ON THE DECOMPOSITION THEORY FOR KRULL VALUATIONS

BY P. RIBENBOIM

Let K be a field endowed with a Krull valuation $v, L \mid K$ a finite Galoisian extension, $\mathcal{V} = \{w = w_1, w_2, \cdots, w_o\}$ the set of distinct prolongations of v to L. We define and study the decomposition field and decomposition group associated with a *distinguished set* \mathcal{E} of valuations, $\mathcal{E} \subseteq \mathcal{V}$.

Among other results, we obtain a new proof that the value group w(Z) and the residue-class field Z/w of the decomposition field Z of w in $L \mid K$ are respectively the same as those of the ground field K: w(Z) = v(K), Z/w = K/v; cf. [1], [4, pp. 70 ff.].

Finally, the theory is applied to define the decomposition field of a prolongation of the valuation v to a finite extension of K, which may be neither normal nor separable.

An example is given to show that the results indicated cannot be improved.

1. Known results and a technical lemma

Let w_1 , w_2 be valuations of a field L, and x_1 , x_2 nonzero elements of L. We say that the pair (w_1, x_1) is *compatible* with the pair (w_2, x_2) in case

$$(w_1 \wedge w_2)(x_1) = (w_1 \wedge w_2)(x_2),$$

where $w_1 \wedge w_2$ denotes the greatest lower bound of w_1 , w_2 in the ordered set of valuations of L (cf. [4, p. 43] or [3]).

This relation is transitive: If (w_1, x_1) is compatible with (w_2, x_2) , and if (w_2, x_2) is compatible with (w_3, x_3) , let us consider $w_1 \wedge w_2$ and $w_2 \wedge w_3$. Since both valuations are coarser than w_2 , one is coarser than the other, say $w_1 \wedge w_2 \geq w_2 \wedge w_3$; hence $w_1 \wedge w_3 = w_2 \wedge w_3$. Thus, if either $(w_1 \wedge w_2)(y) = 0$ or $(w_2 \wedge w_3)(y) = 0$, we have $(w_1 \wedge w_3)(y) = 0$. This implies that

$$(w_1 \wedge w_3)(x_1/x_3) = (w_1 \wedge w_3)(x_1/x_2) + (w_1 \wedge w_3)(x_2/x_3) = 0,$$

showing that (w_1, x_1) is compatible with (w_3, x_3) .

More generally, the set $\{(w_1, x_1), (w_2, x_2), \dots, (w_g, x_g)\}$ is said to be *compatible* when (w_i, x_i) is compatible with (w_j, x_j) , for any $i \neq j$.

The following theorems will be used (cf. [3]):

Approximation Theorem. If w_1, \dots, w_g are pairwise incomparable valuations of L, if $x_1, \dots, x_g \in L$ are such that

$$\{(w_1, x_1), (w_2, x_2), \cdots, (w_g, x_g)\}$$

Received July 18, 1961; received in revised form January 4, 1962.

is compatible, then there exists $x \in L$ such that

$$w_i(x) = w_i(x_i)$$
 for every $i = 1, \dots, g$.

Strong Approximation Theorem. Let w_1, \dots, w_g be pairwise incomparable valuations of L, let $x_1, \dots, x_g \in L$ be such that $\{(w_1, x_1), \dots, (w_g, x_g)\}$ is compatible, and let $b_1, \dots, b_g \in L$. Then, in order that there exist an element $x \in L$ such that

$$w_i(x - b_i) = w_i(x_i)$$
 for every $i = 1, \dots, g$,

it is necessary and sufficient that the following condition hold:

If $w_i(b_i - b_j) < w_i(x_i)$, for indices $i \neq j$, then

$$(w_i \wedge w_j)(x_i) = (w_i \wedge w_j)(b_i - b_j).$$

The following technical result will be used in the proof of Theorem 2:

LEMMA 1. Let $L \mid K$ be an algebraic extension, v a valuation of K, and w_1, \dots, w_g a set of distinct prolongations of v to L. Given an element $x_1 \in L$, $x_1 \neq 0$, there exist elements $x_2, \dots, x_g \in L$ such that $\{(w_1, x_1), \dots, (w_g, x_g)\}$ is compatible and

$$w_1(x_1) < w_i(x_i)$$
 for every $i = 2, \dots, g$.

Proof. By the transitivity property of the compatibility relation, it is sufficient to consider the case where g = 2.

If $w_1(x_1) < w_2(x_1)$, we take $x_2 = x_1$.

If $w_1(x_1) = w_2(x_1)$, we take $x_2 = x_1 y$, with $(w_1 \wedge w_2)(y) = 0$, $w_2(y) > 0$, observing that such an element $y \in L$ exists, since $w_1 \wedge w_2 \neq w_2$.

If $w_2(x_1) < w_1(x_1)$, let m be an integer such that $m \cdot w_1(L) \subseteq v(K)$, $m \cdot w_2(L) \subseteq v(K)$; hence, there exist elements y_1 , $y_2 \in K$ such that $m \cdot w_1(x_1) = v(y_1)$, $m \cdot w_2(x_1) = v(y_2)$, and hence $v(y_2) < v(y_1)$. Taking $x_2 = x_1 \cdot (y_1/y_2)^2$, we have

$$(w_1 \land w_2)(y_2) = m \cdot (w_1 \land w_2)(x_1) = (w_1 \land w_2)(y_1);$$

hence $(w_1 \wedge w_2)(x_1) = (w_1 \wedge w_2)(x_2)$, so (w_1, x_1) is compatible with (w_2, x_2) . Finally,

$$w_2(x_2) = w_2(x_1) + 2 \cdot [v(y_1) - v(y_2)] > w_2(x_1) + (1/m)[v(y_1) - v(y_2)]$$

= $w_2(x_1) + w_1(x_1) - w_2(x_1) = w_1(x_1)$.

2. New results

Let $L \mid K$ be a finite Galoisian extension, $\mathcal{K} = \text{Gal}(L \mid K)$; let v be a valuation of K, and \mathcal{E} a nonempty set of prolongations of v to L.

¹ Since the value groups of the valuations w_1 , \cdots , w_0 may be considered as subgroups of the divisible group generated by v(K), we may compare the values $w_1(x_1)$, $w_i(x_i)$.

The set

$$\mathcal{Z}_{L|K}(\mathcal{E}) = \mathcal{Z}(\mathcal{E}) = \{ \sigma \in \mathcal{K} \mid w \circ \sigma \in \mathcal{E} \text{ for every } w \in \mathcal{E} \}$$

is clearly a subgroup of \mathcal{K} , called the decomposition group of the set \mathcal{E} in $L \mid K$. The field of invariants of $Z(\mathcal{E})$ is denoted by $Z_{L|K}(\mathcal{E}) = Z(\mathcal{E})$, and it is called the decomposition field of the set \mathcal{E} in $L \mid K$.

The special case where \mathcal{E} is reduced to only one prolongation w of v is already well known; corresponding notations $\mathcal{Z}(w)$, Z(w) will be used.

A nonempty set \mathcal{E} of valuations of L, prolongations of the valuation v of K, is called a *distinguished set* whenever there exists an intermediate field F, $K \subseteq F \subseteq L$, such that

- (1) all the valuations $w \in \mathcal{E}$ have the same restriction w^F to F;
- (2) ε is the set of all the prolongations of w^{F} to L.

Trivial distinguished sets are v (the set of all the prolongations of v to L) and each set $\{w\}$, where w is any prolongation of v to L.

In general, there may exist sets & which are not distinguished, because

If \mathcal{E} is a distinguished set, then the number of elements in \mathcal{E} divides the degree [L:K] (a more precise assertion will be made later).

Indeed, if \mathcal{E} is a distinguished set of valuations of L, if F is a field such that \mathcal{E} is the set of all prolongations to L of some valuation u of F, then $[L:F] = e \cdot f \cdot t \cdot \chi^q$ (cf. [4, p. 78]), where

e is the ramification index of any $w \in \mathcal{E}$ in $L \mid F$,

f is the inertial degree of any $w \in \mathcal{E}$ in $L \mid F$,

t is the number of valuations in ε ,

 χ is the characteristic exponent of the residue-class field K/v, $q \geq 0$.

Hence, t divides $[L:K] = [L:F] \cdot [F:K]$.

Theorem 1. Let \mathcal{E} be a nonempty set of prolongations of v to L.

- (a) If $w \in \mathbb{U}$, $w \notin \mathbb{E}$, then the restriction of w to $Z(\mathbb{E})$ is distinct from the restriction to $Z(\mathbb{E})$ of any valuation in \mathbb{E} .
 - (b) $Z(\mathcal{E})$ is the smallest intermediate field with property (a).
- (c) If, moreover, \mathcal{E} is a distinguished set, then all the valuations in \mathcal{E} have the same restriction to $Z(\mathcal{E})$.
- *Proof.* (a) If $w \in \mathcal{V}$ has the same restriction to $Z(\mathcal{E})$ as a valuation $w' \in \mathcal{E}$, then w, w' are conjugate valuations in the extension $L \mid Z(\mathcal{E})$, having Galois group $Z(\mathcal{E})$; so there exists $\sigma \in Z(\mathcal{E})$ such that $w = w' \circ \sigma \in \mathcal{E}$.
- (b) Let F be a field, $K \subseteq F \subseteq L$, $\mathfrak{F} = \operatorname{Gal}(L \mid F)$, and assume that F satisfies property (a) of $Z(\mathfrak{E})$; we want to show that $F \supseteq Z(\mathfrak{E})$, or equivalently, $\mathfrak{F} \subseteq Z(\mathfrak{E})$. Let $\sigma \in \mathfrak{F}$, $w \in \mathfrak{E}$; then $w \circ \sigma$ is a valuation of L having the same restriction to F as w; by property (a) of F, we must have $w \circ \sigma \in \mathfrak{E}$. This shows that $\sigma \in Z(\mathfrak{E})$, and hence $\mathfrak{F} \subseteq Z(\mathfrak{E})$.
- (c) There exists an intermediate field F such that \mathcal{E} is the set of all the prolongations to L of a valuation of F. Hence, F satisfies property (a) above;

by (b), $F \supseteq Z(\mathcal{E})$; hence all the valuations in \mathcal{E} have the same restriction to $Z(\mathcal{E})$.

THEOREM 2. (a) If ε is any nonempty set of prolongations of v to L, then, for every $w \in \varepsilon$, $(w(Z(\varepsilon)):v(K))$ divides

$$(\mathbf{Z}(w):\mathbf{Z}(\mathcal{E}) \cap \mathbf{Z}(w)) = [Z(\mathcal{E}) \cdot Z(w):Z(w)];$$

in particular, if $\mathcal{E} = \{w\}$, then w(Z(w)) = v(K).

(b) Z(w)/w = K/v for every prolongation w of v to L.

Proof. (a) We may assume that $Z(\mathcal{E}) \neq K$. Let us denote $H = Z(\mathcal{E}) \cdot Z(w)$, $\mathfrak{R} = \operatorname{Gal}(L \mid H) = Z(\mathcal{E}) \cap Z(w)$, $m = (Z(w) : \mathfrak{R}) = [H : Z(w)]$.

To show that $(w(Z(\mathcal{E})):v(K))$ divides m, it is sufficient to establish that if $\alpha \in w(Z(\mathcal{E}))$, then $m\alpha \in v(K)$. Indeed, this implies that the totally ordered abelian group $w(Z(\mathcal{E})) \subseteq (1/m)v(K)$, so it must be of type (1/m')v(K), where m' divides m.

Let $\alpha \in w(Z(\mathcal{E})) \subseteq w(H)$. Denote by $u_1 = w^H$ the restriction of w to H; u_1 is not the only prolongation of v to H, for otherwise $\mathcal{E} = \mathcal{V}$ by Theorem 1 (a), and $Z(\mathcal{E}) = K$ by Theorem 1 (b).

Let u_2 , \cdots , u_s be the other valuations of H extending v. If $x_1 \in H$ is such that $\alpha = u_1(x_1)$, by Lemma 1, there exist x_2 , \cdots , $x_s \in H$ such that

$$\{(u_1, x_1), \cdots, (u_s, x_s)\}\$$

is compatible and $u_1(x_1) < u_i(x_i)$ for every $i = 2, \dots, s$. As the valuations u_1, u_2, \dots, u_s are pairwise incomparable (since they are prolongations of v), by the Approximation Theorem there exists $c \in H$ such that $u_i(c) = u_i(x_i)$ for every $i = 1, 2, \dots, s$.

Let

$$b = N_{H|Z(w)}(c) = \prod_{\sigma} \sigma(c) \epsilon Z(w)$$

(where σ runs through a set of representatives of right cosets of $\mathcal{Z}(w)$). We observe that for every such σ we have $w \circ \sigma = w$; on the other hand, their number is $m = (\mathcal{Z}(w) : \mathcal{Z}(w))$. Then

$$w(b) = \sum_{\sigma} w(\sigma(c)) = \sum_{\sigma} w(c) = m\alpha.$$

Let now

$$a \,=\, \mathrm{Tr}_{Z(w)|K}(b) \,=\, \sum_{\tau} \tau(b) \,\, \epsilon \, K$$

(where τ runs through a set of representatives of right cosets of $\mathbb{Z}(w)$ in \mathfrak{K}); we have $v(a) = w(a) \ge \min_{\tau} \{w \circ \tau(b)\}$, and we want to compute the exact value of a.

If $\tau \in \mathcal{Z}(w)$, then $w \circ \tau = w$, and hence $w(\tau(b)) = w(b) = m\alpha$.

If $\tau \notin \mathbb{Z}(w)$, then $\tau \sigma \notin \mathbb{Z}(w)$ (for each $\sigma \in \mathbb{Z}(w)$). Hence $(w \circ \tau \sigma)^H \neq w^H$, since otherwise the valuations $w \circ \tau \sigma$, w would be conjugate in the extension $L \mid H$, and thus there would exist $\varphi \in \mathfrak{H}$ such that $w \circ \tau \sigma = w \circ \varphi$, $\tau \sigma \varphi^{-1} \in \mathbb{Z}(w)$

and $\tau \sigma \in \mathbb{Z}(w) \cdot \mathfrak{R} = \mathbb{Z}(w)$, a contradiction. It follows that $w \circ \tau \sigma(c) = u_i(c) = u_i(x_i) > \alpha$, for some $u_i \neq u_1$.

It follows that if $\tau \notin \mathcal{Z}(w)$, then

$$w \circ \tau(b) = w \circ \tau(\prod_{\sigma} \sigma(c)) = \sum_{\sigma} w \circ \tau \sigma(c) > m\alpha.$$

We conclude that there exists precisely one τ such that $w \circ \tau(b) = m\alpha$ is the minimum possible. Hence, $v(a) = w(a) = \min_{\tau} \{w \circ \tau(b)\} = m\alpha$, so $m\alpha \in v(K)$.

(b) We know that Z(w)/w is an extension of K/v (after a canonical identification). We must show that if $b \in A_w \cap Z(w)$ (valuation ring of the restriction of w to Z(w)) there exists $a \in A$ (valuation ring of v) such that $b \equiv a \pmod{P_w \cap Z(w)}$ (prime ideal of the restriction of w to Z(w)).

We may assume $b \neq 0$ and $Z(w) \neq K$.

Let u_1 be the restriction of w to Z(w). u_1 is not the only prolongation of v to Z(w), for otherwise v has only one prolongation to L, by Theorem 1 (a) applied to $\mathcal{E} = \{W\}$; then Z(w) = K.

Let u_2, \dots, u_s be the other prolongations of v to Z(w). We want to apply the Strong Approximation Theorem.

Let j be an index such that $u_1 > u_1 \land u_j \ge u_1 \land u_i$, for every $i = 2, \dots, s$; hence, there exists an element $x_1 \in Z(w)$ such that $u_1(x_1) > 0$, but

$$(u_1 \wedge u_i)(x_1) = (u_1 \wedge u_i)(x_1) = 0$$

for every $i = 2, \dots, s$.

By Lemma 1, there exist elements $x_2, \dots, x_s \in Z(w)$ such that

$$\{(u_1, x_1), \cdots, (u_s, x_s)\}$$

is compatible and $0 < u_1(x_1) < u_i(x_i)$ for every $i = 2, \dots, s$; hence $(u_i \wedge u_1)(x_i) = (u_i \wedge u_1)(x_1) = 0$. Considering the elements $b, 1, \dots, 1$, we now verify the condition of the Strong Approximation Theorem.

If $u_1(b-1) < u_1(x_1)$, from $0 \le u_1(b-1)$ we deduce that

$$0 \le (u_i \land u_1)(b-1) \le (u_i \land u_1)(x_1) = 0.$$

If $u_i(b-1) < u_i(x_i)$ and $0 \le u_i(b-1)$, then

$$0 \leq (u_i \wedge u_1)(b-1) \leq (u_i \wedge u_1)(x_i) = 0;$$

if, however, $u_i(b-1) < 0$, then $u_i(b) = u_i(b-1)$, so from $u_i(b) \ge 0$ it follows that

$$(u_1 \wedge u_i)(b-1) = (u_1 \wedge u_i)(b) = 0 = (u_1 \wedge u_i)(x_i).$$

By the Strong Approximation Theorem, there exists an element $z \in Z(w)$ such that $u_1(z-b) = u_1(x_1) > 0$, $u_i(z-1) = u_i(x_i) > 0$, for every $i = 2, \dots, s$. So $u_1(z) \ge 0$ (because $u_1(b) \ge 0$), $u_i(z) = 0$ for $i \ne 1$, and

$$z \equiv b \pmod{P_w \cap Z(w)}.$$

Now, let $a = N_{Z(w)|K}(z)$ ϵK , so $a = \prod_{\tau} \tau(z)$ (where τ runs through a set of representatives of the right cosets of Z(w) in \mathcal{K}).

It follows that $a \in A$, since

$$v(a) = w(a) = w(\prod_{\tau} \tau(z)) = \sum_{\tau} w \circ \tau(z) \ge 0,$$

because each valuation $w \circ \tau$ induces one of the valuations u_1 , u_2 , \cdots , u_s , and $u_i(z) \ge 0$ for every $i = 1, \cdots, s$.

We finish the proof as in part (a), by showing that $a \equiv b \pmod{P_w \cap Z(w)}$; in fact, it is sufficient to show that $a \equiv z \pmod{P_w \cap Z(w)}$. For that purpose, we remark that if $\tau \notin Z(w)$, then $w \circ \tau \neq w$; hence its restriction to Z(w) is some $u_i \neq u_1$, so

$$w(\tau(z)-1) = w(\tau(z-1)) = u_i(z-1) = u_i(x_i) > 0,$$

and $\tau(z) \equiv 1 \pmod{P_w}$. Therefore

$$a = \prod_{\tau} \tau(z) = z \cdot \prod_{\tau \neq \varepsilon} \tau(z) \equiv z \pmod{P_w \cap Z(w)}.$$

Theorem 3. If F is any intermediate field, $\mathfrak{F} = \operatorname{Gal}(L \mid F)$, and w is any prolongation of v to L, then

- (a) $[Z(w) \cdot F : Z(w)] = e_{F|K}(w) \cdot f_{F|K}(w) \cdot \chi$, where $r \ge 0$ and χ is the characteristic exponent of K/v;
- (b) if ε denotes the set of valuations of L having the same restriction to F as w, then the number t of valuations in ε is equal to

$$t = (\mathfrak{F}: \mathfrak{Z}(w) \cap \mathfrak{F}) = [Z(w) \cdot F: F],$$

and the number g of prolongations of v to L is equal to

$$g = \frac{t \cdot [F:K]}{[Z(w) \cdot F:Z(w)]},$$

where

$$\frac{[F\!:\!K]}{[Z(w)\!\cdot\!F\!:\!Z(w)]} = \frac{[Z(w)\!:\!K]}{[Z(w)\!\cdot\!F\!:\!F]}$$

is equal to the number of distinct prolongations of v to F; in particular, t divides g.

Proof. (a) Let $H = Z(w) \cdot F$; by standard results, or Theorem 1 (a) applied to $\mathcal{E} = \{w\}$, the restriction of w to Z(w) has only one prolongation to L; the same is true of the restriction of w to H, since $H \supseteq Z(w)$. Hence

$$[L:Z(w)] = e_{L|Z(w)} \cdot f_{L|Z(w)} \cdot \chi^{q},$$

$$[L:H] = e_{L|H} \cdot f_{L|H} \cdot \chi^{q'},$$

where $q \ge 0$, $q' \ge 0$, and the indices e, f are computed for w. By the transitivity of e and f, we have

$$[H:Z(w)] = e_{H|Z(w)} \cdot f_{H|Z(w)} \cdot \chi^{q-q'}.$$

Since $e_{H|Z(w)} \cdot f_{H|Z(w)} \leq [H:Z(w)]$ (cf. [4, p. 55]), we have $q - q' \geq 0$.

Finally, since Z(w) is the decomposition field of w over K, and $H = Z(w) \cdot F$ is the decomposition field of w over F, we have

$$e_{Z(w)|K} = f_{Z(w)|K} = e_{H|F} = f_{H|F} = 1$$

by Theorem 2, so that $e_{H|Z(w)} = e_{H|K} = e_{F|K}$, and similarly for f.

(b) Since $H = Z(w) \cdot F$ is the decomposition field of w in $L \mid F$, the number t of valuations in the set \mathcal{E} is equal to t = [H:F] (cf. [4, p. 74]). Similarly, g = [Z(w):K]; hence, by transitivity of degrees,

$$g = \frac{t \cdot [F:K]}{[H:Z(w)]}.$$

We show now that the prolongations of v to F correspond in a one-to-one way to the double cosets $\mathbb{Z}(w)\sigma\mathfrak{F}$ (for $\sigma \in \mathfrak{K}$). Indeed, if u is any prolongation of v to F, let $w' = w \circ \sigma$ be any prolongation of u to L; if $w'_1 = w \circ \sigma_1$ is another prolongation of u, then w', w'_1 are conjugate with respect to \mathfrak{F} ; hence $w'_1 = w' \circ \xi$, $\xi \in \mathfrak{F}$, so $w \circ \sigma_1 = w \circ \sigma \xi$ and $\sigma_1 \in \mathbb{Z}(w)\sigma \mathfrak{F}$. The mapping that associates with u the double coset $\mathbb{Z}(w)\sigma \mathfrak{F}$ is well defined, onto the set of double cosets, and one-to-one.

Hence the number of prolongations of v to F is equal to the number of double cosets $\mathbb{Z}(w)\sigma \mathfrak{F}$, that is,

$$\frac{(\mathfrak{K} \colon \mathfrak{F})}{(\mathbf{Z}(w) \colon \mathbf{Z}(w) \cap \mathfrak{F})} = \frac{[F \colon K]}{[H \colon Z(w)]} = \frac{[Z(w) \colon K]}{[H \colon F]} = \frac{g}{t} \,.$$

We now apply the preceding considerations to define the decomposition field of a valuation w in an extension which may be neither separable nor normal.

Let $M \mid K$ be a finite (algebraic) extension, v a valuation of K, and $w = w_1, \dots, w_g$ its prolongations to M. Let S be the separable closure of K in M, and L the normal extension of K, generated by S; hence $L \mid K$ is a finite Galoisian extension, whose group will be denoted by \mathfrak{K} . Let \mathfrak{E} be the set of prolongations to L of the restriction w^S of w to S; hence \mathfrak{E} is a distinguished set of valuations of L.

DEFINITION. The decomposition field $Z_{L|K}(\mathcal{E})$ of the set \mathcal{E} in L|K is called the decomposition field of w in M|K and denoted by $Z_{M|K}(w) = Z(w)$.

Since all the valuations in \mathcal{E} have the same restriction to S, by Theorem 1 (b), we deduce that $Z(w) = Z_{L|K}(\mathcal{E}) \subseteq S$.

The restriction of each valuation $w_i \neq w$ to Z(w) is different from the restriction of w to Z(w).

This follows from the facts that $M \mid S$ is a purely inseparable extension (hence the restrictions w_i^s , w^s are distinct) and that the restriction of w to Z(w) has only one prolongation to L.

Z(w) is the smallest field between K and M with the above property.

Let F be an intermediate field such that $w_i^F \neq w^F$ for every $i=2, \cdots, g$; since $F \mid (F \cap S)$ is a purely inseparable extension, $w_i^{F \cap S} \neq w^{F \cap S}$. All the valuations in \mathcal{E} have the same restriction w^S to S, and hence also the same restriction $w^F \cap S$ to $F \cap S$. On the other hand, if u is a prolongation of $w^F \cap S$ to E, then E is a contradiction. By Theorem 1 (b), we conclude that

$$F \supseteq F \cap S \supseteq Z(\mathcal{E}) = Z(w).$$

Similarly, for every $u \in \mathcal{E}$ we have

$$[Z(u)\cdot Z(w):Z(u)] = e_{Z(w)|K}(w)\cdot f_{Z(w)|K}(w)\cdot \chi^{q}$$

(with $q \ge 0$), and the number of distinct prolongations of v to M is equal to

$$\frac{[S:K]}{[Z(u)\cdot S:Z(u)]},$$

where u is any prolongation of v to L.

This last assertion follows at once from Theorem 3 (b), applied to the extension $L \mid K$ and the intermediate field F = S, if we observe that each valuation of S has only one prolongation to M.

The following example shows that the results of Theorem 3 are, in a sense, the best ones to be expected.

Example. There exists a field K, endowed with a discrete valuation v, of rank 1, such that, given any two integers $\mu > 1$, $\nu > 1$, there exists a finite Galoisian extension L of K, with the following property: There exists a distinguished set \mathcal{E} of valuations, prolongations of v to L, such that if u is the restriction of any $w \in \mathcal{E}$ to the decomposition field $Z(\mathcal{E})$, then

$$e_{Z(\mathcal{E})|K}(u) = \mu, \quad f_{Z(\mathcal{E})|K}(u) = \nu.$$

In this construction, we shall use Krull's existence theorem (cf. [2]).

Given μ , ν , let p be any prime number such that $\mu\nu < p$, and let $t = (p - \mu\nu) + 1 > 1$.

Let K be a field of characteristic zero, with a discrete valuation v such that K/v has also characteristic zero, and let us assume that K admits at least one more nonequivalent discrete valuation v'. We may take, for example, $K = \mathbf{Q}(X)$, v being that prolongation of the trivial valuation of \mathbf{Q} such that v(X) = 1; then $K/v = \mathbf{Q}$; moreover, we may take v' equal to the natural prolongation of the 2-adic valuation of \mathbf{Q} to $\mathbf{Q}(X) = K$, so v' is also discrete.

By Krull's existence theorem, there exists a separable extension $F \mid K$, of degree p, such that v admits t prolongations u_1 , u_2 , \cdots , u_t to F, for which we have $e_{F\mid K}(u_1) = \mu$, $f_{F\mid K}(u_1) = \nu$, $e_{F\mid K}(u_i) = 1$, $f_{F\mid K}(u_i) = 1$, for every $i = 2, \dots, t$.

Let $L \mid K$ be the smallest normal extension of K containing F, and let \mathcal{E} be the set of all the prolongations of u_1 to L.

We show now that $Z(\xi) = F$. Indeed, $Z(\xi)$ is the smallest subfield of L

such that all the valuations of \mathcal{E} have the same restriction to $Z(\mathcal{E})$, but some valuation of L, extending v and not in \mathcal{E} , has distinct restriction to $Z(\mathcal{E})$. As F has this property, then $F \supseteq Z(\mathcal{E})$. As [F:K] = p prime, if $F \ne Z(\mathcal{E})$, then $Z(\mathcal{E}) = K$; this means that $Z(\mathcal{E}) = \mathcal{K} = \operatorname{Gal}(L \mid K)$, so $\mathcal{E} = \mathcal{V}$ (set of all the prolongations of v to L), which is impossible, since any prolongation of u_i , $i \ge 2$, to L does not belong to \mathcal{E} .

The same example shows us that there may exist cases in which $Z(w) \cdot Z(\mathcal{E})$ contains strictly Z(w), that is, Z(w) does not contain $Z(\mathcal{E})$, for some $w \in \mathcal{E}$.

Similarly, if in the previous example we take p such that $p \neq 2\mu\nu - 1$, then $t \neq \mu\nu$. Let $w \in \mathcal{E}$; since $[Z(w) \cdot Z(\mathcal{E}) : Z(w)] = \mu\nu$, then the number g of prolongations of v to L is

$$g = \frac{t \cdot [Z(\mathcal{E}) \colon\! K]}{[Z(w) \cdot Z(\mathcal{E}) \colon\! Z(w)]} \neq [Z(\mathcal{E}) \colon\! K] \;.$$

Hence, contrary to the case where \mathcal{E} is reduced to only one valuation, in general we have $[Z(\mathcal{E}):K] \neq g$.

BIBLIOGRAPHY

- WOLFGANG KRULL, Allgemeine Bewertungstheorie, J. Reine Angew. Math., vol. 167 (1932), pp. 160-196.
- —, Über eine Existenzsatz der Bewertungstheorie, Abh. Math. Sem. Univ. Hamburg, vol. 23 (1959), pp. 29-35.
- 3. P. Ribenboim, Le théorème d'approximation pour les valuations de Krull, Math. Zeitschrift, vol. 68 (1957), pp. 1-18.
- OSCAR ZARISKI AND PIERRE SAMUEL, Commutative algebra, Vol. II, Princeton, Van Nostrand, 1960.

University of Illinois Urbana, Illinois