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1. Introduction

In [6], iniective and proiective homotopy groups are defined in an additive
category with abelian structure in the sense of Heller [5], and two exact rela-
tive homotopy sequences of a pair, dual to each other, are described, which
become absolute sequences if the pair is a fibration. For the category of
R-modules, where R is an associative algebra over a commutative ring K,
there is an important (not exact) abelian structure, called the "-relative
structure", given by the natural embedding K -- R. The corresponding
homotopy concepts and groups are called in [6] weak, homotopies and weak,

homotopy groups. In general, there are two dual concepts of weak homotopy,
and thus two different kinds of weak homotopy groups. However, for an
important class of algebras, namely Frobenius algebras, it is shown in the
present paper that the two concepts of weak homotopy coincide. From this,
we further show that the nth injective and projective weak homotopy groups
are naturally isomorphic. Thus, as in the topological case, there is
only one kind of homotopy groups, but two dual relative homotopy sequences.
The result that if the two dual homotopy concepts coincide, then the corre-

sponding nth homotopy groups are isomorphic, can be obtained in an arbitrary
exact category with abelian structure having enough iniectives and pro-
iectives. There is another interesting consequence of this coincidence of the
two dual homotopy concepts: The relative homotopy sequences can be ex-
tended to "complete" exact sequences of positive-, 0- and negative-dimen-
sional homotopy groups. For fibrations of a special type, these sequences
become absolute sequences. Moreover, the negative-dimensional homotopy
functors appear to be a sort of functors Extn. It should be noted that these
extended exact sequences could also be obtained by the standard methods of
homological algebra carried to the "relative" case (or to arbitrary abelian
structures). However, our different approach to these results might be of
some interest in itself, and gives an example for the use of the methods of
algebraic homotopy theory.
These general results can be applied to the homotopy groups of various

abelian structures: the weak homotopy groups in the category of R-modules,
when R is a Frobenius algebra; the ordinary homotopy groups, when R is a
quasi-Frobenius ring; the chain homotopy groups of R-module complexes.
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We confine ourselves to the first of these applications. More precisely, we
apply the general results to the weak homotopy groups in the category of R-
modules, R being an associative algebra over an arbitrary commutative ring,
and then proceed to the comparison of one of our complete exact sequences to
the complete exact sequences in the cohomology theory of a finite group (Tare)
and that of a Frobenius algebra (Naayama).

In Section 2, we summarize the results of algebraic homotopy theory we
need in the sequel. In Sections 3 and 4 the general results mentioned above
are established.
In Section 5, for the category of R-modules, where R is an associative

algebra over a commutative ring K, we deal with one of the extended exact
homotopy sequences for a fibration of the kind considered here. For any
two R-modules A and B, let II(’K(A, B) denote the nth weak homotopy
group. If we choose for A a K-proiective R-module Q, then the negative-di-
mensional groups II_,;K> (Q, B) are the ordinary groups Ext (Q, B), and every
R-epimorphism is a fibration of the kind considered. This leads to complete
exact sequences consisting of weak homotopy groups and of cohomology
groups (Theorem 5.5).

Section 6 contains the application of Theorem 5.5 to the special cases
where R is the enveloping algebra F (R) F* of a Frobenius K-algebra F and
Q F, (b) where R is the group algebra Z(@) of a finite group @ over the
ring of integers Z, and Q I (I being the additive group of Z with trivial
@-module structure). In analogy with the definition of the Hochschild
cohomology groups of an associative algebra, for any two-sided F-module B,
we introduce the weak homotopy groups 7I’n(F, B) II(nF(R)KF*’K) (F, B) of
Frobenius K-algebra F; in analogy with the usual definition of the cohomology
groups of a group, for any @-module B, we introduce the weak homotopy
groups rn(@; B) II(()’z)(I, B) of a finite group @. Thus, we obtain
complete exact sequences consisting of weak homotopy groups and cohomology
groups of a Frobenius algebra and of a finite group respectively. In the case
of a finite group @, we sho.w that the weak homotopy groups (@; B) are
essentially the homology groups H(@; B), and that our complete sequence
coincides with the well-known complete derived sequence of @ (cf. [2, Chapter
XII]). By an analogous argument, it can be shown that in the case of
Frobenius K-algebra F (being free over K), the weak homotopy groups
n(F, B) are essentially the modified homology groups H*(F, B) of F in the
sense of Nakayama (cf. [7]).

2. Review of algebraic homotopy theory in abelian
categories

In this section, we first recall some of the definitions and results given in
[6]. We shall only consider abelian categories with enough injectives and
projectives. Then, the homotopy functors n and _I,In are functors of two
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variables in the same category. Furthermore, we shall confine ourselves to
exact categories, i.e., to additive categories where in particular every map
has kernel and cokernel.

Let be an exact category with an (additional) abelian structure $ having
enough injectives and projectives with respect to 6. Taking $ as homotopy
structure, the i-homotopy groups (A, B) are introduced as follows (cf. [6]).
Let be a proper monomorphism from A to an injective object 2:, and let
t* Hom(2:, B) denote the image of the homomorphism

*- Hom(fi, B) -- Hom(A, B) induced by " A -- ft.
Then (A, B) is the factor group Horn(A, B)/* Horn(2:, B). This group
is independent of the choice of the map
For every map a" A - A’ and t" B -- B’, there are induced homomor-

phisms a*" (A, B) -- (A, B) and ." I(A, B) .- I(A, B’) defined in an
obvious way. Clearly, the triple of functions a*, ., and (A, B) define a
functor of two variables in with values in the category of abelian groups,
denoted by X -+ .
The p-homotopy groups II_(A, B) and the functor H_" 3 X - are

introduced dually.
A map , A --> A’ is an/-equivalence if there exists an i-homotopy inverse;

A and A’ are then said to be of the same/-type (A i At). A suspension
of A is an object ZA which can be embedded into a proper s.e.s. (short exact
sequence) 0 --+ A - 2: -- ZA - 0 with fi injective. Since there are enough
injectives, for each A, a suspension exists; its/-type is uniquely determined
by the/-type of A. Furthermore, to each map A - A’, a map

Y,," Y,A --+

whose i-homotopy class is uniquely determined by the i-homotopy class of, is assigned in an obvious way. Thus, we obtain a functor 2 : - de-
fined up to /-equivalence and i-homotopy. The definition of the functor
Z can be iterated as follows: 2 22n-1 for n > 1. The functors n are
introduced as composite functors (2 X Id) , X -- 9, and are deter-
mined up to natural isomorphisms. The groups I,(A, B) I(y,nA, B) are
the nth i-homotopy groups.
The concepts of p-equivalence, p-type, dual suspension 2B of B, such as the

functors II_n : X - 9 and the nth p-homotopy groups

n(A, B) II_ (A, gt’B)
are introduced dually.
In the category P of pairs, i.e., the category whose objects are maps

a A --+ A of , whose mapsf: a --a are pairs ( ,) of maps of ,such that
a’ . a, and where composition and sum are defined in terms of the corre-

In [6], the functors und II are denoted by II and II,’, respectively.
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sponding operations in , we take, as in [6], the structure P* as homotopy
structure. Since is an exact category, the class of proper s.e.s, with respect
to P* can be characterized as follows. For every map f (, q.) a -- ar,
we denote by 0 and the induced maps of the kernels and cokernels of
a, a respectively, and we shall refer to the four maps 0, 1 2 and a as
the components of f. It can be shown in a straightforward way that an
s.e.s, in Pg is a proper s.e.s, with respect to P* if and only if all components
form proper s.e.s, in . Moreover, it is easy to see that a pair X X is
injective if and only if splits, i.e., if the s.e.s. 0 Ker X Im 0 and
0 Im X Coker 0 ure splitting s.e.s., and if X and X are in-
jective. Dually, a pair v Y Y is projective if and only if v splits, and
Y and Y are projective.

It should be noted that in P we have in general not enough injectives
(and projectives) with respect to P*; therefore, we cannot introduce as
functor of two variables in P. However, we shall only consider mixed
i-homotopy functors P X P 9, the so-called "relative" i-homotopy
functors (cf. [6]), which are given as follows. To each object A of , we
choose a proper monomorphism (A) from A to an injective object A, and to
each map ’A A’ of a map () (A) (A’) of P such that. Thus, we obtain a functor P defined up to /-equivalence
and i-homotopy. The functors P are introduced as composite functors
(Z- X Id) X P 9, n 0, and are determined up to natural
isomorphisms. Clearly, we have P P(zn- X Id).
The "relative" p-homotopy functors [ "P X 9 are introduced

dually.
For any object A of and any pair ’B B in , there are exact

sequences

S.(A ) (A B) * * P.(A )(A, B)

0. ._(A, B) (A, B),
and

S*(, A) .(B, A) ,(B, A) 2=:: [,(, A)

0* ,_(B, A) -.. (B, A)

respectively called injective and projective homotopy sequences of the pair
with respect to A. The homomorphisms in S.(A, ) are defined as follows"

(i) . is the homomorphism induced by the map " B B.
(ii) For the pair&B 0 B, one identifies .(A, B) with Pn(A 5B)

then y. is the homomorphism induced by

j (o, 1.) 5B .
(iii) For the pair B’B O, one identifies ._(A, B) with
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P,(A, oB1) then 5, is the homomorphism induced by

O (1B,, o) -- oB1.
The homomorphisms in S* (/, A) are given dually.
An i-fibration relative to A is a pair f B_ -- B in :E with. the following

properties: (i) the map f has a kernel B0, called the fibre of ; (ii) there is
an injective resolution X of A such that, for every map Xn -- B where
X is an injective occurring in X, there exists a map ’Xn-- B1 with

1. For any object A and an i-fibration " B1--* B relative to A,
we obtain an exact "absolute" sequence

A
T.(A, ) --. In(A, B) * In(A, B)- I_I(A, Bo)

called injective homotopy sequence of the i-fibration relative to A. Here,. is again the homomorphism induced by the map , . is the homomorphism
induced by the canonical monomorphism from B0 to B, and is a natural
homomorphism .that we shall not describe in detail here. This result--
that for an i-fibration the groups P,(A, ) and the homomorphisms . and
b. in S.(A, ) can be replaced by the groups ,_(A, B0) and the homomor-
phisms A and .--is that part of the assertion of the so-called excision theo-
rem for i-fibrations (cf. [6, Theorem 12.3] or [4, Th!orime 5.2]) which we
shall need later on.
A p-fibration relative to A is a pair B. -+ B1 in ;E with the dual proper-

ties. The cokernel of the map is called cofibre Bo of B. For any object A
and a p-fibration " B-- BI relative to A, we have an exact "absolute"
sequence, dual to T.(A, )"

T*(,A) ----O,(B,A) _,(B,A)
h

_,_(Bo,A)

II_,_I(B, A) II_ (B, A),

called projective homotopy sequence of the p-fibration relative to A. Here,,
: is the homomorphism induced by the canonical epimorphism , from B
to B0.

Finally, we give some propositions concerning injective and projective
objects of and P with the homotopy structure and P* respectively.

PROPOSITION 2.1. An object A of is injective if and only if the identity
map 1 of A is i-homotopic to o.

Proof. Since : has enough injectives relative to , there is u proper mono-
morphism A --. 2: with 2: injective. Assume that 1 o (1 is/-homo-

In an exact category : with (additional) abeliun structure, condition (i) is re-
dundant.
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topic to o) then there exists a map , A -- A such that , 14. Thus,
A is a direct summand of A, and is therefore injective. Conversely, assume
A to be injective. Then, 1 Hi o is an immediate consequence of the defi-
nition of i-homotopy.

PROPOSITION 2.2. If every injective object of is projective, then every
injective object ofP is projective too.

Proof. This follows immediately from the characterization of the injective
pairs with respect to P* given above.

Dually, we have

PROPOSITION 2.1". An object A of is projective if and only if the identity
map 1 of A is p-homotopic to o.

PROPOSITION 2.2*. If every projective object of is injective, then every
projective object ofP is injective too.

3. Abelian structures with coinciding homotopy
Let be an exact category, and let be a homotopy structure in , such that

there are enough injectives and projectives with respect to 8. Assume that the
concepts of i-homotopy and of p-homotopy coincide. Then, if an object A
of is injective, by Proposition 2.1, the identity map 1 is i-homotopic to o,
thus also p-homotopic to o; therefore, by Proposition 2.1", A is projective.
The same argument shows that a projective object of is injective. Hence,
the following conditions are necessary for the two homotopy concepts to
coincide"

I -- P) Every injective object with respect to the homotopy structure is also a
projective object.

(P -- I) Every projective object with respect to the homotopy structure is also
an injective object.

We shall show that they are sufficient, too.

PROPOSITION 3.1. If a map o is i-homotopic to o, then (I-+ P) implies
that is p-homotopic to o.

Proof. Assume a" A--B to be i-homotopic to o (a io). There
exists a proper monomorphism " A -+ A with A injective. Since a Hi o,
there is a map A - B such that . By (I -+ P), A is projective.
Hence, for every proper epimorphism B’ --> B, there is a map 6’ A -+

such that e’, and thus a map a’ ’" A -+ B’ such that
i.e., a p o.
By duality, we have

PROPOSITION 3.1". If a map a is p-homotopic to o, then (P--+ I) implies
that a is i-homotopic to o.
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Summing up, we have

THEOREM 3.2. In an (exact) category with homotopy structure having
enough injectives and projectives, the concepts of i-homotopy and of p-homotopy
coincide if and only if the conditions (I -- P) and (P I) are satisfied.
An example of an abelian structure satisfying (I -- P) and (P -- I) which

is of particular interest to us, is the -relative structure , in the exact cate-
gory of R-modules, where R is a Frobenius K-algebra, q being the natural
embedding K R. More explicitly (cf. [6, 1.4, Example a]), let R be an as-
sociative algebra over a commutative ring K. Then, the class , consists of
those R-homomorphisms a A -- B where the kernel of a is a K-direct sum-
mand of A, and the cokernel of a a K-direct summand of B. The injectives
with respect to , are R-direct summands of R-modules of the form
Hom(R, A), where A is a K-module, and the R-module structure of
Hom(R, A) is defined by the right-R-module structure of R. The projec-
tives with respect to , are R-direct summands of R-modules of the form
R (R) A, where A is a K-module, and the R-module structure of R (R) A is
defined by that of R. There are enough injectives and projectives with
respect to 6,.
We say that R is a Frobenius K-algebra if R is K-projective and finitely K-

generated, and if there exists a right-R-isomorphism r from R into R
Hom(R, K). By this definition the group ring Z(@) of a finite group @
over the ring Z of integers is a Frobenius Z-algebra (cf. [3, 2 and 4]).
For any K-module A, consider the R-module structure of R (R)K A and

Hom(R, A), given by that of R and R respectively. We define an R-
homomorphism

a R (R) A -- Hom(R, A)
by setting

[(r (R) a)]a (ar)a

Rfor all reR aeA, and ae Hom(R, K). IfR is K-projective and
finitely K-generated, is an R-isomorphism. If R is a Frobenius K-algebra,
let r* denote the (left-) R-isomorphism" Hom(R, A) --. Hom(R, A) in-
duced by r" R -- R. Thus, for any K-module A, the composite R-homo-
morphism r is an R-isomorphism R (R)K A -- Hom(R, A). Hence,
if R is a Frobenius K-algebra, the conditions (I P) and (P-- I) hold
with respect to the structure .

Other examples of abelian structures satisfying (I-- P) and (P-- I)
are" the exact structure in the category of R-modules if R is a quasi-Frobenius
ring; the abelian structure 61 in the category of R-module complexes (cf.
[6, 1.4, Example b]).
For the remainder of this section, assume that : is an exact category with

an abelian structure such that

Then there exists a left-R-isomorphism r’ R --. R too, and vice versa.
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(i) has enough injectives and projectives with respect to 8,
(ii) the conditions I -- P) and P -- I) hold.
Then the two homotopy concepts, and thus the functors and I_I coincide.

We shall denote the single functor H_’ X -- 9 by II; in par-
ticular, we shall put (A, B) II_(A, B) H(A, B). When we consider
the higher homotopy groups n(A, B) and II_n(A, B), at first these do not
seem to coincide. However, we shall prove that there exist natural iso-
morphisms sn n --+ II_n for all n > 0; i.e., that the groups (A, B) and
II_n(A, B) are naturally isomorphic.

LEMMA 3.3. Let P be the category of pairs in with homotopy structure
P*, let (A) be a pair A --> . where is a proper monomorphism and in-
jective, and let e(B) be a pair B -- B where is a proper epimorphism and
B projective. Then, for all A, B of , we have

n(,(A), e(B)) II_(,(A), e(B)).

Proof. By Propositions 2.2 and 2.2* the conditions (I -- P) and (P -- I)
are satisfied inP with respect to P*6. As already mentioned, P generally
has not enough injectives and projectives with respect to P*. However,
the pairs ,(A) and e(B) are proper objects of P (ef. [6, 1.3]); i.e., for
these pairs, there exists a proper monomorphism to an injective pair, and a
proper epimorphism from a projective pair. Thus, the same argument as in
Proposition 3.1 shows that, if a map a" ,(A) -+ e(B) is i-homotopic to o,
it is also p-homotopic to o, and vice versa. Hence, the groups ((A), e(B))
and IJ(,(A), e(B)) coincide.

It should be noted that the family of identities

Id(,(A), e(B)) n(,(A), e(B)) - II_(,(A),
commutes with the homomorphisms induced in these homotopy groups by
all maps a" ,(A’) --> ,(A) and b e(B) --+ e(B’).
LEMMA 3.4. There exists a family of homomorphisms

s(A, B) I(A, B) -- H_(A, B)
which defines a natural isomorphism s. II ---+ II_

Proof. For the pairs (A) and e(B) of Lemma 3.3, let us consider the last
terms of the injective and projective homotopy sequences

S.(A, e (B) ) - YI(A, B) -- n(A, B) :].(A, e(B) ) P(A, e (B))
-. n(A, B),

j*(,(A) B)
S*(,(A), B) II_(, B) ---, II_(A, B) P_(e(A), B)

---. U(, B).

I.e., the family of identities Id(A, B) (A, B) --. _II(A, B) defines a natural iso-
morphism II I,I_.
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(P I) implies _B injective; thus, ill(A, _B) fi(A, _B) 0. (I-- P)
implies 2: projective; thus, II_l():, B) II_ ()2, B) 0. Since the homotopy
sequences are exact, ].(A, e(B)) andj*((A), B) are isomorphisms. Now,
by definition,

Pl(A, e(B)) YI(,(A), e(B)) and _PI(,(A), B) II_(,(A), e(B)).

Therefore,

s(A, B) j*((A), B)-o Id((A), e(B)) o].(A, e(B))

gives a family of isomorphisms 1(A, B) --+ II_I(A, B) for all A, B of .
There remains to show that the diagrams

YI(A, B) s(A, .B) _I(A, B)

YI(A’, B) s(A’,B) II_(A’, B)

YI(A, B) S.I(A, B) _(A, B)

YII(A, B’) s(A, B’) _(A, B’)

are commutative for all maps a" A’-- A and " B-- B’. This can be
done by a direct verification, or by just verifying the naturality of the homo-
morphisms ]. and j* in the injective and projective homotopy sequences
respectively.

THEOREM 3.5. The functors In and H_, coincide up to natural isomorphisms
(n=o,,...).

Proof by induction with respect to n. n O" so(A, B) Id for all A, B of. n > 0" Assume there exists a family

Sn_(A, B) In_(A, B) -- _,_I(A, B)

which defines a natural isomorphism Sn_’I,---- _-. Consider the
family s(A, B) of composite homomorphisms"

I.(A,B) I(Z’-IA, B) Sl(’n-IA’B) )II_t(X-A,B) _II(Z"-A, UB)
Id(X"-A, 2B) l(n_lA, UB) In_(A, US)

s._(A, 2B) _._(A, UB) U,,(A,B).

From the transitivity of natural transformations of functors, it then follows
that the family s.(A, B) defines a natural isomorphism s." .-. _II..
The functors . and II_. are defined only up to natural isomorphisms (see

Section 2). Thus, we denote by II. the functor . I,I_. in particular, we
put II.(A, B) In(A, B) H_.(A, B); the groups H.(A, B) are called
n homotopy groups. Note that we ncw have a situation similar to that
in topology, namely essentially only one kind of homotopy groups H.(A, B).
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but two kinds of "relative" homotopy groups Pn(A, ) and Pn(a, B) occurring
in the two dual homotopy sequences S.(A, ) and S*(a, B) respectively.

4. Extension of the homotopy sequences
Our object in this section is to show that in an exact category 3 with a

homotopy structure 8 having the properties (i) and (ii) (see Section 3),
the injective and projective homotopy sequences can be extended to com-
plete exact sequences by introducing in a natural way "negative-dimensional"
homotopy groups II_n(A, B), P_n(A, ) and P-n(a, B). For n >= 1, the
groups II_(A, B) will appear to be the groups Extn(A, B) with respect to
the abelian structure 8, more precisely, the satellites of Hom(A, B), consid-
ered as a functor of A, with respect to 8. Moreover, there are special pairs
(fibrations) for which the extended sequences become "absolute" sequences.
Let 3 be an exact category with homotopy structure 8 having enough injectives

and projectives with respect to 8. If condition (P -- I) is satisfied, we shall
show that the injective homotopy sequence of a pair can be extended. If
the dual condition (I P) is satisfied, we obtain a dual extension of the
projective homotopy sequence.

LEMMA 4.1. If condition (P --+ I) holds, the following properties are valid"

(a) if A A’, then A .i A’;
222n+1A for all n > 0;(b) aA

(e) every pair " B--. B, where is a proper monomorphism, is a p-
fibration (relative o each A ).

A’ (A , A’) if there are maps A -+ A’Proof. (a) Recall that A
and " A’--+A such that 1 and 1, ( 1 and

1,). Thus, (a) is a direct consequence of Proposition 3.1". (b) It
is sufficient to prove A 2:2A. In order to do this, consider a dual sus-
pension fA of A. By definition, there is a proper s.e.s.

O ---. A --, A_ --+ A ---,0

with _A projective. (P --. I) implies _At inieetive, such that A is a suspension
of 2A. Since the /-type of a suspension 2:X is determined by X, we have
A 2:fA for any suspension 2:fA of fA. (e) Since (P--+ I) says that
every proieetive object is injeetive, (e) is a trivial consequence of the defini-
tion of an inieetive obieet.

LEMMA 4.1". If condition (I -- P) holds, the dual properties are valid.

Assume now condition (P --. I) to be satisfied. Then, by Lemma 4.1 (a),
for all m >= 0, the funetorS_

(tl X Id)", X X--* , and

P--m--- 1(’mq-1 X Id)" N: X PN:-- ,
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where m is the m-fold dual suspension functor , are well-determined
up to natural isomorphisms. The groups

_(A, B) (A, B) nd P_(A, ) P(+A,
are called "negative-dimensional" injective homotopy groups.

Let us consider the exact injective homotopy sequence of the pair
/ B1 -- B2 and of a dual suspension 2A of A"

,(mA, ) ""-> In(mA, BI) --*--/ In(mA, B2) ]*/ Pn(mA, )

n-( A, B) YI(e’A, B) IL(e A, B)

]** P (fl d, n(a A,

By Lemma 4.1 (b), we have up to natural isomorphisms,

for n _>_ m" (mA, B) YI(Xne"A, B) YI(Z-A, B) In_m(A, B),
forn < m" YI,(’A,B) YI(’A,B) YI(’-nA, B) YI_(,_n)(A,B),
for n > m: Pn(2A, ) Pl(n-ImA, ) P(Z(-)-IA,/) Pn_(A,/),
for n m: P(A,/) Pt(2:-IA, ) Pt(A, ) P0(A, ),
for n < m" P(A, ) P(2-12A, ) P(2-+A, ) P--(--n)(A,/).

Thus, the exact sequence S.(’A, ) can be written as follows"

S’.(A,) ---. YI(A, Bt) YI,(A, B) P(A, ) __0. YI_I(A,BI)--->

(A, Bt) t.; (A, B) ]* P0(A, ) 0.. fi_(A, B)-- _(A, B);

and this can be done for arbitrary integers m. In other words, we have an
extension of S.(A, ) to a complete exact sequence of positive-, 0- and
negative-dimensional homotopy groups.

If the pair/’B-- B is an i-fibration relative to 2A, we can replace
S.(’A, ) by an "absolute" exact sequence. Thus, we obtain the following
extended exact "absolute" sequence"

T.(A, ) ---. YI,(A, B) * YI(A B)
a

YI(A, Bo)

* YI_I(A B) YI(A, B) * A
YI(A, B2) YI_I(A, Bo)

* YI_(A, B) I_,(A, B),

where B0 is the fibre of , and the canonical m0nomorphism from B0 to B.
For m >- 1, the functor

_
: X -- will now be shown to coincide
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with the functor Extra: X -- 9, defined as n th satellite of the functor
Horn, Hom being considered as functor of the contravariant variable, and the
satellites being defined with respect to the abelian structure (i.e., instead of ar-
bitrary s.e.s., only proper s.e.s, are considered in the definition of the satel-
lites).

Extl: X 3-- 9 is defined by means of the groups

Exti(A, B) S Horn(A, B) Hom(12A, B)/* Hom(_A, B)

for a proper s.e.s. 0-+ 2A -+ _A- A --. O, where d is projective. Since

by (P -- I), is injective,

_I(A, B) (2A, B) Hom(A, B)/* Hom(_A, B) Extl(A, B).

Moreover, it is easy to see that

_(, B) Ext(, B), and _I(A, ) Ext’(A, f)

for all maps a and of . Hence,

_
Ext up to natural monomor-

phisms. For m > 1,

Extm= S Ext’n-i- Ext-i(12 X Id) Ext(- X Id).

Therefore,- (2 X Id) :(- X Id) Ext:(2m- X Id) Ext.
We do not intend to show here that the functor Extm, defined as satellite

of Horn with respect to the contravariant variable, coincides with the functor
Ext, defined as satellite of Hom with respect to the covariant variable; also,
we will not compare it to Ext defined as derived functor of tIom. How-
ever, we shall use from now on the notation Ext for _m, always keeping
in mind its definition as satellite.

THEOREM 4.2. Let 0 Bo - B B be an exact sequence, and an
i-fibration relative to ’A. If condition (P -- I) holds, the injective homotopy
sequence of can be extended to an exact sequence

E.(A, ) -- I(A, Bo) *; I,(A, B) I(A, B)
/

I,_(A, Bo) I(A B) *,I(A,B)

Extl(A, B0) -:*; Extl(A, B1) --* -- Ext-l(A, B)

* Ext(A B)ZX * Ext(A B1)--Ext’(A, Bo)

Note that the proper monomorphisms with respect to define an h.f. class in the
sense of Buchsbaum, and our functors Extm could be compared with the functors 9-Ext
introduced in [1].
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where Ext is defined as satellite of Horn, considered as functor of the contra-
variant variable, with respect to the abelian structure 6.

By duality, we have

THEOREM 4.2*. Let B2 B1 -- Bo--> 0 be an exact sequence, and a
p-fibration relative to ,A. If condition (I P) holds, then the projective
homotopy sequence of B can be extended to an exact sequence

, ,
E*(,A) ---->II_,,(So A) 7. 1J_(B A)- II_(B2 A)

h, 1J,_l(Bo, A) -- --. U(B, A) IJ_ (B,, A)
,

A Ext(Bo, A) _T_ Ext(B, A) -- -+ Ext-(S, A)
,

zX A ’ Ext (B, A -) Ext(B A--- Ext’(B.,
where Ext is defined as satellite of Hom, considered as functor of the covariant
variable, with respect to the abelian structure 6.

Assume now both conditions (P --+ I) and (I -+ P) to be satisfied. Then,
we can extend each of the two dual homotopy sequences. Let us consider
the extended sequence E.(A, ) of an i-fibration f, which can be obtained if
(P -- I) holds. Since (I -- P) is satisfied too, by Lemma 4.1" (c), every
proper epimorphism e is an i-fibration relative to tA for every A and m.
Thus, we have

PROPOSITION 4.3. Let 0 ---> Bo B B2 --* 0 be a proper s.e.s.
(P -- I) and (I -+ P) hold, then we have the complete exact sequence

E,(A, e) ----> II(A, Bo) II(A, B).._e,_ II(A, B)

A. IIn_(A, Bo) ---> lI(A, B1) II(A, B2)= A, Ext’(A, Bo)

-x*; Ext’(A, B)-- -- Ext-’(A, B) _fiA_ Ext,(A, Bo)

*; Ext’(A, B) e, Ext’(A, B) -- ....
We omit the proposition dual to 4.3.
Remark. In the category of R-modules with being the usual exact struc-

ture, E.(A, ) is precisely the derived sequence of the functor Horn. For,
by using the notation of [2], it can be shown that the assumptions (I --+ P)
and (P --+ I) imply n+ in Hom for n > 0, II1 /-0 Horn, II /0 Horn
(ct. [2, Chapter V, 10]). This indicates another possible approach to the re-
sults of this paper.
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5. The exact homotopy-cohomology sequence
Let K be a commutative ring, R an associative algebra over K, which is K-

projective. From now on, we shall consider the exact category 9 of R-
modules with the -relative structure as homotopy structure, being the
natural embedding K -- R (cf. Section 3). In contrast to the exact struc-
ture of , the abelian structure will henceforth be referred to as weak
structure, and the corresponding homotopy, as wealc homotopy. Moreover,
the iniective and proiective obiects, the suspensions, and the fibrations with
respect to will be called weaEly injective and weaEly projective obiects, wealc
suspensions and weaE fibrations. The weak homotopy functors will be de-
noted by (’) and II_(’), and the extension functors with respect to the
weak structure, by Ext. as opposed to the "usual" functors , n_n and
Ext in 9 (cf. [2] and [6]).
We shall now apply the results of the preceding sections to the weak

homotopy structure in 9. Preliminarily, we shall compare the groups
Ext,)(Q, B) with the groups Ext,(Q, B) for a special choice of the R-
module Q.

LEMMA 5.1. If Q is a K-projective R-module, then there exists an s.e.s, of
R-modules 0 Q -- Y -. Q -- 0 which splits over K, where Y is R-projec-
tive, and Q, K-projective.

Proof. Set Y R (R)K Q, take as R-module structure the one induced by
that of R, and define an R-epimorphism s Y -- Q by setting s(r (R) q) rq
for all r e R, q e Q. Since Q is K-projective, Y is R-projective. Put 2Q
Ker s. Then, 0- tQ-+ Y-- Q--+ 0 is an s.e.s, which splits over K; in
particular, gtQ is a K-direct summand of Y. Since R and Q are K-projective,
Y R (R)K Q is K-projective; therefore, tQ is also K-projective.

PROPOSITION 5.2.
phisms

If Q is a K-projective R-module, then there are isomor-

t(B) Ext(,)(Q, B) --+ Ext,(Q, B),

natural with respect to the covariant variable.

Proof. By Lemma 5.1, we have an s.e.s. 0 - tQ -- Y - Q - 0 which
can be used to define ExtR,) as well as Ext,. Hence, the proposition is
valid for n 1. To prove it for n > 1, recall that

n--1Ext(.,) Ext(.,) (2w X Id)

for a weak dual suspension -1tw and that Ext. Ext(tr-I Id) for a
dual suspension 2- with respect to the exact structure. Now Lemma 5.1
implies that for a K-projective object Q, there is an object which is at the

2w Q and an ordinary dual suspensionsame time a weak dual suspension -t-Q of Q. Hence, the proposition follows for n > 1.
Assume now that (P -+ I) holds with respect to the weak structure of i).
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By Theorem 4.2, for every exact sequence 0-- Bo-- B1- B2, where /
is a weak i-fibration relative to a weak dual suspension 2mQ of Q, we then
have an exact sequence E.(Q, ), consisting of weak homotopy groups
(.K)(Q, B) and of groups Ext,)(Q, B) (i 0, 1, 2). Proposition
5.2 says now that for a K-projective R-module Q, the groups Ext(.)(Q, B)
can be replaced by the "ordinary" groups Ext,(Q, B). If we assume that
also condition (I--+ P) holds, we know a special class of weak i-fibrations
relative to any weak suspension 2mQ, namely the proper epimorphisms with
respect to the weak structure (cf. Proposition 4.3). We shall show that,
under the assumption that Q is K-projective, every R-epimorphism (not
necessarily being proper) is a weak i-fibration relative to a properly-chosen
weak suspension 2Q for every m.

LEMMA 5.3. If Q is a K-projective R-module, and if condition (I-- P)
holds with respect to the weatc structure, then there exists an s.e.s.

which splits over K, where X is at the same time weakly injective and R-pro-
jective, and where zQ is K-projective.

Proof. Set X Hom(R, Q), take as R-module structure the one induced
by the right-R-module structure of R, and define an R-monomorphism
: Q--+ X by setting [(q)](r)= rq for all r e R, q e Q. Clearly,
HomK(R, Q) is weakly injective. Put 2;X Coker . Then,

is an s.e.s, which splits over K. Since Q and R are K-projective,
X Hom(R, Q), and therefore 2:Q, are K-projective. By (I-- P), X
is weakly projective, and thus an R-direct summand of R (R) X. Since
X is K-projective, R (R) X is R-projective, and thus X is R-projective too.

PROPOSITION 5.4. If Q is a K-projective R-module, and if condition (I -- P)
holds with respect to the weak structure, then for any m O, there exists a weal
dual suspension ’Q of Q such that every R-epimorphism is a weak i-fibration
relative to ’Q.

Proof. By Lemma 5.1, there is a weak dual suspension 2Q of Q which is
K-projective. By Lemma 5.3, there exists a proper injective resolution of
tmQ with respect to the weak structure (i.e., an exact sequence

splitting over K, where the X are weakly injective), such that the X are
R-projective modules. If we recall the definition of an R-projective module,
the proposition follows immediately.

Even R-injective.
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The functor Ext in the category i}E of R-modules can be used to introduce
the cohomology groups of various algebraic structures (e.g., associative alge-
bras, groups). There is a unifying concept of "algebraic" cohomology theory,
namely the cohomology theory of augmented rings, of which the usual theories
are special instances. Let R be an augmented ring, i.e., a ring R with aug-
mentation module Q (cf. [2, Chapter VIII]). For an arbitrary R-module B,
the groups Ext,(Q, B) are called nth cohomology groups of R with coefficients
in B. For these groups, we shall use the notation Hn(R; B).

Let us consider the category E of R-modules, where R is an augmented ring
with augmentation module Q. Assume the following conditions to be satisfied:

(i) R is an associative algebra over a commutative ring K,
(ii) R and Q are K-projective.

Then, by Proposition 5.2, we have, up to natural isomorphisms,

Ha(R; B) Ext,(Q, B) Ext(.)(Q, B), n > 0.

Assume that condition (P--, I) holds with respect to the weak structure.
If we apply Theorem 4.2 to this situation, for every exact sequence

O --> B -, B1 fl B
where is a weak i-fibration relative to a weak dual suspension mQ of Q,
we obtain an exact sequence E.(Q, ) consisting of weak injective homotopy
groups and cohomology groups. If we assume that also (I--* P) holds,
by the results of Section 3, we have only one kind of weak homotopy groups,
and by Proposition 5.4, all R-epimorphisms are weak i-fibrations relative to a
properly-chosen weak dual suspension ffQ of Q. Summing up, we have

THEOREM 5.5. Let R be an augmented ring with augmentation module Q,

satisfying the conditions (i) and (ii), and let 0 -- Bo - BI -- B be an exact
sequence of R-modules. If the conditions (P --. I) and (I --> P) hold with
respect to the weak structure of 9ER, and if

(1) is a weak i-fibration relative to a weak dual suspension ’Q of Q for
every m O, or

(2) is an R-epimorphism,
then we have a complete exact sequence

E.(Q, ) -- II(’K)(Q, B0) * IIR’K)(Q, B) *) II(’K)(Q, B.)
A II(R,K- (Q, Bo) --* -- U("r)(Q, B) *; II("K)(Q, B)
A H Bo) * H H’(R;Bo)

*- H’(R; B) f* H’(R; B) ---, ....
The complete exact sequence E.(Q, [) will be referred to as homotopy-

cohomology sequence of R associated with the fibration B, or with the s.e.s.
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O"-*Bo x- B1 B2 "-* O.

Remarks. 1. Under the assumption that only condition (P -o I) holds,
but by demanding in case (2) that B be proper, we obtain an analogous com-
plete exact sequence now containing injective homotopy groups.

2. In case (2), the "cohomology part" is precisely the cohomology se-
quence of the augmented ring R; A can be shown to coincide with the "usual"
connecting homomorphism.

6. Applications
(a) F is a Frobenius K-algebra (cf. Section 3)

Let us take as augmented ring R the enveloping algebra F (R) F* of F,
and as augmentation module F, being considered as F (R) F*-module, or,
which is the same, as two-sided F-module. For any two-sided F-module B,
the nth cohomology groups Hn(R; B) of R are then the nth Hochschild co-
homology groups Hn(F, B) of the algebra F (cf. [2, Chapter IX]). Since F
is a Frobenius K-algebra, so is the inverse ring F*. Moreover, the envelop-
ing algebra F (R). F* is still Frobenius (Proposition 2 of [3]). Thus, condi-
tions (P -- I) and (I --* P) hold with respect to the weak structure of the
category of R-modules or two-sided F-modules. In analogy with the
definition of the Hochschild cohomology groups, we define the weak ho-
motopy groups of a Frobenius algebra as follows.

DEFINITION. The nth wealc homotopy groups r,(F, B) of the Frobenius K-
algebra F with coefficients in a two-sided F-module B are the homotopy groups
II((R)*’) (F, B) in the category of two-sided F-modules with respect to the
weak homotopy structure.

F*By definition, F (R) and F are K-projective modules. Thus Theorem
5.5 of the preceding section can be formulated as follows:

Let 0----> Bo x_ B1 B2 be an exact sequence of two-sided F-modules.
F is a Frobenius K-algebra, and if

(1) is a weak i-fibration relative to a weak dual suspension mF of F for
every m > O, or

(2) is an epimorphism,
then we have an exact homotopy-cohomology sequence

z,(F, Bo) * ,rn(F, B1) rn(F, B)

A) rn-l(F, B0) -- -- r(F, B1) ** A
r(F, B) HI(F, Bo)

* H(F, B) -- ---> H’-(F, B.) __A_. H(F, Bo)

x.) H(F, Bx) *-; H’(F, B) ---* ....
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(b) @ is a finite group (multiplicatively written)

Let us take as augmented ring R the group algebra Z(@) of a group @ over
the ring Z of integers, and as augmentation module the additive group I
of Z on which @ operates trivially. For any @-module B, the nh cohomology
groups Hn(R; B) of R are then the nt cohomology groups Hn((R); B) of the
group @ (cf. [2, Chapter X]). If the group @ is finite, Z(@) is a Frobenius
Z-algebra (in the sense of Section 3). Thus, conditions (P - I) and (I -- P)
hold with respect to the weak structure of the category 9T of Z(@)-modules
or @-modules.

DEFINITION. The nt weat homotopy groups rn(@; B) of the finite group
with coefficients in a @-module B are the homotopy groups II()’Z) (I, B)
in the category of @-modules with respect to the weak structure, I being the
additive group of integers with trivial @-module structure.

The group algebra Z(@) and I are free modules over Z.
5.5 reads:

Thus, Theorem

Let 0 -+ Bo - B1 B. be an exact sequence of @-modules. If @ is a finite
group, and if

(1) is a weat i-fibration relative to a weat dual suspension ’I of I for
every m O, or

(2) is an epimorphism,
then we have an exact homotopyocohomology sequence

- (@; B0) X*) r(@; B1) 7rn((; B2)

(6.2)
r,_(@; B0) -- ""-- r(@; B) *, r(@; B2) H(@; B0)

u % H(@; B1) -- --’-> Hm-l(@; B.) A_ Hm(@; B0)

(c) An interpretation of the weatc homotopy groups 7I’n ((, B) of a finite group @

For an integral index n, let/n(@; B) denote the cohomology (homology)
groups of a finite group @ introduced by J. Tate. For a @-module B, these
are defined as follows:

n((; B) Hn(i); B), n > 0 (usual cohomology groups),

/n(@; B) H_n_(@; B), n < --1 (usual homology group),

/-1(@; B) kernel of N*, H(@; B) cokernel of N*,
where N* is the homomorphismB --+ B induced by the norm homomorphism
N B -- B (cf. [2, Chapter XII]).

Let 0 B0 -+ B -+ B -+ 0 be an exact sequence of (R)-modules. Then,
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one obtains an exact sequence

n--l((; B.) -- n((; B0) --+ n((; B1) --* n((; B.)
(6.3)

/n+l--* (@; B0) --*

called the complete derived sequence of the group @. The positive-dimensional
groups of (6.3) coincide by definition with those of (6.2). We shall show
that the negative-dimensional groups of (6.3) are essentially the weak ho-
motopy groups of (6.1).

LEMMA 6.4. For a weak dual suspension B of a @-module B, we have

/_n-(@; B) Bn(@; 2B),

up to natural isomorphisms.

Proof. This is a direct consequence of the exactness of (6.3) and of the
following known facts" Hn((; B) 0 if B is weakly injective, n > 0;
Hn(@; B) 0 if B is weakly projective, n > 0, (see [2, Chapter X, Corol-

N* Blary 8.3]); B- is an isomorphism if B is weakly projective (see
[2, Chapter XII, Proposition 1.3]).
By Lemma 6.4, it follows immediately that, for a weak dual suspension

2mB of B, /-n(@; B) -----/1 (@; 2nB) H (@; 2nB) (n >= 0). Besides,
we have by definition n(@; B) -- r(@; 2B) (n => 0), and, by Proposition
5.2, r(@; B) Hi(@; 2B). Therefore,/--(n-)(@; B) __-- rn(@; B) (n => 0).
Thus, we obtain the following interpretation of the nth weak homotopy
groups rn(@; B):

rn(@; B)

_
Un-l((; B), n > 1,

rl(@; B) kernel of N*,
(@; B) cokernel of N*.

Moreover, the above isomorphisms are all natural. Hence, the homotopy-
cohomology sequence (6.2) and the complete derived sequence (6.3) of the
group @ are essentially the same sequences.
An analogous interpretation can be obtained for a Frobenius K-algebra

which is free over K. The nth weak homotopy groups rn(F, B) of a Frobe-
nius K-algebra F are then the modified homology groups H_I(F, B) of F in
the sense of Nakayama, and the sequence (6.1) coincides with the correspond-
ing complete homology-cohomology sequence (cf. [7]). One obtains this
result by exactly the same procedure as above, which we will not repeat here.
Instead of the propositions used here in that context and taken from [2], one
has of course to use the corresponding ones for Frobenius algebras, which can
be found in [7].
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