that, if {a, b} is in S S, there is a number u such that, if {t} is an
0-subdivision of a, b} then tlW- 11 lW(t-,t) 11 -< u.

LEMMA 3.1. If V is an O-additive function from S X S to N, then the condi-
tion that V belong to ( is equivalent to the requirement that there be a member
a of 0(+ such that V <= a.

Indication of proof. The requirement is clearly sufficient. If V belongs to
0(, then, for each {x, y} in S X S, let a(x, y) be

ul Y L.U.B.t Y for all 0-subdivisions of {x, y}.

LEMMA 3.2. If W is an O-multiplicative function from S X S to N, then
the condition that W belong to OglZ is equivalent to the requirement that there be a
member of Ogl+ such that[ W 1 <= 1.

Indication of proof. The requirement is clearly sufficient. If W belongs to
(991, then, for each {x, 9} in S X S, let

h(x, y) L.U.B.t W 1 for 11 0-subdivisions of {x, y};

clearly h (x, y) -k- h (y, z) =< h (x, z) for all x, y, and z in S such that {x, y, z} is
an (%subdivision of {x, z} let e be a member of S, and a a member of (/ such
that, if {x, y} is in S S, then

a(x, y) h(x, e) h(y, e) if {x, y, e} is an 0-subdivision of {x, e},
a(x, y) h(x, e) -k h(e, y) if {x, e, y} is n 0-subdivision of {x, y},

a(x, y) h (e, y) h (e, x) if {e, x, Y/ is an 0-subdivision of {e, y};

let u + (a); if {x, y} is in S X S und either {x, y, e} is an 0-subdivision of
{x, e} or {e, x, y} is an (0-subdivision of {e, y},

W(x,y) 11 <= h(x,y) <= a(x,y) <= (x,y) 1,

Observe that W(x, x) 1, since {x, x} is in Lg, and so there is a number u such that
niT(x, x)- 11<-_ u (n= 1, 2,...).
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whereas, if Ix, e, y} is an O-subdivision of {x, y}, then

W(x, y) 1 W(x, e)W(e, y) 1

I[W(x, e) 1][W(e, y) 1]

THEOREM 3.1.

+ [W(x, e) 1] -t- [W(e, y) 111
<-_ a(x, e)a(e, y) - a(x, e) + a(e, y)

[1 + a(x, e)][1 + a(e, y)]- 1 =< (x, y) 1.

Ia is in 0(+ and V is a member of such that V <-- a,
then, for each la, b} in S ) S, aXI [1 + Y] exists, and

al-I [1 - V]- [1 -t- V(a, b)] =< ,I [1 -t- a]- [1 - a(a, b)].
+1Indication of proof. If {tp} is an 0-subdivision of [x, y}, then, for

1-<q_<p =< n-I- 1, weseethat

I-If [1 + V(tr_, tr)] Hf- [1 --t-- V(t_, t,.)]

II-: [ + v (t,_, t,.)]} v (t_:, t),

II [1 --t- V (t,._., t,.)] IIq+: [1 - v (t._:, t,.)]

v (t:_:, t) II:5: I: + v (t,_,, t,)]},
where II II,+: 1, and

II’+: [1 + v(t,_:, t,)] [1 + v(z, y)]

EF=: II- [: + v (t,_:, t)] 1} v (t_:, t)

Z;=: IIf [1 + v (t,_:, t,)] 1} v (t, t+:)

E=: E,: V (t_:, t:,) I-L+: [1 -t-- v (t._:, t.)]} v (t:,, t,,+:),

whence it follows that

IH []. " V]- [1 + V(x, Y)]I Ht [1 .- o/]- [1 -- (x, y)].

From these considerations, and from the identity
q--1

if s is an 9-subdivision of {a, b} and is a refinement of s, then

III [: + ]- II,[1 + vii _-< II[1 + :]- II,[1 +
THEO.EM 3.2. If t is in + and W is a member or such that

Iw-:l<_,-l,

then, for each {a, b} in S X S, [W 1] exists, and

l[W(a, b) :]- oE’[W- 111 _-< [,(a, b) 1]- oE’[,- 1].
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n+lIndication of proof. If Its}0 is an O-subdivision of {x, Yl, then, for
l_-<q__< p__< n+ 1, weseethat

W (x, tp) W (x, tp_) W (x, tp-1)[W (tp-i, tp) 1],

W (tq-1, tp) W (tq, tp) [W (tq_, lq) 1]W (tq, t),

and, recalling that W (x, x) W (t, t) 1,

[W(x,y) 1] -’+[W(t_i,t) 1]

Zn-t-1p-----1 [W (x, tp_l) 1][W (t_, t,) 1]

_)--’= [W (x, t) 1][W (t, t,+) 1]

$=1 q= [W (tq_, tq) 1]W (tq, t)[W (t, t+) 1],

whence it follows that

I[W(x, y) 1]- [W- 111 =< In(x, y) 1]- , [tz- 1].

Therefore, if s is an t0-subdivision of {a, b} and is a refinement of s, then

I’, [W 1] [W 1] _-< -:, [u 1] ,[ 1].

THEOREM 3.3. There is a reversible function , from ( onto 9, such
that each of the following is a necessary and sufficient condition for the member
V, W} of 0( )< to belong to "

(i) W(a, b) aII[1-[- V] for each {a, b} in S X S.

(ii) V(a,b) a[W- 1] for each{a,b}inS )< S.

(iii) There is a member {, } of .+ such that

W(x,y) 1 V(x,y)[ <= (x,y) 1 a(x,y)

for each x, y} in’,S S.

COROLLARY 3.1. If V, W} is in , then these are equivalent"
(1) V(y, x) -V(x, y) for each {x, y} in S )< S.
(2) There is a function from S to N such that V d.
(3) If c is a positive number and s is an O-subdivision of the member {x, y}

of S )< S, there is a refinement {t} of s such that

I {[W(t_a, t,) 1] -t- [W(t, t_) 1]}[ < c.

(4) There is a member {a, } of + such that if {x, y} is in S )< S, then.

I[W(x, y) 1]-+- [W(y, x) 1]1-< 2{(x, y) 1 c(x, y)}.

COnOLRY 3.2. If W belongs to , e is in S, each of F and G is a function
from S to N, and F(x) W(x, e) and G(x) W(e, x) for all x in S, then
each of dF and dG belongs to (.
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COROLLARY 3.3. If{a, t} belongs to + and V, W} is a member of such
that VI <= a, then, for each Ix, y} in S S and each O-subdivision Its} of
x, y}, each of
W (x, y) 1 W (x, t-l) V (t_, t)

and W (x, y) 1 Y (t_l t) W (t y)

has norm not exceeding t (x, y){ t [t 1] a (x, y) }.
Indication of proof.

sums with
Apply Theorem 3.3 (iii) in comparing the indicated

W (x, y) 1 W (x, t_)[W (t,-l, t) 1]

[W(t,_, t,) 1]W(t, y).

The following theorem is a corollary result of a somewhat different nature,
which includes the observation that if/a, t} is in + and either a or t is sym-
metric, then so is the other.

THEOREM 3.4. Suppose that b > 0 and J is a function from N to N such
that J (1) 1 and, for all X, Y, and Z in N,

J (X -t- Y) J (X) -t- J (Y), J (XY) J (Y) J (X),

and IJ(Z)I <= blZl.
.If J1 is the function to which g, h} belongs only in case each of g and h is a func-
.tion from S X S to N and h (x, y) J (g (y, x)) for all Ix, y} in S X S, then
,J commutes with , viz., if IV, WI is in , then J (V), J (W)} is in .

4. The homogeneous integral equations

Let 96t denote the set of all functions from S to N such that de belongs to
9a. If F is a function from S to N and V is a function from S X S to N (or
each is a function to the set of real numbers), the statement that

Z= (L) F.V

means that a, b} is in S X S and Z ’ h, where h is the function defined
by

h (x, y) F (x)V (x, y) for each Ix, y} in S X S.

Similarly, (R) V.G h for h defined by h(x, g) V(x, )G(g),

oEand (L, R) F.V.G h for h (x, y) F (x)V (x, y)G (y).

If W is a function from S X S und e is in S, then W e) denotes the func-
tion consisting of all ordered pairs of the form Ix, W (x, e)l for x in S, and
W(e, denotes the function consisting of all ordered pairs of the form



156 . s. MnC EaNEY

IX, W (e, x)} for x in S. The following type of notation is also used when
convenient"

(L) t F. Y F (t_) V (t_, t) for {t}.
LEMMA 4.1 (Integmtion-by-prts). If each of F and G is a function from

S o N and either of (L) F.dG and (R) dF.G exists, hen he other

exists, and

(L) F.dG F(a) dG(a, b) dF(a, b)G(b) (R) dF.G.

LEMMA 4.2. If a is in to(+, then, for each {x, y} in S X S, the integral

(L) (x, exists and is

L.U.B. (L) t a (x, a for all O-subdivisions of x, y}.

LEMMA 4.3. If each of F and G is in toqt and a is a member of to(+ such that

<= ea <- , hen, for eeh {, b} i S S, (L) F.dG ei

d--if e i member of S ueh hat {e, a, bl i to-bdiviion of {e, bl--

(L) F.dG F(a) dG(a, b) <- (L) a(e, ).a a(e, a)a(a, b).

Indication of proof. If {e, x, y} is an t0-subdivision of e, Yl and {tp} is an
t0-subdivision of {x, Y/, then

(L) F.dG F (x) dG (x, Y) I dF (x, t_i) dG (tp_l, t,)

<= )’’ a(x, t_l)c(t_i, t) (L) t a(e, ).a a(e, x)a(x, y).

Hence, if {e, a, b} is an to-subdivision of {e, b} and s is an c%subdivision of
a, b} and is a refinement of s, then

I(L) Et F.dG (L)-8 F’dG <- (L)Et a(e, ).a (L)E8 a(e, ).a.

LEMMA 4.4 (Integration-by-substitution). If a, b} is in S X S and V is
a member of to(, each of F and G is in to6, and F and G are members of to6
such that

dFl(x, y) (L) F.V and dG(x, y) (R) V.G

for each to-subdivision (a, x, y, bl of (a, bl, then

f() e.a (5, ) .. (L) f.aa

Obviously u more general lemm involving two functions, as well as one involving
R-integrals, could be stated; we desist, since the sequel does not require it.
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Indication of proof. Let a be a member of (9(+ such that IV1 _-< a and
]dE <-_ a and dG _-< a, C F(a)l - a(a, b) - G(D)I, and let be an
0-subdivision of {a, b}; we have these estimates:

(R) dF1.G- (L, R) t F’V’GI
(L) a(a, ).a- (L) a(a, ). C;

(L, R) F.Y.a- (L) ,F.da

(L) a(a, ).a- (L) 2t a(a, ). C.

THEOREM 4.1. If e is in S and {V, W} belongs to and U is a function
from S to N, the following statements are equivalent:

(i) U is a member of O$ such that, for eh z in S,

U(z) U(e) + (L) U.V.

(ii) U (z) U (e) W (e, z) for each z in S.

Indication of proof. From Corollaries 3.2 and 3.3, (ii) implies (i), and
for each {a, b} in S X S we have

P

W(a,b) 1 + (R) Jo V.W(,b).

Supposing (i) to be true and z to be a member of S, we have
y

dU(x, y) (L) U.V W(y, z) W(x, z) -(1) V.W( z)

for each Ix, y} in S X S such that e, x, y, z} is an (0-subdivision of e, z};
hence, by Lemmas 4.1 nd 4.4,

U(z) U(e)W(e, z)

(L) U. dW(,z)+(P) dU.W(,z)

-(L, R) U.V.W(, z) + (L, R) U.V.W(, z).

TwOnEM 4.2. If e is in S and V, W} belongs to and U is a function from
S to N, the following statements are equivalent:

(i) U is a member of 0( such that, for each z in S,

U(z) U(e) + (I) V. U.

(ii) U(z) W(z,e) U(e) for eachzinS.
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Indication of proof. From Corollaries 3.2 nd 3.3, (ii) implies (i), nd
for ech/a, b} in S S we hve

W(a, b) 1 + (L) W(a, ).V.

Supposing (i) to be true nd z to be member of S, we hve

dU(x, y) --(R) V.U and W(, y) W(, ) (L) W(, ).V

for each Ix, y} in S S such that {z, z, g, e} is an O-subdivision of {z, e}; now
apply Lemmas 4:.1 and 4:.4: o W (z, e)U (e) U () along the lines indicated
in the preceding argument.

THEOREM 4.3. If V is in 0( and W is a function from S X S to N, each of
the following is a necessary and sufficient condition for W to be the member
(v) of :

(i) If la, b} is in S X S, then W (a, is in 6t, and

W(a, b) 1 + (L) W(a, ).V.

(ii) If la, b} is in S X S, then W b) is in V(, and

W(a, b) 1 + (R) V.W( b).

5. The nonhomogeneous equations

We tret the nonhomogeneous versions of Theorems 4.1 nd 4.2 by con-
sidering the (appropriately normed) rings N’ and N" of 2-by-2 matrices
with respective forms

(Xy ) nd ( YZ) (X, Y,ndZinN),

the corresponding function-classes 9a’, 9’, 9a’, nd 9’, and the corre-
sponding mppings

If ech of V nd K belongs to 9a, then it is esy, by using Theorem 4.3,
to see that

3’(KV 00)-( 01)’
where W 3(V) and for ech/a, b} in S S

G(, b) (L) Ja a(a, ).V K(a, b) (R) K.W( b);

moreover, it is similarly easy to see that

(0
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where W 3(V) nd for ech a, b} in S )< S

g(a, b) (L) W(a, ).K (R) V.H( b) - g(a, b).

With the theorems of Section 4, these two observations led respectively to
the following two theorems.

THEOREM 5.1. If e is in S and each of V and K is in 0( and W (V) and
U is a function from S to N, then the following statements are equivalent:

(i) U is a member of 063 such that, for each z in S,

U(z) g(e) -t- (L) U.V -t- g(e, z).

(ii) U(z) U(e)W(e, z) + (R) K.W( z) for each z in S.

THEOREM 5.2. If e is in S and each of V and K is in 0( and W (V) and
U is a function from S to N, then the following statements are equivalent:

(i) U is a member of O(B such that, for each z in S,

U(z) u(e) + (R) .U + g(z, e).

(ii) U(z) W(z, e)U(e) -t- (L) W(z, ).K .for ech in S.

We state two immediate corollaries which, in effect, complete the analysis
of the mappings g’ and g" in terms of 5.

COROLLARY 5.1. If each of V1, V2 and K is in 0(, then

where W1 3 (V1), W2 3 (V.), and for each a, b} in S X S

G(a, b) (L, R) W(a, ).K.WI( b).

COROLLAIY 5.2. If each of VI V: and K is in 0(, then

where W 3(V), W. (V:), and for each a, b in S X S

H(a, b) (L, ) W(a, ).K.W( b).
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6. The Peano series

THEOREM 6.1. If V is in (oa and W (V), then

W (x, y) =o G(x, y) for each Ix, y} in S X S,
where

Y

(i) Go(x,y) 1, G(x,y) (L) G_l(x, ).V (p= 1,2, ...),and

(ii) for each {x, b} in S X S the convergence is uniform over the set of all y
such that {x, y, b} is an (o-subdivision of {x, b}.

THEOREM 6.2. If V is in (O( and W (V), then

W (x, y) =o H(x, y) for each Ix, y} in S X S,
where

(i)

and
(ii)

H0(x,y) 1, H(x, y) (R) fY V.H_I( y) (p 1,2,...),

for each a, y} in S X S the convergence is uniform over the set of all x
such that a, x, Y is an (o-subdivision of a, y}.

Indication of proofs. Supposing that W (V), and that the infinite
sequences G and H are defined as indicated, we use results from Sections 4
and 5 to justify the following computations"

w(, ) =o G(x, )

(L) f W(x, E (, }. v + e.+(z, u)

dGn+(x, ).W( y) (L, R) Y G,(x, ).V.W( y);

W(x, y) =0 H(x, y)

(R) V-{W( y) H( y)} + H,+(x, y)

--(L) W(x, ).dHn+( y) (L, R) W(x, ).V.H,( y).

Now let {a, g} be a member of + such that IV/ =< a, let g and h be infinite
sequences obtained from just as G and H are obtained from V, and let
{a, b} be a member of S X S. Considering {x, y} such that {a, x, y, b} is an
(0-subdivision of {a, b}, we have

t(x, y) g(x, y) (L, R) g(x, ).a.g( y) >- O, and

,(x, u) E h(x, u) (L, R) tt(X, )’a’hn( y) >- 0;
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thus we see that g and h have the limit 0; the following estimates are estab-
lished inductively (under the same hypotheses):

Gn(x, y) <= gn(X, y) <= g,(X, b), ]H,(x, y) <= h,,(x, y) <- hn(a, y),

W(x, y) G,(x, y) <= (R) dgn+l(x, )’t( Y) <= g,+(x, b)t(x, b),

W(x, y) H(x, y) <= --(L) (x, ).dh,+l( y) <= ,(a, y)h,+(a, y).

The various assertions of the two theorems now follow.

7. The fully multiplicative case

In Corollary 3.1 we characterized those members IV, W} of such that V is
fully additive. In this section we characterize those members (V, W} of
such that W is fully multiplicative:

W (x, y)W (y, z) W (x, z) for all x, y, and z in S;

since W (x, x) 1 for each W in (o and x in S, the condition that the mem-
ber W of (o be fully multiplicative is equivalent to the requirement that
W (x, y)W (y, x) 1 for all {x, y} in S S. In connection with Corollary
3.2, we record the following fact:

THEOREM 7.1. If W is a fully multiplicative function from S X S to N,
then in order that W belong to (o it is necessary and sucient that, for each e in
S, W (e, e). 1 and each of W e) and W (e, belong to (o.

THEOREM 7.2. If IV, W} is in and h is a function such that

h(x, y) [1 -t- V(x, y)][1 -{- V(y, x)]- 1 for each {x, y} in S X S,

then the following statements are equivalent:
(1) W(x,y)W(y,x) 1 for all Ix, y} ins X S.

(2) Y h 0 for all {x, y} ins X S.

Indication of proof. Let Is, } be a member of 5+ such that IVI-<_ .
Since for each Ix, y} in S X S

h(x, y) [1 - V(x, y)][1 + V(y, x) W(y, x)]

-t- [1 + V(x, y) W(x, y)]W(y, x) + [W(x, y)W(y, x) 1],

it follows from Theorem 3.1 that, if (1) is true, for each {x, y} in S S and
each (0-subdivision t} of {x, y},

h =< t (x, Y)/ [t (tn+_, t_) 1] (y, x)}
+ t [t 1] a(x, y)}t(y, x),

so that, by Theorem 2.2, (2) is true. On the other hand, for each {x, y} in
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S X S and each (0-subdivision {tv} of {x, y},

II [1 + v (tq_, tq)]. II [1 + v(t.+_, t._)] 1

[1 + v (tq_, tq)l. +_, [1 + v (t.+_, t._)]- [ + v(t_, t)]. 2+_ [ + v(t.+_., t._.)]}
{H-: [1 + V(t_:, tq)l}h(t_:, t){ H+:-. [1 + V(t.+,_., t._)]},

whence we have

t [1 + V].

therefore (2) implies (1).
A combination of Corollary 3.1 and Theorem 7.2 yields the following result.

Tnoan 7.3. If is in and W 8 (d), then the following statements
are equivalent"

(1) W(x,y)W(y,x) 1 for all {x, y} in S X S.

(2) l[d6]2 0 for all {x, y} ins S.

The statement that Z (M)

function from S to N (or each is a function from S to the set of real numbers)
and {a, b} is in S S and 2Z a h, where h is the function defined by

h(x, y) [F(x) + F(y)][G(y) G(x)] for each {x, y} in S X S.

Similarly, Z (M) dG.H means hag 2Z h for h defined by

h(z,g) [a(g) G(z)][H(z) + H @) ], while Z (M) F.d.Hmeans

hat 4Z b h for h defined by

h (x, y) IF (x) + F (y)][G (y) G (x)][H (x) + H (y)1.

To utilize this mean integral concept, we assume for the remainder of this
section that the ring N does not have characteristic 2, viz., that if Z is in N
and 2Z 0, then Z 0.

fRemark 1. If either of (M)

oher ezi, ad

(M) F.dG + (M) dF.G F(b)G(b) F(a)a().

Remark 2. If each of F ad G belon o O ad [z, } i i S N S and
dF. dG

(M f.e (5) f.a.
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THEOREM 7.4. If e is a member of S, each of and F belongs to
96, e [d] 0 for each x in S, and W (d), then the following two
statements are equivalent"

(i) F(z) F(e) -t- (M) F.d for eachzinS;

(ii) F (z) F (e) W (e, z) for each in S;
moreover, the following two statements are also equivalent"

(iii) F() F(e) + (M) d.F for eachzinS;

(iv) F() W(z,e)F(e) for eachxiS.
Indication of proof. To see that (ii) implies (i), note that if {} is an

0-subdivision of l, b}, hen

[W (a, t) W (a, t,_)][ (t,)

W (a, t_)[de (t_, t)]
-t- " W (a, tv_) [W (tv- tv) 1 d4 (tv_, tv) d4 (tv- tv)

from which it follows, by Theorems 4.1 and 3.3, that

f 1 fW(a, b) 1 + (L)
jo

W(a, ).de + (M) W(a, ).de;

the implication of (iii) by (iv) is a consequence of Theorems 4.2 and 3.3 by
a similar line of reasoning. Regarding the converse implications, suppose,
for example, that (i) is true. For x in S we carry out the following computa-
tions"

2F(x) 2F(e) + (L) F.d + (R) F.d;

2(L) dF.W( x) (L, L) F.d.W( x) + (R, L) F.d.W( x)

(L, R) F.d.W( x) - (R, R) F.d.W( x)

2(R) dF.W( x);

2(R) dF.W( x) --(L) F.dW( x) (R) F.dW( x)

2F(e)W(e, z) 2F(z) -t- (P) dF.W( z) + (L) dF.W( x);

2F(e)W(e, z) 2F(z) (R) dF.W( z) (L) dF.W( x);

(ii) follows, since N does not have characteristic 2. Implication of (iv) by
(iii) follows from entirely analogous computation.
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In the final theorem of this section, we will find convenient the hypothesis
that the ring N is torsion-free, i.e., that if Z is in N and n is a positive integer
and nZ O, then Z 0.

THEOREM 7.5. If is in 06t and W 3 (dO) and, for each Ix, y} in S X S,
(x) (y) (y) (x) and W (x, y)W (y, x) 1, and the ring N is torsion-free,

then
W(x, y) Exp ((y) (x)} for all (x, y} in S X S.

Indication of proof. With reference to the infinite sequence G indicated in
Theorem 6.1, it is sufficient to show that for each {x, y} in S X S,

(p !) G (x, y) [de (x, y)]P forp- 1,2,....

Note that G1 d, let Ix, y} be in S X S, and let F de(x, ).
that p is a positive integer such that, for each z in S,

Suppose

(n !)a (x, z) F (z) forn- 1,-..,p;

the following three steps are justified, respectively, by Lemma 4.1, by Theorem
7.3 and the special hypotheses concerning , and by the inductive hypothesis
together with Lemma 4.4"

y

FP.dF F(y)+- (R) dF.F

F(y)+- (L) F.dF"

F(y)"+1- p (L) F’.dF;

hence we have

(p-k 1).(L)fF(y)+l F.dF (p + 1)(p!).(L) G(x, ).d.

Remark. By Theorem 3.3, if {V, W} is in 3, then the condition that V
have (multiplicatively) commuting values is equivalent to the condition that
W have the same property; thus we see that, with N torsion-free, Theorem
7.5 provides a complete characterization of the fully multiplicative members
W of (9 such that W has commuting values and satisfies the conditions of
Corollary 3.1.

8. Canonically ordered semigroups

A canonically ordered semigroup is an ordered pair {S, } such that S is a
nondegenerate set and is a function from S X S to S with the following
properties"

(1) The subset of S X S, to which {x, z} belongs only in case there is a
member y of S such that z(x, y) z, is a linear ordering of S, viz.,
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(i) if x is in S and a, b} is in S S, then there is a member c of S such
that ((x, a), b) (x, c),

(it) if ( (x, a) b) x, then(x,a) x, and
(iii) if{x,y} is in S X S, then there is a member a, b} of S X Ssuch

that z(x, a) y or z(y, b) x.
(2) If x is in S and {a, b} is in S S, then z(a, b) is the only member c

of S such that z(z(x, a), b) z(x, c).

Suppose, now, that {S, } is a canonically ordered semigroup and that
0 is the linear ordering of S determined by , i.e., 0 is the subset of S X S
to which [x, z} belongs only in case there is a member y of S such that
a(x, y) z.

THEOREM 8.1. The requirement that

( (x, (x, z) z for each Ix, z} in )

defines a function from 0 to S with the following properties:
(1) If x is in S and {a, b} is in S X S, then {z(x, a), z(x, b)} belongs to
only in case (a, b} belongs to , and in this case

(a(x, a), z(x, b) (a, b).

(2) If each of Ix, y} and (y, z} is in V, then

( ( (x, y) (y, z) (x, z)

Indication of proof. Suppose x is in S and a, c} is in S X S and z (x, a)
a(x, c); let b be a member of S such that z(a, b) a; then

a(x, c) z(x, a) z(x, z(a, b)) a(z(x, a), b),

so c a (a, b). Thus, the stated requirement does define tt to be a function on
9 to S; the asserted properties of ti follow from similarly simple arguments.

THEOREM 8.2. There is a member e of S such that, for each x in S, ( (e, x)
(x,e) x.

Proof. Suppose z is in S and y is a member of S such that (y, i (z, z)} is
in (9; then, by Theorem 8.1 (1),/z(z, y), z} is in 9; but {z, z(z, y) is also in (O,
so that a(z, y) z, and, therefore, y ti(z, z). Hence, if z is in S, then
t (z, z) is a member e of S such that/e, x} is in 9 for each x in S; e is therefore
independent of z, and z(x, e) x for each x in S. If x is in S, then, since
x ti(x, a(x, x)), it follows from Theorem 8.1 (2) that

(, x) ( (x, x), (x, (x, x)) (x, (x, x)) x.

The following theorem follows almost immediately from 8.1 and 8.2, and
provides means for applying the results from earlier sections to this specialized
setting (as in the next section).
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THEOREM 8.3. If IX, Y} is a member of V, then
(1) if s,} is an V-subdivision of e, (x, y)}, then z(x, s)} is an V-sub-

division of {x, y} such that (t_l t) (s_ s) for p 1, n, and--
conversely--

(2) if {t} is an V-subdivision of Ix, y}, then {(x, t)} is that V-sub-
division s of e, (x, y)} such that {a(x, s)}.
Remart 1. There exists a set S and two functions z and z. from S X S

to S such that all the following are true"
(i) IS, z} and {S, z} are canonically ordered semigroups,
(ii) z is symmetric and z is not symmetric, and
(iii) the linear ordering of S determined by z is the linear ordering of S

determined by z2.

For example, let S be the set to which x belongs only in case x is a complex
number and either Re x 0 and Im x >= 0 or Re x > 0; for each Ix, y} in
S X S, let

zl(x,y) xA- y and z2(x,y) xA- (1-t-Rex)y.

Remark 2. If, in the preceding example, S is the subset of S to which x
belongs only in case there is an ordered pair {m, n} of nonnegative integers
such that Re x 2 I and 2 (Ira x) is an integer, and z is the contraction
of z to S X S, {S, z} is a canonically ordered noncommutative semi-
group, and there exists an order-preserving mapping from S into the set of
nonnegative rational numbers.

9. Representations of semigroups

In this section we suppose {S, z} is a canonically ordered semigroup, V is
the linear ordering of S determined by z, i is the function from V to S de-
termined as in Theorem 8.1, and e is the member of S determined as in Theo-
rem 8.2. A function f, from S to any ring, is a-additive provided that
f(z (x, y)) f(x) - f(y) for all {x, y} in S X S, and is z-multiplicative
provided that f(z(x, y)) f(x)f(y) for all Ix, y} in S S. We note that

(i) if f is a-additive on S, then there is an V-additive V on S X S such
that V (x, y) is f (t (x, y)) or 0 according as {x, y} is in V or not, and

(ii) if u is z-multiplicative on S, there is an V-multiplicative W on S X S
such that W (x, y) is u (i (x, y)) or u (e) according as {x, y} is in v or not.

Let a denote the set of all a-additive functions F from S to N such that,
if x is in S, there is a number b such that, if sp} is an V-subdivision of/e, x},
then 8 F()I lF((sp_, s))l <= b. Let denote the set of
all z-multiplicative functions U from S to N such that, if x is in S, there is a
number b such that, if Is,} is an c%subdivision of/e, x}, then

11= =< b.

Observe that U(e) 1 since (e, e) e; see footnote 2.
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Now, all the following results are direct applications of the corresponding
results from Sections 2 through 7. Supporting proofs, which we omit, are
readily constructed by use of Theorem 8.3, with the observations in the first
paragraph of this section.

THEOnEM 9.1. There is a reversible function +, from the class (+ of all
(-additive functions from S to the set of nonnegative real numbers, onto the class
91+ of all (-multiplicative functions from S to the set of real numbers not less
than 1, such that each of the following is a necessary and sucient condition for
the member If, u} of (i+ )< g+ to belong to +"

(1) u(x) eII [l + f(ti)] for each x in S.

(2) f(x) ex[u(ti) 1] for eachxinS.

(3) u(x) 1+ (L) u.df for each x in S.

THEOnEM 9.2. If F is a z-additive function from S to N and U is a r-mul-
tiplicative function from S to N, then

(1) F belongs to ( only in case there exists a member f of (+ such that

IF (x) <- f (x) for each x in S.
(2) U belongs to ] only in case there exists a member u of + such that

U(x) 11 <= u(x) lforeachxinS.
THEOREM 9.3. There is a reversible function , from ( onto , such

that each of the following is a necessary and suicient condition for the member
IF, U} of ( X to belong to

(1) V(x) elIx[l--F(i)] for eachxinS.

(2) F(x) [U(ti) 1] for eachxinS.

(3) There is a member If, u} of + such that

U(x) 1 F(x) <= u(x) l--f(x) for eachxinS.

(4) U(x) 1 + (L) U.dF for eachxinS.

THEOREM 9.4.

THEOREM 9.5.
pansion

where

(i)

(ii)

If F belongs to ( and ( is symmetric, then

F (x) F (y) F (y) F (x) for all x, Yl in S X S.

If F, U1 belong to then U has the convergent series ex-

U (x) -oK(x) for all x in S,

K0(x) 1, K,(x) (L) g,_l dF (p 1, 2, ...), and

for each b in S the convergence is uniform over the set of all x in S such
that Ix, b} belongs to 0.
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THEOREM 9.6. If {F, U} is in and W (dF), then, for each {x, y} in to,

W (x, y) W (e, 8 (x, y) U (8 (x, y) and W (y, x) W (8 (x, y) e)

moreover, the following two statements are equivalent"
(1) W(z, e)U(z) U(z)W(z, e) 1 for each z in S.

(2) eZl F(8)21 0 for each z in S.

THEOREM 9.7 (The Exponential Case). If the ring N is torsion-free and
IF, U} is a member of such that

(1) E(x)F(y) F(y)F(x) for each Ix, y} in S X S, and

(2)
then

eZ F (8) { for each z in S,

U(z) Exp {F(z)} for each z in S.

Remarlc 1. In case N is an algebra over the real numbers, IS, a} is the
additive semigroup of nonnegative real numbers, and A is a member of N
such that F (z) zA for each z in S, Theorem 9.7 is contained in the Hille-
Phillips [3] representation theorem for a "semigroup U with bounded in-
finitesimal generator A."
Remark 2. By analogy with terminology in ordinary differential equa-

tions, the analysis in this section is the "constant coefficient case" of the pre-
ceding theory--at least in case is symmetric.
Remark 3. The analysis in this section can be phrased in terms of the

semigroup of translations of S of the form (x,), and in this aspect is a study
of those members IV, W} of such that V is fully additive and invariant
under these translations"

V(a(x, a), a(x, b)) V(a, b) for all x, a, and b in S.

0. Deve[opment on he re[ [ine

In this section we suppose that S is the real line and to is the usual order-
ing of S, i.e., {x, z} belongs to to only in case x =< z. We recognize to(B as
the class of functions from S to N such that, on each interval, is of bounded
variation with respect to the norm on the ring N. We let (O(BQ denote the
set of all in to(B such that, if x is in S, then d (x-, x) d (x, x+) 0,
and we let t0(Be denote the set of all continuous members of to(B.6

Let 3C be the class of all fully multiplicative functions W from S S to N
such that, if x is in S, then W(x, x) 1 and each of W( x) and W(x,
is in to(B. By Theorem 7.1, we recognize as the class of fully multiplicative
members of tol. We let 3CQ denote the set of all W in 3C such that, if x is

In case there is a nonzero member Z of N such that Z 0, the class to(BQ properly
includes to(B.
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in S, then

W(x-, x) + W(z, z-) W(x+, ) + W(x, +) 2,

and we let Cc denote the set of all W in such that if x is in S then each
of W x) and W (x,) is continuous.
By Theorem 3.2 of [5], the requirement that the member of (96 belong to

063Q implies condition (2) of Theorem 7.3, and the requirement that the
member W of belong to 5CQ implies condition (3) of Corollary 3.1; the con-
verse implications are easily established. It follows that C is precisely the
set of all W of the form (de) for in 063. It follows from Theorem 3.3
that 5Cc is precisely the set of all W of the form (d) for in e63c. We
now give a brief history of these ideas.

For the case that N is a finite-dimensional matrix algebra over the real or
complex numbers, H. S. Wall [9], [10] has obtained the following results,
using ordinary Stieltjes integrals throughout. For in (963c and V de,
the equations in Theorem 4.3 are found to be equivalent and have a unique
solution W in c, the solution being provided by the series in Theorem 6.2,
and providing solutions of nonhomogeneous equations as given here in
Theorem 5.2. The set of all solutions W for in (963c fills up Cc, and the
is recovered from the W by the formula

oh(b) #p(a) W( r).dW(r, ),

which is independent of r and is the first version of formula (ii) in Theorem
3.3 of the present paper. There were some extensions to the case of the
normed algebra of continuous linear transformations in a Hilbert space.
Imp0’rtant applications were made to continuous continued fractions and
related nonlinear equations (complemented by the present author [4], [5],
and extended by Neuberger [8]).

Extension of Wall’s theory, to the case that N is the normed algebra of
continuous linear transformations in a complete normed linear space, was
carried out in [4], There, the formula (i) of Theorem 3.3 was obtained for
in (0(Be and V d, and solutions were found to the nonhomogeneous equa-

tions as given in Theorems 5.1 and 5.2, with discontinuities allowed for the K.
For the same algebra N, extension of all the preceding was made [5], [6]--

using Stieltjes-mean integrals--to the fully multiplicative case as summarized
in Theorem 7.4, thus relaxing the continuity conditions theretofore imposed.
The classes (963 and 5C were found to correspond under the mapping W
8 (d6). Those results are all included in the present treatment.

Further relaxation of continuity requirements was effected by T. H. Hilde-
brandt [2], using a version of the Lebesgue-Stieltjes integral suggested by
W. H. Young [11] (also, Hildebrandt [1]). The solution space for the homo-
geneous equations was found to be the whole class . The analysis of Hilde-
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brandt’s results with respect to the present treatment needs clarification,
which we now provide.

Using the notation (Y) _[_ to denote the integral, with the convention

fb f.b(Y) (Y) as used by Hildebrandt, we first noge certain esgimates;

hese can be obtained as corollary results to the exisgenee, bug can also be
obtained by examinagion of relevant sumsthus netting an existence theorem
as in Lemma 4.g. This lemma also leads directly to formulas for ingegration-
by-pars and integration-by-substitution.

LEMMA 10.1. If each of F and G is in 05, a is a menber of 0(+ such that
dFI <= a and dG <= a, and x < y < z, then each of

(Y) F.dG {F(x) dG(x, z- + F(y) dG(x+, z-) + F(z) dG(z-, z)}

and

(Y) dF.G {dF(x, xW)G(x) + dF(x-, z-)G(y) + dF(z-, z)G(z)

has norm not exceeding a (x, z- .
We distinguish, with Hildebrandt, two subsets of (9 as follows" the mem-

ber of (9( belongs to 9(1 only in case each of [1- de(z-, z)]-1 and
[1 d(z+, z)]-1 is in N for each z in S, and belongs to (9. only in case
each of [1 dO(z, z-)]- and [1 de(z, z+)]- is in N for each z in S.
For in the appropriate subclass of (9, we define certain functions from
S S to N as follows:

I[1 + de(x, x+)][1 + de(x+, z-)][1 de(z--, z)]- if x < z,
C (x,

[[1 + de (x, x--)][1 + de (x-, z+)][1 d(z-, z)]- if x > z;

C. (z, x)

D1 (x, z)

D. (z, x)

[1 dO(z, z+)]-l[1 + d(z+, x-)][1 + de(x-, x)] if z < x,

1 --d(z, z--)]-l[1 + de(z-, x-)][1 -d(x+, x)] if z > x;

1 - de(x, z) - [1 de(z-, z)]- d(z--, z)

1 + d(x, z) + [1 d(z+, z)]- d(z+, z)

1 -1- dq)(z, z-4-):[1 dq)(z, zA-)]-1 -4- dgp(z, x)

1 -1- d(z, z-):[1 ddp(z, z--)]- A- dgp(z, x)

C(x, x) D(x, x) 1, V(x, z) [D 1];

C(x, x) D2(x, x) 1, V2(z, x) [D2 1].

For in (9, Hildebrandt finds the solution U of the equation

ifx < z,

ifx > z;

ifz < x,

ifz > x;
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U(z) U(e) (Y) U.d for all z in S

in the form V (z) V (e)le]-I c1}, and (for in (96) the solution of

U() U(e) -t- (Y) de. U for all in S

in the form U (z) zII c.} u (e).
Straightforward (but somewhat tedious) computation leads to the follow-

ing three lemmas.

LEMMA 10.2. If is in V61, then V1 is in 0(, (VI) is in 5C, and, for each
{x, z} in S X S, II [1 q- v] II D I C ;if is in 6 then V is
in V(, (V2) is in , and, for each z, x} in S X S, II [1 q- v] zXI D.

LEMMA 10.3. If e is in S, is in 61, U is in 6, and

either U z U e + Y U d for all z in S

or U(z) U(e) + (L) U.V for all z in S,

then U (z) U (z-) [1 d (z-, z) ]-1 U (z-b) [1 d (z+, z) ]-1 for all z.

LEMMA 10.4. If e is in S, is in V6. U is in 6, and

either U U e + Y d4 U .for al z in S

or U(z) U(e) + (R) V. U for all in S,

hen U(z) [1 dq(z, z-)]-lU(z-) [1 d4(z, z+)]-lU(z+) for all .
Application of hese lemmas leads o two theorems which, with Theorems

4.1 and 4.2, yield Hildebrandt’s principal results for the homogeneous equa-
tions. Corresponding results can then be obtained for the nonhomogeneous
eases by techniques which we have employed in Section 15; for example,
consideration of the matrices

=(0 ) and [1--d]-1= ([1-d]-10 [1- d]-ldO)l
leads to solutions U in 96 of the system

U(z) u(e) + (Y) d.U + o(e) o(z)

for in 062 and 0 in
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THnoREM 10.1.
tWO statements are equivalent:

(1) U() U(e) -t- (Y) g.d for all,inS,

(2) U(z) U(e) nt- (L) U.V for all,inS;

whereas, for in 02 the following are equivalent:

If e is in S and U is in 0(, then for in Oqtl the following

THEOREM 10.2.

(V) W( r).dW(r, dl(x, z),

(Y) dW( r).W(r, def.(x, z)

yield (independently of r) a member 1 of qtl and a member

Remark. Using the integration-by-substitution theorem for the Y-in-
tegrals, this last theorem yields, for each W in , members
of 9( such that

W(a, b) 1 + (Y) W(a, ).d1 1 + (Y) d2.W( b)

for all {a, b} in S S. Thus one sees, as indicated earlier in this section,
that the solution space for these Y-integral systems is the whole class
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