
ON THE DECOMPOSITION THEORY FOR KRULL VALUATIONS

BY

P. RIBENBOIM

Let K be a field endowed with a Krull valuation v, L JK a finite Galoisian
extension, {w wl, w., wg} the set of distinct prolongations of
v to L. We define and study the decomposition field and decomposition group
associated with a distinguished set of valuations,

_ .
Among other results, we obtain a new proof that the value group w(Z)

and the residue-class field Z/w of the decomposition field Z of w in L K are
respectively the same as those of the ground field K: w(Z) v(K), Z/w
K/v; cf. [1], [4, pp. 70 ft.].

Finally, the theory is applied to define the decomposition field of a pro-
longation of the valuation v to a finite extension of K, which may be neither
normal nor separable.
An example is given to show that the results indicated cannot be improved.

1. Known results and a technical lemma
Let wl, w be valuations of a field L, and x, x. nonzero elements of L. We

say that the pair (w, x) is compatible with the pair (w., x.) in case

(w ^ )() (, ^ )(x),

where w ^ w. denotes the greatest lower bound of w, w in the ordered set
of valuations of L (cf. [4, p. 43] or [3]).

This relation is transitive: If (wl, xl) is compatible with (w, x), and if
(w., x) is compatible with (wa, x), let us consider wl ^ w and w ^ w.
Since both valuations are coarser than w., one is coarser than the other, say
wl ^ w -> w. ^ wa; hence w ^ wa w. ^ w. Thus, if either
(w ^ w)(y) 0or (w. ^ wa)(y) 0, wehave (w ^ wa)(y) 0. This
implies that

(w ^ w) (/x) (w ^ ) (x/x) + (w ^ w) (x./) o,
showing that (w, x) is compatible with (w, x).
More generally, the set {(w, xl), (w2, x.), ..., (wg, x)} is said to be

compatible when (wi, xi) is compatible with (w., x.), for any i j.
The following theorems will be used (cf. [3]):

AeeROXIMXTON THEOnEM. If W "’, W are pairwise incomparable val-
uations of L, if x x e L are such that
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is compatible, then there exists x L such that

wi(x) wi(xi) for every i 1, g.

STRONG APeROXIMTION THEOREM. Let wl wg 5e pairwise incompar-
able valuations of L, let xl xg L 5e such that (w x), (w x)
is compatible, and let bl b L. Then, in order that there exist an element
x L such that

wi(x b) w(x) for every i 1,... g,

it is necessary and sufficient that the following condition hold:
If w(5 5.) < wi(xi), for indices i j, then

(w ^ wl)(x) (wi ^ wl)(b- b).

The following technical result will be used in the proof of Theorem 2"

LEMMA 1. Let L IK be an algebraic extension, v a valuation of K, and
wl w a set.of distinct prolongations of v to L. Given an element x e L,
x 0,. there exist elements x xg e L such that {(wl, x), (w, x)}
is compatible and

w(x) < w(x) for every i 2, g.

Proof. By the transitivity property of the compatibility relation, it is
sufficient to consider the case where g 2.

If w(x) < w.(xl), we take x x.
If w(x) w.(x), we take x. xy, with (wl ^ w)(y) 0, w.(y) > O,

observing that such an element y e L exists, since w ^ w w.
If w(xl) < w(x), let m be an integer such that m.w(L)

_
v(K),

m.w.(L)

___
v(K); hence, there exist elements y, y. e K such that

m.w(x) v(y), m.w(x) v(y.), and hence v(y.) < v(y,). Taking
x. x (yl/y) we have

(w ^ w.) (y) m. (w ^ w)(x) (w ^ w) (y);

hence (w ^ w) (xl) (w ^ w) (x.), so (w, x) is compatible with (w., x.).
Finally,

w.(x) w.(xl) + 2. [v(y) v(y)] > w(x) - (l/m) [v(y) v(y.)]

w.(x) + w(x) o(x) o(x).

2. New results
Let L K be a finite Galoisian extension, 3 Gal(L K) ;let v be a valua-

tion of K, and a nonempty set of prolongations of v to L.

Since the value groups of the valuations w, w may be considered as sub-
groups of the divisible group generated by v(K), we may compare the values w(x),
,(x).
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The set

ZLIK(5) Z(5) {

is clearly a subgroup of , called the decomposition group of the set in L K.
The field of invariants of Z(5) is denoted by ZL,K(5) Z(3), and it is called
the decomposition field of the set in L K.
The special case where is reduced to only one prolongation w of v is already

well known; corresponding notations Z(w), Z(w) will be used.
A nonempty set of valuations of L, prolongations of the valuation v of K,

is called a distinguished set whenever there exists an intermediate field F,
K

___
F

___
L, such that

(1) all the valuations w e have the same restriction wy to F;
(2) is the set of all the prolongations of wy to L.
Trivial distinguished sets are "0 (the set of all the prolongations of v to L)

and each set {w}, where w is any prolongation of v to L.
In general, there may exist sets .5 which are not distinguished, because

If is a distinguished set, then the number of elements in 8 divides the degree
[L" K] (a more precise assertion will be made later).

Indeed, if 8 is a distinguished set of valuations of L, if F is a field such that
is the set of all prolongations to L of some valuation u of F, then

[L’F] e.f.t, xq (cf. [4, p. 78]), where
e is the ramification index of any w e 8 in L F,
f is the inertial degree of any w

is the number of valuations in
x is the characteristic exponent of the residue-class field K/v, q >= O.
Hence, divides [L’K] [L’F]. IF’K].

THEOREM ]. Let be a nonempty set of prolongations of v to L.
(a) If w e , w 5, then the restriction of w to Z(%) is distinct from the

restriction to Z( 5) of any valuation in
(b) Z(8) is the smallest intermediate field with property (a).
(c) If, moreover, 8 is a distinguished set, then all the valuations in have

the same restriction to Z( 8).

Proof. (a) If w e "0 has the same restriction to Z(8) as a valuation
w’ e 8, then w, w’ are conjugate valuations in the extension L IZ(8), having
Galois group Z(5); so there exists

(b) Let F be a field, K

___
F

___
L, f Gal(L F), and assume that F

satisfies property (a) of Z(); we want to show that F D__ Z(8), or equiva-
lently, f Z(). Let eft, w 8; then w o is a valuation of L having
the same restriction to F as w; by property
This shows that e Z(3), and hence f c_ Z(5).

(c) There exists an intermediate field F such that 3 is the set of all the
prolongations to L of a valuation of F. Hence, F satisfies property (a) above;
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by (b), F

_
Z(8) hence all the valuations in 8 have the same restriction

to z().

THEOREM 2. (a) If 8 is any nonempty set of prolongations of v to L, then,
for every w 8, (w(Z( 8) )" v (K) divides

(z(w)’z(s) n z(w)) [z().z(w)’z(w)];

in particular, if 8 {w}, then w(Z(w) v(K).
(b) Z(w)/w K/v for every prolongation w of v to L.

Proof. (a) We may assume that Z(8) K. Let us denote
H Z(8).Z(w), 3C Gal(LIH Z(8) nZ(w), m (Z(w)’)
[H’Z(w)].
To show that (w(Z(8))"v(K)) divides m, it is sufficient to establish that

if a e w(Z(8) ), then ma v(K). Indeed, this implies that the totally ordered
abelian group w(Z(8))

_
(1/m)v(K), so it must be of type (1/m’)v(K),

where m’ divides m.
Let a e w(Z(8)

___
w(H). Denote by ul w" the restriction of w to H; ul

is not the only prolongation of v to H, for otherwise 8 by Theorem 1
(a), and Z(8) K by Theorem 1 (b).
Let us, u be the other valuations of H extending v. If x e H is such

that a u(x), by Lemma 1, there exist x:, x, e H such that

{(u, x), (u,, .)}

is compatible and ul(x) < ui(xO for every i 2, s. As the valuations
ul, us, u, are pairwise incomparable (since they are prolongations of v),
by the Approximation Theorem there exists c e H such that u(c)
for every i 1, 2, s.

Let
b N,lz(,)(c) II(r(c) e Z(w)

(where a runs through a set of representatives of right cosets of c in Z(w)).
We observe that for every such a we have w w; on the other hand, their
number is m Z(w)"3C). Then

w(b) _, w(a(c) _, w(c) ma.
Let now

a- Trz(w)l(b) ’ r(b) e K

(where r runs through a set of representatives of right cosets of Z(w) in )
we have v(a) w(a) >= min {w o r(b)/, and we want to compute the exact
value of a.

If e 2;(w), then w o w, and hence w(r(b) w(b) ma.
If r Z(w) then r Z(w) (for each Z(w)) Hence (w o r) w"

since otherwise the valuations w ra, w would be conjugate in the extensio
L H, and thus there would exist e such that w o ra w o , raq- z(w)
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and r e Z(w).:E Z(w), a contradiction. It follows that w o re(c)
ui(c) ui(x) > s, for some u ul.

It follows that if r Z(w), then

w o r(b) w o r(II,(c))
We conclude that there exists precisely one r such that w o r(b) ms is

the minimum possible. Hence, v(a) w(a) mind{w or(b)}
so ms e v(K).

(b) We know that Z(w)/w is an extension of K/v (after a canonical identi-
fication). We must show that if b e A a Z(w) (valuation ring of the re-
striction of w to Z(w)) there exists a e A (valuation ring of v) such that
b --= a (mod P n Z(w) (prime ideal of the restriction of w to Z(w) ).
We may assume b 0 and Z(w) K.
Let ul be the restriction of w to Z(w). u is not the only prolongation of

v to Z(w), for otherwise v has only one prolongation to L, by Theorem 1 (a)
applied to {W}; then Z(w) K.

Let u., u be the other prolongations of v to Z(w). We want to
apply the Strong Approximation Theorem.

Let j be an index such that u > u ^ u. ->_ u ^ u, for every i 2, s;
hence, there exists an element xl Z(w) such that u(x) > 0, but

(u ^ u) () (u ^ u) (x) 0

for every i 2, s.
By Lemma 1, there exist elements x,..., x, Z(w) such that

(u, x), (u,,

is compatible and 0 < u(x) < u(xi) for every i 2, ..., s.; hence
(u ^ ul) (x) (ui ^ u) (x) 0.. Considering the elements b, 1, ..., 1,
we now verify the condition of the Strong Approximation Theorem.

If u(b 1) < ul(x), from 0

_
u(b 1) we deduce that

0 _-< (ui ^ u)(b- 1) <- (ui ^ u)(x) O.

If ui(b- 1) < u(xi) and 0 =< u(b- 1), then

0 <-_ (u ^ ut)(b- 1)

_
(ui ^ ul)(xi) 0;

if, however, ui(b 1) < 0, then ui(b) u(b 1), so from u(b) >- 0 it
follows that

(u ^ u)(b- 1) (u ^ u)(b) ---0 (u ^ ui)(x).

By the Strong Approximation Theorem, there exists an element z Z(w) such
that u(z b) u(x) > 0, u(z 1) ui(xi) > 0, for every i 2, s.
So ul(z) >= 0 (because u(b) >= 0), u(z) 0 for i 1, and

z-- b (modPnZ(w)).
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Now, let a Nz(w)lK(z) K, so a II, r(z) (where r runs through a set
of representatives of the right cosets of Z(w) in ).

It follows that a e A, since

v(a) w(a) w(]-Lr(z)) Zwr(z) > O,

because each valuation w o r induces one of the valuations
and u(z) >-_ 0 for every i 1, s.
We finish the proof as in part (a), by showing that a b (rood Pw n Z(w))

in fact, it is sufficient to show that a - z (rood P Z(w) ). For that purpose,
we remark that if r 2;(w), then w o r w; hence its restriction to Z(w) is
some ui ul so

w(r(z) 1) w(r(z-- 1)) u(z 1) u(x,) > O,

and r(z) ----- 1 (mod P). Therefore

a II, r(z) z.II,,e r(z) =-- z (mod P Z(w)).

THEOREM 3. If F is any intermediate field, ff Gal (L IF) and w is any
prolongation of v to L, then

(a) [Z(w).F:Z(w)] eFlK(w).fl(w).x, wherer >= Oandxisthecharac-
teristic exponent of K/v;

(b) if denotes the set of valuations of L having the same restriction to F as
w, then the number of valuations in is equal to

(ff’Z(w) if) [Z(w)-F:F],

and the number g of prolongations of v to L is equal to

where

t.[F’K]
g [Z(w).F:Z(w)]’

[F" K] [Z(w)- K]
[Z(w).F:Z(w)] [Z(w).F’F]

is equal to the number of distinct prolongations of v to F; in particular, divides g.

Proof. (a) Let H Z(w). F; by standard results, or Theorem 1 (a) ap-
plied to ; {w}, the restriction of w to Z(w) has only one prolongation to L;
the same is true of the restriction of w to H, since H

_
Z(w). Hence

[L’Z(w)] elz().flz().xq,
[L’H] ez, ll.ft.l,I.xq’,

where q >= 0, q’ >- 0, and the indices e, f are computed for w. By the transi-
tivity of e and f, we have

[H’Z(w)] e,lz(w).f, lz().xq-q’.

Since e, z()"f-I z() -< [H" Z(w)] (cf. [4, p. 55]), we have q q’

_
0.
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Finally, since Z(w) is the decomposition field of w over K, and H Z(w) F
is the decomposition field of w over F, we have

ez(w)lK fz(w)lK eHIF fHIF 1

by Theorem 2, so that el z(w) eHIK evlK, and similarly for f.
(b) Since H Z(w).F is the decomposition field of w in L F, the number

of valuations in the set 3 is equal to [H:F] (cf. [4, p. 74]). Similarly,
g [Z(w) :K]; hence, by transitivity of degrees,

t. IF. K]g [H’Z(w)]"
We show now that the prolongations of v to F correspond in a one-to-one

way to the double cosets Z(w)af (for a e ). Indeed, if u is any prolonga-
tion of v to F, let w’ w be any prolongation of u to L; if wl w o al is
another prolongation of u, then w’, w are conjugate with respect to f; hence
wl o,ef, sowozl woa and zleZ(w)zf. The mapping that
associates with u the double coset Z(w)zf is well defined, onto the set of
double cosets, and one-to-one.
Hence the number of prolongations of v to F is equal to the number of

double cosets 2;(w) aft, that is,

(’f) [F’K] [Z(w)’K] g.
(Z(w)’Z(w) n f) [H’Z(w)] [H’F]

We now apply the preceding considerations to define the decomposition
field of a valuation w in an extension which may be neither separable nor
normal.

Let M IK be a finite (algebraic) extension, v a valuation of K, and
w w, wg its prolongations to M. Let S be the separable closure of
K in M, and L the normal extension of K, generated by S; hence L IK is a
finite Galoisian extension, whose group will be denoted by . Let be the
set of prolongations to L of the restriction ws of w to S; hence is a distin-
guished set of valuations of L.

DEFINITION. The decomposition field ZI( of the set in L IK is
called the decomposition field of w in M IK and denoted by Zl(w) Z(w).

Since all the valuations in have the same restriction to S, by Theorem 1
(b), we deduce that Z(w) ZI() S.

The restriction of each valuation wi w to Z(w) is different from the restriction

of w to Z(w).

This follows from the facts that M IS is a purely inseparable extension
(hence the restrictions w, ws are distinct) and that the restriction of w to
Z(w) has only one prolongation to L.

Z(w) is the smallest field between K and M with the above property.
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Let F be an intermediate field such that w w for every i 2, g;
since F I(F n S) is a purely inseparable extension, wns was. All the
valuations in 5 have the same restriction wS to S, and hence also the same
restriction wa s to F S. On the other hand, if u is a prolongation of wa s to
L, then u e 5, for otherwise us w for some i > 1, and hence wa s wa s,
a contradiction. By Theorem 1 (b), we conclude that

F F S Z(S) Z(w).

Similarly, for every u e 5 we have

[Z(u) "Z(w) "Z(u)] ez(w)l(w) "fz(w)l:(w) "x
q

(with q __> 0), and the number of distinct prolongations of v to M is equal to

[Z(u) .z:Z(u)]’
where u is any prolongation of v to L.

This last assertion follows at once from Theorem 3 (b), applied to the ex-
tension L K and the intermediate field F S, if we observe that each valu-
ation of S has only one prolongation to M.
The following example shows that the results of Theorem 3 are, in a sense,

the best ones to be expected.
Example. There exists a field K, endowed with a discrete valuation v, of

rank 1, such that, given any two integers > 1, > 1, there exists a finite
Galoisian extension L of K, with the following property: There exists a dis-
tinguished set 5 of valuations, prolongations of v to L, such that if u is the
restriction of any w e 5 to the decomposition field Z(5), then

In this construction, we shall use Krull’s existence theorem (cf. [2]).
Given , , let p be any prime number such that < p, and let

t= (p--) -t- 1 > 1.
Let K be a field of characteristic zero, with a discrete valuation v such that

K/v has also characteristic zero, and let us assume that K admits at least
one more nonequivalent discrete valuation v’. We may take, for example,
K Q(X), v being that prolongation of the trivial valuation of Q such that
v(X) 1; then K/v Q; moreover, we may take v equal to the natural
prolongation of the 2-adic valuation of Q to Q (X) K, so v’ is also discrete.
By Krull’s existence theorem, there exists a separable extension F[K, of

degree p, such that v admits prolongations ul, us, u to F, for which we
have el:(ul) , fFl(u) ’, eFl:(u) 1, fl:(ui) 1, for every
i-2,...,t.

Let L IK be the smallest normal extension of K containing F, and let 5
be the set of all the prolongations of u to L.
We show now that Z(5) F. Indeed, Z(5) is the smallest subfield of L
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such that all the valuations of 8 have the same restriction to Z(8), but some
valuation of L, extending v and not in 8, has distinct restriction to Z(8). As
F has this property, then F

___
Z(8). As IF:K] p prime, if F

then Z(g) K; this means that 2;(8) Gal (LIK), so 8 (set
of all the prolongations of v to L), which is impossible, since any prolongation
of u, i -> 2, to L does not belong to 8.
The same example shows us that there may exist cases in which Z(w). Z(

contains strictly Z(w), that is, Z(w) does not contain Z(8), for some w
Similarly, if in the previous example we take p such that p 2v 1,

then v. Let w e 8; since [Z(w).Z(8):Z(w)] , then the number g
of prolongations of v to L is

t. [Z(8) K] [Z(s):K].g
[z() z(t).z()]

Hence, contrary to the case where 8 is reduced to only one valuation, in
general we hve [Z(8) K] g.
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