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1. Introduction

The problem of the title, proposed by J. H. C. Whitehead in 1952, asks for
a characterization of those abelian groups A for which Ext(A, Z) 0, where
Z is the ring of rational integers. In this paper we add to the information
obtained recently by R. Nunke [7], J. Rotman [11], and others concerning
this and related problems.
The starting point of our discussion is the observation of Rotman [11, p. 251]

that a group satisfying the afore-mentioned condition is locally free. Recall
that a torsion-free abelian group A is called locally free if every pure subgroup
of A of finite rank is a free direct summand of A. (This terminology is due
to Nunke. Observe that a group is locally free if and only if it is l-free
and separable.) We first show that to every abelian group A there corre-
sponds in a canonical fashion a locally free group Aq and a homomorphism
j A -. A. It then turns out that useful information regarding the size of
the kernel and cokernel of j can be obtained simply from a knowledge of the
structure of Ext(A, Z). Hence, speaking loosely, the group Ext(A, Z) de-
termines the extent to which A deviates from being locally free. The primary
task of this paper is a detailed analysis of this situation.

In Section 2 we develop several convenient properties of the functor (.)
mentioned above. The main theorems of the following section contain all of
the information we have been able to gather by homological methods con-
cerning the relationship between the two groups A and A.
We then exhibit several applications of our results. For example, we see

easily that, if A is a reduced abelian group, then Ext(A, Z) is torsion-free if
and only if A and certain of its subgroups are locally free. A part of this
result has been obtained independently by Nunke and Ti Yen. We also show
that, if Ext(A, Z) 0, B

___
A, and B’/B ker(j/B), then B and B" have

equal rank; this fact provides a generalization of that part of Rotman’s
Density Lemma [11, p. 249] which applies to the problem of Whitehead. In
addition, it becomes apparent that our principal results contain, as a special

Received September 7, 1961.
Throughout this paper we shall use freely the concepts and techniques of homo-

logical algebra. For a systematic exposition of the subject we refer the reader to [2].
A more concise account of that portion of the theory which we shall use can be found
in [7] and [11].

When we write Horn(A, B), Ext(A, B), etc., we shall omit the superfluous subscripts
which refer to the coefficient ring.

If A is a module over an integral domain R, and Q is the quotient field of R, the
rank of A is defined to be the Q-dimension of the vector space Q (R) A.
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case, a part of a recent theorem of Nunke and Rotman [10] concerning the
structure of singular integral cohomology groups.

In the final section of the paper we show that, if A has no p-divisible sub-
groups (p a prime) and the p-primary component of Ext(A, Z) is trivial,
then A is slender; this generalizes a theorem of Rotman [11, p. 251]. We also
prove that, if Ext(A, Z) 0, then the cardinality of Horn(A, Z) is greater
than that of A.
Our results will be phrased for principal ideal domains. Hence throughout

the paper R will denote a principal ideal domain with quotient field Q. All
R-modules considered will be unitary. If A is an R-module, tA will represent
the torsion submodule of A. If p is a prime in R, A and t A will denote,
respectively, the localization of A at p and the p-primary component of A.

2. The functor (.)
Before proceeding to an analysis of locally free modules, we review briefly

some relevant properties of the functor Hom(., R). We refer the reader to
[1] for a detailed treatment of this duality theory in a more general setting.

If A is an R-module, we shall write A* Hom(A, R); A* is called the dual
of A. If B is another module and f A -- B is a homomorphism, then the
induced homomorphism f* B* -- A* is called the adjoint of f. The natural
homomorphism of A into A** will be denoted by i. If A, B, and f are as
above, then the diagram

is commutative.

fA

A ** _.. B**

A will be called torsionless if i is a monomorphism. It is an easy exercise
to prove that a module is torsionless if and only if it is isomorphic to a sub-
module of a direct product of copies of R. Hence a torsionless module is
Rl-free [4, p. 168]. In addition, it is apparent from the definition of i that

A*A is torsionless if and only if, for any x 0 in A, there exists g e such that
g(x) O. From this it follows without difficulty that a locally free module
is torsionless.
To show that the converse is not true, we shall present an unpublished ex-

ample due to Nunke of a torsionless abelian group which is not locally free.
Let I] be the direct product, and the direct sum of a countably infinite
family of infinite cyclic groups; then ’ is embedded in I in an obvious way.
Let A + 2II, a subgroup of II. That A is torsionless follows from the
preceding paragraph. However, it is not difficult to show (using [4, Theorem

It follows from this example that the assertion of Exercise 42(a) of [4, p. 183] is
false. Additional information concerning this situation is provided in Theorem 4.2.
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47.3, p. 171]) that the element x (2, 2, 2, generates a pure subgroup
of A which is not a direct summand, and hence A is not locally free.
The following two propositions seem to be well known, but to our knowledge

have not appeared in the literature.

PROPOSITION 2.1. Let A be an R-module. Then any pure submodule of A*
is locally free.

Proof. Let 0 -+ K -- F -+ A -- 0 be an exact sequence, where F is a free
R-module. Since the functor (.)* is left exact, we obtain the exact sequence
0 --> A* -- F* -- K*. Now, F* is isomorphic to a direct product of copies
of R, and is therefore locally free by [4, Theorem 47.1] (see the first para-
graph of the proof, p. 168). Since K* is torsion-free, A* is isomorphic to a
pure submodule of F*. If B is a pure submodule of A*, then B is likewise
isomorphic to a pure submodule of F*. We may then apply Theorem 49.3 of
[4, p. 178] to conclude that B is locally free, completing the proof of the
proposition.

PROPOSITION 2.2. An R-module A is locally free if and only if i. is a mono-
morphism of A onto a pure submodule of A**.

Proof. If the latter condition holds, then A is isomorphic to a pure sub-
module of A**, and is hence locally free by Proposition 2.1.

Conversely, assume that A is locally free. Then, by a previous remark, A is
torsionless, and so i is a monomorphism. For notational convenience we
shall identify A with its image in A**. Let ( ) A* X A** --. R denote the
natural pairing of A* and A**. Since A** is Rl-free, every pure submodule
of A** of rank one is cyclic. Let y generate such a submodule, and let
A n (Ry) Rx; then x ay for some a e R, and Rx is a pure submodule
of A. If x 0, then, since A is locally free, Rx is a direct summand of A,
and hence there exists z A* such that (z, x) 1. If (z, y) b, then ab 1,
and so Rx Ry; i.e., Ry A. We have shown that any pure submodule of
A** of rank one is either contained in A or has trivial intersection with A. It
then follows that A is a pure submodule of A**, completing the proof.

DEFINITION 2.3. If A is any R-module, denote by Aq the intersection of
all pure submodules of A** which contain i.(A). Let j A -+ A be the
homomorphism defined by i, (i.e., j differs from i only by contraction of
the range).

It is easy to see that, since A** is torsion-free, Aq is itself a pure submodule
of A**. Furthermore, it is clear from Proposition 2.1 that Aq is locally free.
Finally, ker(j) ker(iA)and coker(jA) t{A**/i(A)}.

PaOPOSITON 2.4. Let A, B be R-modules, and let f: A -- B be a homo-
morphism. Then there exists a homomorphism f" A -+ B such that the
diagram
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is commutative.

fA )B

A
f

B

Proof. Let f be the restriction to A of the mapping f**" A**
If x e A, then ax is in iA (A) for some a e R. Since the diagram

(2)

fA

A** **
f** B

is commutative, we obtain that aft(x) f**(ax) i,(B), and so f(x) B.
Hence f(A)

_
B, and so f is a homomorphism of A into B. The com-

mutativity of diagram (1) follows easily from the commutativity of diagram
(2). This completes the proof.

It is a routine exercise to verify that the mapping defined on the category
of R-modules and R-homomorphisms which assigns to each module A the
module A, and to each homomorphism f the homomorphism ]q, is an additive
functor. Furthermore, it follows easily from Proposition 2.4 that j is a
natural transformation of the identity functor into the functor (.).

PROPOSITION 2.5. Let A be an R-module. Then A is torsionless if and only
ifjA is a monomorphism, and A is locally free if and only ifj. is an isomorphism.

Proof. The first statement follows from our previous remark that
ker(i) ker(j). The second statement follows immediately from Propo-
sition 2.2 and the definition of j.
The next proposition provides a characterization of A among locally free

modules in terms of a universal property.

PROPOSITION 2.6. Let A and B be R-modules, and let B be locally free.
If f" A -+ B is a homomorphism, then there exists ’a unique homomorphism
g A ---> B such that gj f. If f is a monomorphism, then g is also a mono-
morphism.

Proof. Since B is locally free, j. is an isomorphism, by Proposition 2.5.
Now set g j-lf; then g is a homomorphism of A into B, and we obtain
easily from Proposition 2.4 that gj f. To show uniqueness, suppose
h" A -- B is another homomorphism such that hjA f. If x e A, then
ax ejA(A) for some a eR; i.e., ax ja(u), u eA. Then ag(x) g(ax)
gj (u) f(u), and ah(x) f(u) by a similar argument. Since B is torsion-
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free, it follows that g(x) h(x). This is true for all x e A, and so h g.
This completes the proof of uniqueness of g.

Finally, let us assume thatf is a monomorphism. If x e A, then axj(A)
for some a e R, and so ax j(u), u A. We may repeat the above argu-
ment to conclude that ag(x) f(u). If g(x) O, then f(u) O, and so
u 0, since f is a monomorphism. Then ax j.(u) O, and so x 0,
since A is torsion-free. It then follows that g is a monomorphism, and the
proof is complete.
We end this section with a proposition which will be useful in our later work.

PROPOSITION 2.7. Given an R-module A, let

’ker(jA)A and ’Im(j)-,A

be the inclusion mappings, and let r" A ----> Im(j) be the canonical mapping,
(so r differs from j. only in contraction of the range). Then 0; and

(A) -+(Im(j)) * )* "* A*(Im(j) ---. A*, and 3 (A)*-’->
are isomorphisms.

AsProof. If f e and x e ker(j), then (*f)x f(x). (Here we are identi-
fying ker(j) with its image in A.) But ker(j) ker(i), and it follows
from the definition of i that ker(i) consists of all x e A such that f(x) 0

A*.for all f We then obtain immediately that *(f) 0 for all f A*,
i.e., 0.
Now, the exact sequences

Im(j) A coker(ja) --+ 0, A . Im(j)--*0

give rise to the exact sequences
,

0 -- (coker(j))* -. (A)* *(Im (Im(j,))* r A*.()), 0-
$ ,

But coker(j) is a torsion module, and so (coker(jx))* 0; hence v and r
* from which it followsare monomorphisms. But r j, and so j* r

that j* is a monomorphism, too.
Now let 0 A -- A** be the inclusion mapping. Then Oj i, and so

* -3
3 We may then apply Theorem 1.4 of [5] to conclude that i* is an

epimorphism, from which it follows that j* is likewise an epimorphism. Since, , *3a v and all three mappings are monomorphisms, we then obtain readily
that all three are indeed isomorphisms.

3. The main theorems
From now on we shall assume that R is a principal ideal domain which is

not a field. In this section we shall compare the R-modules A and A by
homological methods.
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If p is a prime in R and A is an R-module, we shall write

sA {x A px 0};

s A is sometimes called the p-socle of A. s A is a vector space over the field
R/(p), and we shall denote its dimension by r(A). If A B, then
s A

___
s B, and so r(A) <- r(B). It is also possible to show without much

difficulty that r(B) <= r(A) r(B/A). If A is p-primary, then sq A 0
for any prime q distinct from p; in this case we shall omit the superfluous
subscripts and write sA, r(A for s A, r(A ), respectively.

LEMMA 3.1. Let A be an R-module, and M a divisible module containing A.
Then r(A/pA <- r(M/A

Proof. Let {xa -t- pA} be an R/(p)-basis of A/pA, where {xa}

___
A. Since

M is divisible, there exist {y,}

_
M such that py, x,. Observe that

{y - A}

_
s(M/A). If cl yal + " cn y 0 (mod A), where c e R,

then

cl x, T + c, x p(c y, + W cn ya) 0 (modpA).

In this case c 0 (mod p) for i =< n, since {x, W pA} is an R/(p)-basis of
A/pA. Hence {y, -t- A} is an R/(p)-linearly independent subset of s(M/A),
from which it follows that r(A/pA) <= r(M/A).
LEMMA 3.2. For any R-module A we have the following exact sequences"

0 -- (ker(jA))* --* Ext(Im(jA), R)
(3) -- Ext(A, R) --. Ext(ker(j), R) -- 0,

(4) 0 --* Ext(coker(j), R) --+ Ext(A, R) -- Ext(Im(j), R) --* 0.

Proof. Consider the exact sequence 0 --* ker(j) A --* Im(j) --* 0,
where is the inclusion mapping. Since * 0, by Proposition 2.7, (3) is
simply a portion of the resulting cohomology sequence.

Now consider the exact sequence 0 -* Im(j) - A --+ coker(j) -* 0, where
is the inclusion mapping. By Proposition 2.7, * (A)* (Im(j))* is

an isomorphism. Therefore the resulting cohomology sequence gives rise to
(4), and the proof is complete.

THEOREM 3.3. The following conditions hold for any R-module A and any
prime p in R"

(a) r{Hom(ker(j), R/pR)} <= rp{Ext(A, R)}.
(b) r{Hom[sp(coker(jA) ), R/pR]} <- r{Ext(A, R)}.

Proof. For notational convenience weshall set B ker(j), C coker(j).

Consider the exact sequence 0 ---+ R m R/pR ---.R 0, where f is the
canonical mapping and m(a) pa for a e R. This gives rise to the exact
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cohomology sequence

A* f* Hom(A, R/pR) ---. Ext(A, R) m._ Ext(A, R).

But m.(u) pu for u in Ext(A, R), and so we may shorten the above to
the exact sequence

A* f* Hom(A, R/pR) s{Ext(A, R)}.

Now let t B --* A be the inclusion mapping, and set X coker(t). Then
the exact sequence

0--+B u A--X--*0

gives rise to the exact cohomology sequence

Horn(A, R/pR) ---. Hom(B, R/pR) ----> Ext(X, R/pR).

But X Im(jA) and is hence torsion-free, and so it follows from Corollary 7.8
of [7, p. 237] that Ext(X, R/pR) O. Thus is an epimorphism. (This
fact can also be derived by an easy nonhomological argument.) Since all
modules in the exact sequence iust mentioned can be viewed also as vector
spaces over the field R/(p), we then see easily that there exists a homo-
morphism a Hom(B, R/pR) Horn(A, R/pR) such that a is the identity
mapping on Hom(B, R/pR). We now assemble the information which we
have so far collected into the following master diagram"

A* u B*

Hom(A, R/pR) Hom(B, R/pR)

ooo
oO

, Ex(A, R)

where by definition, and the mapping B* -+ Hom(B, R/pR) is in-
duced by f" R -- R/pR. The upper square and the lower triangle of the
diagram are commutative, and the vertical sequence on the left is exact. But,
reealling that u 0 by Proposition 2.7, we obtain from routine diagram-
chasing that o- is a monomorphism. (a) then follows immediately.
Turning now go (b), we observe thag ghe exaeg sequence

0 s, C C C/s, C 0
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gives rise to the exact cohomology sequence

Ext(C, R) --+ Ext(sp C, R) -- 0.

But plExt(sp C, R)} 0; hence, setting E Ext(C, R), we see that

rl Ext(s C, R)} <- r(E/pE).

Furthermore, setting M Ext(A, R), we obtain from the exact sequence (4)
of Lemma 3.2 that M/E , Ext(Im(jA), R). But M is divisible, since A
is torsion-free [2, Proposition 5.3, p. 135]. Hence, utilizing Lemma 3.1 and
the above inequality, we see that r{Ext(sC, R)} <- rlExt(Im(jA),
But since (ker(j))* is torsion-free, it follows easily from the exact sequence
(3) of Lemma 3.2 that rlExt(Im(j), R)} -<_ rplExt(A, R)/, and so we may
conclude that r/Ext(s C, R)I <= r(Ext(A, R)}.
Now sC @Ci, where C R/pR and i traces an index set of

cardinality equal to r(C). But Ext(Ci, R) Ci (Exercise 1 of [2, p. 139]);
hence Ext(sp C, R) II c Hom(s C, R/pR). Combining this iso-
morphism with the final inequality of the preceding paragraph, we obtain at
last that r{Hom(s C, R/pR)I <-_ r{Ext(A, R)/. This establishes (b) and
completes the proof of the theorem.

In the remainder of the discussion we shall sometimes, for notational con-
venience, write r(A for r(A/pA), A being an R-module and p a prime in R.
If a is a cardinal number, we shall often denote 2" by exp(a).

COROLLARY 3.4. IfA is an R-module and p is a prime in R, then r (ker(j))
and r(coker(j)) are less than or equal to r{Ext(A, R)I. Furthermore, the
following conditions hold if R has a countable number of elements:

(a) If r{Ext(A, R)I < 2a, then r(ker(jA)) and rp(coker(j)) are both
finite.

(b) Ifrlnxt(A, R)I >= 2a, thenexp [r(ker(j))] =< r{nxt(A, R)}, and
exp [r(coker(j) )] -<_ r{ Ext(A, R)}.

Proof. These estimates follow in routine fashion from the statements of
Theorem 3.3. The details of the argument will be omitted.

It is unfortunate that Theorem 3.3 and its corollary exhaust the informa-
tion we have at present regarding coker(j). However, a more penetrating
result concerning ker(jA) can be obtained if we assume that R has a countable
number of elements; this assumption will hence be in effect throughout the
remainder of this section.

In the following discussion, the cardinality of a set X will be denoted

LEMMA 3.5. Let A be a torsion R-module. Then:
(a) /fl Ext(A, R) < 2a, then A is finitely generated.
(b) IflExt(A,R) >= 2a,then2I1 <= IExt(A,R) I.
Proof. We may apply Theorem 29.2 of [4, p. 98] to obtain the existence
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of an exact sequence 0 - C -. A -+ M -- 0, where C is a direct sum of cyclic
modules and M is divisible. Then Horn(C, R) 0 because C is a torsion
module, and so we obtain the exact cohomology sequence

0 - Ext(M, R) - Ext(A, R) -. Ext(C, R) - 0.

Now M M, where M is indecomposable and primary and i traces
an index set of cardinality a, say. Then Ext(M, R) II Ext(M, R).
But it follows from [4, p. 211] that for each i there exists a prime p p(i) in
R such that Hom(M, M) /, the completion of the valuation ring R.
From this we obtain by a routine computation that Ext(M, R) /.
Since l/l 2a, we see that if lExt(M R) i< 2a, then M 0. If
Ext(i, R) >-- 2a, then 2" _<_ Ext(M, R) I.
Let us now write C C5, where each C is cyclic and primary and

j traces an index set of cardinality . We obtain from Exercise I of [2, p. 139]
that Ext(C-, R) C5, and so

Ext(C, R) II. c.
if Ext(C, R) < 2a, we see that is finite; in this case C is clearly finitely
generated. If Ext(C, R) >- 2a, we obtain that 2a <_- Ext(C, R)
Assume now that Ext(A, R) < 2a; then Ext(M, R)

are likewise. It then follows from the above remarks that M 0 and C is
finitely generated. In this case A C, and (a) is established.
On the other hand, suppose Ext(A, R) >- 2a. Then, since

nxt(A, R) Ext(C, R) Ext(/, R)
we obtain easily from the preceding remarks that
2a -<_ Ext(A, R) I. But since tA -<_ R0 -t- max(a, ), it follows that

2TM __< 2a Ext(A, R) Ext(A, R)
This establishes (b) and completes the proof of the lemma.

LEMMA 3.6. If A is an R-module, then lA* <= 2TM. If A has finite.rank,
,then rank(A*) <- rank(A).

Proof. Let a be the rank of A; then there exists an exact sequence
F -+ A -+ C -- 0, where F is a free R-module of rank a and C is a torsion
module. This gives rise to the exact sequence 0 -- C* -+ A* -- F*. But
since C is a torsion module, C* 0, and so A* is isomorphic to a submodule
of F*. But F* is a direct product of a copies of R, and so IF* __< 2", since
R is countable. Since a _-< A [, we then get that A*

If A has finite rank, then rank(A*) __< rank(F*) rank(F) rank(A ),
completing the proof of the lemma.

If p is a prime in R, we shall denote by Q(p) the submodule of Q generated
by all elements which have denominator a power of p. This module plays an
important role in the following lemma.

Recall that an R-module A is p-divisible if pA A.
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LEMMA 3.7. Let A be a nontrivial torsion-free p-divisible R-module, where p
is a prime in R. Then

Ext(A, R) >-- 2go and exp [rank(A)] -< Ext(A, R) I.
Proof. We see that A contains a free submodule F which has rank equal

to that of A. But since A is torsion-free and p-divisible, it then follows easily
that A contains a submodule E @E, where i traces an index set of
cardinality equal to rank(A), and E Q(p). We obtain from a routine
computation that Ext(Ei, R) [/R, where/ is, as before, the completion
of the valuation ring R. Then Ext(E, R) IIExt(E, R), and is the
direct product of a family of copies of R,/R, the cardinality of the family
being equal to the rank of A. Since I//R 2a and A 0, it is clear
that Ext(E, R) >- 2a and exp [rank(A)] -< Ext(E, R)[.
Now, the exact sequence 0 -- E -. A -+ AlE -- 0 gives rise to the exact

cohomology sequence Ext(A, R) - Ext(E, R) -* 0. From this, together
with the preceding remarks, it follows that Ext(A, R) I>= 2a and
exp [rank(A)] -<_ Ext(A, R) I, which was to be proved.
The following theorem completes our analysis of the kernel of j.

THEOREM 3.8. Let R be a countable principal ideal domain. Then the fol-
lowing conditions hold for any R-module A"

(a) If lExt(A, R) < 2, then ker(j) is finitely generated.
(b) If lExt(A, R) >- 2a, then exp( ker(j) I) <-- Ext(A, R) [.

Proof. Set B ker(j), and let B’ be any submodule of B. Then the
exact sequence 0 -+ B --. A induces the exact cohomology sequence

Ext(A, R) -. Ext(B’, R) - 0,

and so Ext(B’, R) <- Ext(A, R) In particular,

IExt(B, R) -< Inxt(A, R) and IExt(tB, R) <-- Inxt(A, R) I.
Now set F B/tB. Since (tB)* 0, the exact sequence

0-- tB -+ B -- F -- 0

gives rise to the exact sequence

0 - Ext(F, R) -- Ext(B, R),

and so Ext(F, R) -< Ext(B, R) --< Ext(A, R) I. Furthermore, if p is
a prime in R, F/pF is an epimorphic image of B/pB. From this fact and
Corollary 3.4 we obtain that

exp [r(F/pF)] <- exp[r(B/pB)] <= rlnxt(A, R)} -< IExt(A, R) I.
Let {x, -t- pFl be an R/(p)-basis of F/pF, where a traces an index set of

cardinality equal to r(F/pF). Let K be the pure submodule of F generated
by all x. (i.e., the smallest pure submodule of F containing all x.). Set



692 STEPHEN U. CHASE

M F/K. Since K is pure in F, M is torsion-free. Furthermore, we see
that K -t- pF F, and so pM M; i.e., M is p-divisible. Observe finally
that the exact sequence 0 -- K -- F -- M -- 0 gives rise to the exact co-
homology sequence

(5) K* -- Ext(M, R) -- Ext(F, R).

Suppose now that Ext(A, R) < 2s. We then obtain from our previous
remarks that [Ext(F, R)I-<_ IExt(B, R) l< 2 and r(F/pF) is finite.
Since rank(K) _-< r(F/pF) and R is countable, we see from Lemma 3.6
that K* has finite rank, and so K*I <- o. Hence, by (5) above,
Ext(M, R) I< 2, and so we may apply Lemma 3.7 to conclude that
M 0. Thus F K, a module of finite rank.

Since F B/tB, we may then construct an exact sequence

O --- F --- B --- T-+0,where F0 is free of the same (finite) rank as F, and T is a torsion module. This
gives rise to the exact cohomology sequence F - Ext(T, R) -- Ext(B, R).
Since F0 is free, F is also free with same rank as F0, and so lF
Then, since Ext(B, R) < 2, it follows that Ext(T, R) < 2. There-
fore, by Lemma 3.5, T is finitely generated. Since F0 is finitely generated, we
obtain finally that B is finitely generated. This establishes (a).

Turning now to (b), we assume that Ext(A, R) I>-_ 2s. Since
rank(K) _-< r(F/pF), we have that[KI _-< R0 -t- r(F/pF), and so, by
Lemma 3.6 and a preceding remark,

K*I _<_ 2 exp [r(F/pF)] <= 2 Ext(A, R) Ext(A, R) I.
Since IExt(F, R) _-< IExt(A, R) I, we then obtain from (5) that
Ext(M, R) <-- Ext(A, R) I. We may then apply Lemma 3.7 to conclude

thatexp [rank(M)] <- Ext(A,R) I. Butrank(F) rank(K) -k rank(M),
and so exp [rank(F)] <= exp [rank(K)] exp [rank(M)] <= Ext(A, R) 1.
Since F <= R0 -k rank(F), we also obtain the inequality

2 IFI -<_ Ext(A, R) I.
Now we have seen that Ext(tB, R) <= Ext(A, R) l, and so, by Lemma

3.5, 2 It’’ <= Ext(A, R)I. But since F B/tB,

FI _-< b0-k max([Fl,
and so 2 IFI <_- 2 Ext(A, R) Ext(A, R) I. This establishes (b) and
completes the proof of the theorem.

4. Applications

We shall now apply the results of the preceding section to the problem of
Whitehead and to related problems. For a while we may assume that R
is any principal ideal domain which is not a field.
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THEOREM 4.1. Let p be a prime in R, and A an R-module. Assume that
tplExt(A, R)} O. Then A possesses a p-divisible submodule B such that
A/B is torsionless.

Proof. Set B ker(jA); then A/B Im(jA), which we know is torsion-
less because it is a submodule of the locally free module Aq. Hence we need
only show that B is p-divisible. But we have from Corollary 3.4 that
r(B/pB) <= r{Ext(A, R)} 0, since t/Ext(A, R)} 0. Therefore.
B/pB O, and so pB B; i.e., B is p-divisible. This completes the proof
of the theorem.

THEOREM 4.2. The following statements are equivalent for any reduced
R-module A"

(a) Ext(A, R) is torsion-free.
(b) If B

_
A and A/B has bounded order, then B is locally free.

(c) If B
_
A and A/B R/pR, where p is either a unit or a prime, then

B is locally free.
If any (and hence all) of these conditions hold, then Ext(B, R) is torsion-free

whenever B

_
A and A/B has bounded order.

Proof. (a) (b). LetB___ Aand T A/B. We then get the exact
cohomology sequence

Ext( T, R) -+ Ext(A, R) --+ Ext(B, R) -- 0.

If aT 0 for some a e R, then alExt(T, R)} 0; hence, if Ext(A, R) is
torsion-free, the mapping Ext(T, R) -- Ext(A, R) is trivial. In this case
Ext(B, R) Ext(A, R), and hence Ext(B, R) is torsion-free; this, inciden-
tally, establishes the last statement of the theorem. Also, we see that in
order to establish (b) we need only show that if Ext(A, R) is torsion-free,
then A itself is locally free.
Now if Ext(A, R) is torsion-free, then rtExt(A, R)} 0 for all primes

p in R, and so we may apply Corollary 3.4 to conclude that

r(ker(j)) r(coker(j)) 0.

Hence t(coker(j)) 0 for all p, and so coker(j) 0, since it is a torsion
module. On the other hand, we have that ker(jA)/p(ker(j)) 0, and so
p(ker(j) ker(j) for all primes p in R. It then follows easily that
a(ker(j)) ker(jA) for all a 0 in R; i.e., ker(j) is divisible. Since A
is reduced, it follows that ker(j) 0. Thus we have shown thatj A A
is an isomorphism, and so A is locally free.

(b) (c). Assume (b) holds; then A itself is certainly locally free.
Let B be a submodule of A such that A/B R/pR for some prime p. Then
A/B has bounded order, and so B is locally free.

(c) (a). If (c) holds, then A is certainly locally free, and therefore
possesses a direct summand isomorphic to R. Let us write A R @ A1
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then Ext(A, R) Ext(A1, R), and so we need only prove that Ext(A, R)
is torsion-free.
We shall follow the standard practice of identifying Ext(A1, R) with a

set of equivalence classes of exact sequences of the form 0 -- R -- E -- A1 -- 0;
a detailed description of this correspondence is to be found in [2, Chapter
XIV]. Let the exact sequence 0 -- R -+ E -- A1 -- 0 represent the element
u of Ext(A1, R), and assume that pu 0 for some prime p in R; this means
that there exists a commutative diagram

O R

0 )R--RA’

where the vertical mapping on the right is the identity and rap" R -- R is
defined by rap(a) pa. It then follows from routine diagram-chasing that
f is a monomorphism; furthermore, coker(f) coker(m) R/pR. Since
R A1 A, we may then apply (c) to conclude that E is locally free, in
which case the exact sequence 0 -- R -- E --+ A1 -- 0 splits. This means
simply that u 0. We have thus shown that s{Ext(A1, R)I 0 for all
primes p in R, from which it follows immediately that Ext(A1, R)
Ext(A, R) is torsion-free. This establishes (a) and completes the proof
of the theorem.
The fact that A reduced and Ext(A, R) torsion-free implies A locally

free was proved independently, in unpublished work, by Nunke and Ti Yen.
In the remainder of this section we shall once again assume that R has a

countable number of elements. We may then use Theorem 3.8 to derive
information concerning modules A for which Ext(A, R) is countable. First
we prove the following necessary lemma.

LEMMA 4.3. Let A be an R-module, and B a submodule of A. If B and
A/B are l-free, then A is likewise l-free.

Proof. Let F be a submodule of A of countable rank; then F n B is a
submodule of B of countable rank, and is therefore free, since B is Rl-free.
Furthermore, F/(F B) has countable rank and is isomorphic to a sub-
module of A/B; hence F(F B) is free, since A/B is Rrfree. It then follows
that F (F n B) (F/(F B)) and is therefore free. This completes the
proof that A is l-free.
THEOREM 4.4. Let R be a principal ideal domain with a countable number

of elements, and let A be an R-module such that lExt(A, R) < 2a. Then
A T B, where T is a finitely generated torsion module and B is l-free.
Furthermore, B contains a free submodule F of finite rank such that B/F is
torsionless.

Proof. We have from Theorem 3.8 that ker(jA) is finitely generated, in
which case ker(jA) T @ F, where T is a finitely generated torsion module
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and F is free of finite rank. Since tA

_
ker(jA), we see that T tA. It

then follows from Theorem 8 of [6, p. 18] that A T B for some torsion-
free submodule B of A. Replacing F by an isomorphic image, if necessary,
we may assume that F

___
B. Then B/F A/ker(j) - Im(jA), which is

torsionless. In particular, B/F is Rl-free. We may then apply Lemma
4.3 to conclude that B is Rl-free, completing the proof of the theorem.
The following corollary to Theorem 4.4 is related to a recent result of

Nunke and Rotman [10] concerning the structure of singular integral co-
homology groups.

COROLLARY 4.5. Let A be a countable R-module such that Ext(A, R) is
countable. Then A T @ F, where T is a finitely generated torsion module
and F is free. In particular, Ext(A, R) Ext(T, R) and is finitely generated.

Proof. We have from Theorem 4.4 that A T @ B, where T is a finitely
generated torsion module and B is -free. Now, however, B has countable
rank, and so B F is free. The rest of the corollary follows without diffi-
culty.
We now return to the problem of Whitehead. Following Rotman [11],

let us call an R-module A a W-module if Ext(A, R) 0. We shall derive
a property of submodules of W-modules.

If A is any R-module and B A, let BtP/B ker(jA/.). It is not difficult
to verify that Bp’ is simply the "double annihilator" of B with respect to
the duality theory discussed earlier; for further information regarding this
construction we refer the reader to [1, p. 476]. The two most relevant prop-
erties of B are the following" (a) A/B" is torsionless, (b) if B

_
A
_
A

and A/A is torsionless, then B’ c_ A1
THEOREM 4.6. Let R be a principal ideal domain with a countable number

of elements. Let A be a W-module over R, and let B A. Then

rank(B") rank(B).

Proof. Observe first that A is locally free, by Theorem 4.2.
Replacing B by the smallest pure submodule of A containing it, we may

assume that B is pure in A. Hence, if B has finite rank, B is a direct sum-
mand of A, in which case clearly B’

_
B.

Suppose now that B has infinite rank. Then, since A is a W-module, the
exact sequence 0 -- B -- A -+ A/B -- 0 gives rise to the exact cohomology
sequence B* -+ Ext(A/B, R) --. O. Hence, by Lemma 3.6, Ext(A/B, R) <-
B*I <__ 2IB’. We may then apply Theorem 3.8 to conclude that

exp( B"/B [) exp( ker(j/,) I) - 2’’1, and therefore, by the Generalized
Continuum Hypothesis, B’/BI <= B I. Since BI is infinite, it follows
that B"I Bil B"/B B I, in which case rank(B") B"I
Bi rank(B). This completes the proof.

But, unfortunately, we must use the Generalized Continuum Hypothesis in the
argument.



696 STEPHEN U. CHASE

Observe that, if [/B is the maximal divisible submodule of A/B, then
[ B’. Hence, by Theorem 4.6, rank(/) rank(B). This fact forms
a part of Rotman’s Density Lemma [11, p. 249].
We know of no locally free but nonfree module over any principal ideal

domain which satisfies the conclusion of Theorem 4.6. However, there
exist locally free abelian groups which satisfy the above formulation of the
Density Lemma, but which are not free.

5. Concluding remarks
We shall now present two results which, while intimately related to the

previous theorems, do not follow from them as immediate corollaries. For
a while we may assume that R is any principal ideal domain.

LEMMA 5.1. The following statements are equivalent for any R-module A
and prime p in R"

(a) tplExt(A, R)} 0.
(b) The canonical mapping f" R --+ R/pR induces an epimorphism

f," A* Hom(A, R/pR).

Define the mapping mp R --* R by m(a) pa. Then the exact
sequence

induces the exact cohomology sequence

R/pR -- 0

A* f* Hom(A, R/pR) Ext(A, R) m. Ext(A, R).

But, if u is in Ext(A, R), then m.(u) pu. The lemma follows easily.

LEMMA 5.2. Let K be a field, V a vector space over K, and Ix,,} an infinite
sequence of nonzero elements of K. Then there exists a K-homomorphism
f" V ----> K such that f(x,,) 0 for infinitely many n.

Proof. Assume first that the subspace W of V generated by the x} has
infinite dimension. Then, passing to a subsequence, if necessary, we may
assume that the /xl are linearly independent. In this case it is easy to
construct a homomorphism f V -- K such that f(x,,) 1 for all n.

Suppose now that W has finite dimension. Let ul, ,um be a basis of
W, and write x i=1 ai u. Then, for some i -<- m, a 0 for infinitely
many n. Define a homomorphism ] W --* K by the conditions ](u) 1,
](u) 0forj i. Let f be any extension, of ] to V then it is easily verified
that f has the desired properties.

THEOREM 5.3. Let p be a prime in R, and A an R-module with no p-divisible
submodules. Let Xnl be an infinite sequence of nonzero elements of A. If
tplExt(A R)} O, then there exists g such that g(Xn) ’ 0 for infinitely
many n.
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Proof. Observe first that, since A has no p-divisible submodules, A is
torsionless by Theorem 4.1. It then follows easily that for each n there
exist yn e A and an integer an >- 0 such that p yn xn and yn pA. Let
n be the image of yn in A/pA; then n 0. A/pA may be viewed as a
vector space over the field K R/(p). Therefore, by Lemma 5.2, there
exists a K-homomorphism ]’A/pA R/pR such that ](n) 0 for in-
finitely many n. ] may be "lifted" in trivial fashion to an R-homomorphism
f" A R/pR such that f(yn) ](n) 0 for infinitely many n.

Since tp{Ext(A, R)} 0, we may apply Lemma 5.1 to conclude that the
natural mapping A* --+ Hom(A, R/pR) is an epimorphism. Hence there

A*exists g such that g(y,) + pR f(yn), and so g(Yn) ’ 0 for infinitely
many n. Then g(xn) p" g(Yn) 0 for infinitely many n, completing
the proof of the theorem.

Let P II=l R, where R R, and let en be the element of P with
.th coordinate equal to n. Recall that an R-module is slender if any homo-
morphism f P A has the property that f(e,) 0 for all but finitely many
n [4, p. 169].

COROLLARY 5.4. Assume that R has infinitely many primes.
satisfies the hypotheses of Theorem 5.3, A is slender.

Then, if A

Proof. Assume the statement is false; then there exists a homomorphism

f P A such that f(en) xn 0 for infinitely many n. We may then
apply Theorem 5.3 to conclude that there exists g e A* such that g(x,) 0
for infinitely many n. Set h gf; then h e P* and h(e) g(xn) 0 for
infinitely many n. But, since R has infinitely many primes, this is a con-
tradiction to Theorem 47.3 of [4, p. 171]. (The theorem is stated only for
abelian groups, but the same proof works in the slightly more general situa-
tion described above.) It then follows that A is slender, completing the
proof.
One may give a topological interpretation of sorts to Theorem 5.3. If

A is an R-module, we may provide A with the weak topology generated by
the elements of A* relative to the discrete topology on R; this topology has
been studied by Nunke [8]. Then, if A satisfies the hypotheses of Theorem
5.3, the conclusion states simply that a sequence of elements of A converges
in this topology if and only if it is ultimately constant.

In our final result we compare the cardinality of a W-module with that
of its dual. First we need a lemma which is of some interest in itself.

LEMMA 5.5. Let A be a W-module over the countable principal ideal domain
R. If p is a prime in R, then exp[rank(A)] _-< exp[r(A/pA)]. Hence, if
the Generalized Continuum Hypothesis holds, rank(A) =< r(A/pA).

The referee hs kindly pointed out the similarity between the rgument used here
nd prt of the proof of the principal result of [3], in which it is shown essentially
that a W-group is torsionless.
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Proof. We note in passing that A, being a W-module, is locally free
(Theorem 4.2) and thus certainly torsion-free.
Let Ix, - pA} be an R/(p)-basis of A/pA, where a traces an index set of

cardinulity equal to r(A/pA). Let B be the pure submodule of A generated
by the {x,}; then rank(B) _-< r(A/pA), and A/B is torsion-free. Further-
more, A B - pA, and so p(A/B) A/B; i.e., A/B is p-divisible. Then,
since Ext(A, R) 0, the exact sequence 0 -- B -- A - A/B -+ 0 gives
rise to the exact cohomology sequence

B* -+ Ext(A/B, R) - 0,

from which it follows that Ext(A/B, R) <- B* i.
Suppose now that r(A/pA) is finite. Then B has finite rank, and so, by

Lemma 3.6, rank(B*) __< rank(B). Then IB*I -< 0-t-rank(B*) 0,
and it follows from Lemma 3.7 that A/B 0. Hence A B, and rank(A)
rank(B) r A/pA ).
Assume now that r(A/pA) is infinite. Then {B rank(B), and so,

by Lemma 3.6 and a previous remark,

Ext(A/B, R) <- B*[ _-< 2 I1 exp[rank(B)] -<_ exp[r(A/pA)].

We may then apply Lemma 3.7 to conclude that exp[rank(A/B)] <=
exp[r(A/pA)]. Since rank(A) rank(B) -t- rank(A/B) and all cardinal-
ities involved are infinite, it follows that

exp[rank(A)] <- exp[rank(B)] exp[rank(A/B)] <= exp[r(A/pA)],

completing the proof of the lemma.
It is not difficult to show that r(A/pA) <= rank(A) for any torsion-free

R-module A, and so equality holds if A is a W-module. However, we shall
not need this stronger result.

THEOREM 5.6. Let A be a W-module of infinite ran]c over a countable principal
ideal domain R. Then A* 211.

Proof. Let p be a prime in R; then since Ext(A, R) 0, it follows easily
from Lemma 5.1 that rlHom(A, R/pR)} <- Horn(A, R/pR) <= A* i.
Since A has infinite rank, AI rank(A), and so we may apply Lemma
5.5 to conclude that

211 exp[rank(A)] <_- exp[r(A/pA)] r{Hom(A, R/pR)I <-IA* I.
But A*i -<_ 2 I1 by Lemma 3.6, and so A*i 2I1. This completes the
proof of the theorem.
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