ON THE DECOMPOSITION THEORY FOR KRULL VALUATIONS

BY
P. RiBENBOIM

Let K be a field endowed with a Krull valuation v, L | K a finite Galoisian
extension, U = {w = w;, ws, -+, w,} the set of distinct prolongations of
vto L. We define and study the decomposition field and decomposition group
associated with a distinguished set & of valuations, § © .

Among other results, we obtain a new proof that the value group w(Z)
and the residue-class field Z/w of the decomposition field Z of w in L | K are
respectively the same as those of the ground field K: w(Z) = v(K), Z/w =
K/v; cf. [1], [4, pp. 70 f£.].

Finally, the theory is applied to define the decomposition field of a pro-
longation of the valuation » to a finite extension of K, which may be neither
normal nor separable.

An example is given to show that the results indicated cannot be improved.

1. Known results and a technical lemma

Let w; , we be valuations of a field L, and x; , 2, nonzero elements of L. We
say that the pair (w, , x;) is compatible with the pair (w, , z2) in case

(w1 A we) (1) = (w, A we) (22),

where w; A w. denotes the greatest lower bound of w; , w. in the ordered set
of valuations of L (cf. [4, p. 43] or [3]).

This relation is transitive: If (wy, x;) is compatible with (w. , ), and if
(wy , x2) is compatible with (w;, x3), let us consider w; A we and w. A w; .
Since both valuations are coarser than w, , one is coarser than the other, say
wy Awy, = W, Awsy; hence w; A wy = wy A w;. Thus, if either
(wy A wy)(y) = 0or (w2 A w;)(y) = 0, we have (w; A w3)(y) = 0. This
implies that

(wr A ws) (21/25) = (w1 A ws) (21/22) + (w1 A wy) (22/25) = 0,

showing that (w; , z;) is compatible with (w; , z3).

More generally, the set {(w;, 1), (w:, @2), -+, (w,, z,)} is said to be
compatible when (w; , x;) is compatible with (w; , x;), for any 7 # j.

The following theorems will be used (ef. [3]):

APPROXIMATION THEOREM. If wy, ::-, w, are pairwise tncomparable val-
uations of L, iof x,, --- , x, € L are such that
{(wl ) xl), (w2 ’ x2); ] (wa ) .’L‘g)}
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18 compatible, then there exists x € L such that
wi(z) = wi(x;) foreveryi =1, --- g.

STRONG APPROXIMATION THEOREM. Let wy, -+ , w, be patrwise incompar-
able valuations of L, let 1, - - - , x4 € L be such that {(wy, 1), <+, (wy , z4)}
18 compatible, and let by , - - - , b, € L. Then, in order that there exist an element
z e L such that

wi(x — b)) = wi(x;) foreveryt =1,--- ¢,

it s necessary and sufficient that the following condition hold:
If wi(bi — b;) < wi(x;), for indices © #= j, then

(wi A w;) (x:) = (wi A wy)(bi — by).
The following technical result will be used in the proof of Theorem 2:

Lemma 1. Let L| K be an algebraic extension, v a valuation of K, and
wy, + o, Wy @ set of distinct prolongations of v to L. Given an element x; € L,
x1 # 0, there exist elements xs , - -+ , Ty € L such that { (wy, x1), + -+ , (W, , )}
is compatible and'

wi(er) < wi(x:) foreveryi =2, -, g.

Proof. By the transitivity property of the compatibility relation, it is
sufficient to consider the case where ¢ = 2.

If wi(x) < we(x1), we take 22 = 2.

If wi(xy) = wa(x1), we take x3 = 21y, with (wr A we) (y) = 0, we(y) > O,
observing that such an element y e L exists, since w; A w, = w; .

If wa(x) < wn(zy), let m be an integer such that m-w (L) & v(K),
m-wy(L) € v(K); hence, there exist elements y;, y2e¢K such that

m-wi(x) = v(y1), m-wy(xry)) = v(y2), and hence v(y:) < v(y1). Taking
z2 = 21+ (41/92) %, we have

(w1 A we) (y2) = m-(wr A we)(21) = (w1 A wy) (y1);

hence (w;, A we) (x1) = (w1 A wy) (22), 80 (wy, 1) is compatible with (w, , x2).
Finally,

wy(2) = wa(w1) + 2- (1) — v(y2)] > wa(zr) + (1/m)[v(y1) — v(y2)]

= we(x1) + wi(x1) — we() = wi(ay).
2. New results

Let L | K be a finite Galoisian extension, X = Gal(L | K) ; let v be a valua-
tion of K, and & a nonempty set of prolongations of v to L.
1 Since the value groups of the valuations w;, -+, w, may be considered as sub-

groups of the divisible group generated by »(K), we may compare the values w;(z1),
w; ().
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The set
Zux(8) = Z(8) = {oceX|wooe&forevery we 8}

is clearly a subgroup of &, called the decomposition group of the set & in L | K.
The field of invariants of Z(§&) is denoted by Z,x(8) = Z(8), and it is called
the decomposition field of the set & in L | K.

The special case where & is reduced to only one prolongation w of v is already
well known; corresponding notations Z(w), Z(w) will be used.

A nonempty set & of valuations of L, prolongations of the valuation v of K,
is called a distinguished set whenever there exists an intermediate field F,
K C F C L, such that

(1) all the valuations w € & have the same restriction w¥ to F;

(2) &is the set of all the prolongations of w? to L.

Trivial distinguished sets are U (the set of all the prolongations of v to L)
and each set {w}, where w is any prolongation of v to L.

In general, there may exist sets.§ which are not distinguished, because

If & is a distinguished set, then the number of elements in & divides the degree
[L:K] (a more precise assertion will be made later).

Indeed, if & is a distinguished set of valuations of L, if F is a field such that
& is the set of all prolongations to L of some valuation % of F, then
[L:F] = e-f-t-x? (cf. [4, p. 78]), where

¢ is the ramification index of anyw e §in L | F,

f is the inertial degree of any w e 8 in L | F,

¢t is the number of valuations in &,

x is the characteristic exponent of the residue-class field K/v, ¢ = 0.

Hence, ¢ divides [L:K] = [L:F]-[F:K].

THEOREM 1. Let & be a nonempty set of prolongations of v to L.

(a) If weV, wes, then the restriction of w to Z(8) is distinct from the
restriction to Z(8&) of any valuation in §.

(b) Z(8) 1is the smallest intermedsate field with property (a).

(¢) If, moreover, & is a distinguished set, then all the valuations in & have
the same restriction to Z(§).

Proof. (a) If weV has the same restriction to Z(8&) as a valuation
w’ ¢ &, then w, w’ are conjugate valuations in the extension L | Z(§&), having
Galois group Z(8); so there exists ¢ € Z(&) such that w = w’ oo € &.

(b) Let F be afield, K C F C L, § = Gal(L | F), and assume that F
satisfies property (a) of Z(8); we want to show that F 2 Z(8), or equiva-
lently, ¥ C Z(8). Let o ¢F, we&; then w o ¢ is a valuation of L having
the same restriction to F' as w; by property (a) of F, we must have w oo ¢ 8.
This shows that o € Z(8), and hence F T Z(§).

(¢) There exists an intermediate field ¥ such that & is the set of all the
prolongations to L of a valuation of F. Hence, F satisfies property (a) above;
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by (b), F D Z(8); hence all the valuations in & have the same restriction
to Z(8).

TaEOREM 2. (a) If & is any nonempty set of prolongations of v to L, then,
for every we8, (w(Z(8)):w(K)) divides

(Z(w):Z(8) n Z(w)) = [Z(8) -Z(w):Z(w)];

in particular, if & = {w}, then w(Z(w)) = v(K).
(b) Z(w)/w = K/v for every prolongation w of v to L.

Proof. (a) We may assume that Z(8) = K. Let us denote
H = 7Z(8)-Z(w), 3¢ = Gal(L|H) = Z(&) nZ(w), m = (Z(w):3C) =
H:Z(w)].

To show that (w(Z(8)) :v(K)) divides m, it is sufficient to establish that
if @ ew(Z(8)), then ma ev(K). Indeed, this implies that the totally ordered
abelian group w(Z(&)) € (1/m)v(K), so it must be of type (1/m’)v(K),
where m' divides m.

Let o ew(Z(8)) € w(H). Denote by u; = w" the restriction of w to H; u,
is not the only prolongation of » to H, for otherwise & = U by Theorem 1
(a), and Z(8) = K by Theorem 1 (b).

Let up, -+ -, u, be the other valuations of H extending ». If z; ¢ H is such
that « = wi(x;), by Lemma 1, there exist z;, « -+, zs ¢ H such that

{(ulyxl)7 Tt (uc,xs)}

is compatible and w;(x;:) < wi(x;) forevery ¢ = 2, --- ,s. As the valuations
Uy, Uz, -+ , Us are pairwise incomparable (since they are prolongations of v),
by the Approximation Theorem there exists ¢ ¢ H such that u;(c) = u.(x;)
foreveryz = 1,2, ---,s.

Let
b = Najzm(c) = Hv‘T(C) ¢ Z(w)

(where o runs through a set of representatives of right cosets of 3¢ in Z(w)).
We observe that for every such ¢ we have w o ¢ = w; on the other hand, their
number is m = (Z(w):3¢). Then

w(®) = 2, w(o()) = 2o w(e) = ma.

a = Tl‘z(w)]x(b) = Z,- ‘r(b) e K

(where 7 runs through a set of representatives of right cosets of Z(w) in X);
we have v(a) = w(a) = min, {w o 7(b)}, and we want to compute the exact
value of a.

If 7 ¢ Z(w), then w o 7 = w, and hence w(7(b)) = w(b) = ma.

If 7 ¢ Z(w), then 7o ¢ Z(w) (for each ¢ ¢ Z(w)). Hence (w o 70)™ = w”,
since otherwise the valuations w o 7o, w would be conjugate in the extensiop
L | H, and thus there would exist ¢ € 3¢ such that w o re = w o ¢, 700 " € Z(w)

Let now
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and 7o ¢ Z(w) -3¢ = Z(w), a contradiction. It follows that w o re(c) =
u;(¢) = ui(x;) > «, for some u; #= v .
It follows that if 7 ¢ Z(w), then

wor(d) =wor([[oe(c)) = 2 wore(c) > ma

We conclude that there exists precisely one 7 such that w o 7(b) = ma is
the minimum possible. Hence, v(a) = w(a) = min, {w o 7(b)} = ma,
80 ma ev(K).

(b) We know that Z(w) /w is an extension of K/v (after a canonical identi-
fication). We must show that if b e 4, n Z(w) (valuation ring of the re-
striction of w to Z(w)) there exists a ¢ A (valuation ring of ») such that
b = a (mod P, n Z(w)) (prime ideal of the restriction of w to Z(w)).

We may assume b # 0 and Z(w) = K.

Let u, be the restriction of w to Z(w). wu; is not the only prolongation of
v to Z(w), for otherwise » has only one prolongation to L, by Theorem 1 (a)
applied to & = {W}; then Z(w) = K.

Let us, - -+, u, be the other prolongations of v to Z(w). We want to
apply the Strong Approximation Theorem.

Let 7 be an index such that u; > u; A u; = s A u;,foreverys =2, -+ s
hence, there exists an element x; € Z(w) such that w;(x;) > 0, but

(ma A uj) (@) = (w A u)(z) =0

forevery ¢z = 2, --- , s.
By Lemma 1, there exist elements z;, -+, 2, ¢ Z(w) such that
{(ul)xl)) ) (u,,a:,)}
is compatible and 0 < wu(x;) < wi(x;) for every ¢ = 2,---, s; hence
(u: A w)(x5) = (us A uy)(x1) = 0. . Considering the elements b, 1, ---, 1,

we now verify the condition of the Strong Approximation Theorem.
If wa(b — 1) < w(zy), from 0 = (b — 1) we deduce that

0= (ui Au)(b—1) = (ui A w)(x1) =0.
If ui(b — 1) < ui(zx;) and 0 = ui(b — 1), then
0= (usi Au)(d—1) = (us A w)(w) =0;

if, however, u;(b — 1) < 0, then u;(b) = u;(b — 1), so from u(b) = 0 it
follows that

(us A u)(b—1) = (ug A u))(d) =0 = (ux A ug) ().

By the Strong Approximation Theorem, there exists an element z € Z(w) such
that w(z — b) = w(xy) > 0, u;(z — 1) = u;(x;) > 0,foreverys =2, --- ,s.
So u1(2) = 0 (because u;(b) = 0), u:(2) = 0fors = 1, and

z=b (modP,nZ(w)).
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Now, let @ = N zax(2) €K, s0 a = ][], 7(2) (where r runs through a set
of representatives of the right cosets of Z(w) in &).
It follows that a € 4, since

v(a) = w(a) = w(],7(2)) = 2, wer(z) 20
because each valuation w o 7 induces one of the valuations u,, ua, - -+, us,
and u;(z) = 0 for every s = 1, , 8.
We finish the proof as in part (a) by showing that @ = b (mod P, n Z(w));
in fact, it is sufficient to show that @ = z (mod P,n Z(w)). For that purpose,

we remark that if 7 ¢ Z(w), then w o 7 5 w; hence its restriction to Z(w) is
some u; ¥ U, SO

w(r(2) — 1) = w(r(z — 1)) = u(z — 1) = u;(x:;) > 0,
and 7(z) = 1 (mod P,,). Therefore
a=][,72) =2 ][k 7(2) =2 (modP,n Z(w)).
TuEOREM 3. If F is any intermediate field, § = Gal (L | F), and w is any

prolongation of v to L, then

(a) [Z(w) -F:Z(w)] = erix(w) -frix(w) - x, where r = 0 and x is the charac-
teristic exponent of K/v;

(b) if & denotes the set of valuations of L having the same restriction to F as
w, then the number t of valuations in & s equal to

t=(F:Z(w) nF) = [Z(w) -F:F),
and the number g of prolongations of v to L is equal to
t-[F:K]

9= Zw) T Zw)’
where

[F:K] _ [Z(w):K]
[Z(w)-F:Z(w)] [Z(w)-F:F]
18 equal to the number of distinct prolongations of v to F'; in particular, ¢ divides g.

Proof. (a) Let H = Z(w)-F;by standard results, or Theorem 1 (a) ap-
plied to & = {w}, the restriction of w to Z(w) has only one prolongation to L;
the same is true of the restriction of w to H, since H 2D Z(w). Hence

[L:Z(w)] = er) 20 frizan X",
[L:H] = enn-fum-x",

where ¢ 2 0, ¢’ = 0, and the indices e, f are computed for w. By the transi-
tivity of e and f, we have

[H:Z(w)] = en)zew) fujzay x* ¢
Since ex)zw) " fu1ze) = [H:Z(w)] (cf. [4, p. 55]), we have ¢ — ¢’ = 0.
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Finally, since Z(w) is the decomposition field of w over K, and H = Z(w) - F
is the decomposition field of w over F, we have

€zw)| K = fz(w)|x = égjr = fH(F' =1

by Theorem 2, so that ex|zw) = €njx = er|x , and similarly for f.

(b) Since H = Z(w) - F is the decomposition field of w in L | F, the number
t of valuations in the set § is equal to ¢t = [H:F] (cf. [4, p. 74]). Similarly,
g = [Z(w) :K]; hence, by transitivity of degrees,

_ tIF:K]
I =@\ :Zw)

We show now that the prolongations of v to F correspond in a one-to-one
way to the double cosets Z(w)oF (for ¢ ¢ X). Indeed, if u is any prolonga-
tion of v to F, let w' = w o o be any prolongation of u to L; if w; = w o oy is
another prolongation of u, then w’, w; are conjugate with respect to &; hence
w; = w of, EeF, 50 Woo, = woot and oy € Z(w)oF. The mapping that
associates with » the double coset Z(w)oF is well defined, onto the set of
double cosets, and one-to-one.

Hence the number of prolongations of » to F is equal to the number of
double cosets Z(w)o¢F, that is,

(3%:5) [F:K] _ [Z(w):K]

(z(w):Z(w) ng) [H:Z(w)] [H:F)

We now apply the preceding considerations to define the decomposition
field of a valuation w in an extension which may be neither separable nor
normal.

Let M |K be a finite (algebraic) extension, » a valuation of K, and
w = wy, -, w, its prolongations to /. Let S be the separable closure of
K in M, and L the normal extension of K, generated by S; hence L | K is a
finite Galoisian extension, whose group will be denoted by X. Let & be the
set of prolongations to L of the restriction w® of w to S; hence & is a distin-
guished set of valuations of L.

=4
.

DerFiNiTioN. The decomposition field Z,x(8) of the set & in L | K is
called the decomposition field of w in M | K and denoted by Zu x(w) = Z(w).

Since all the valuations in & have the same restriction to S, by Theorem 1
(b), we deduce that Z(w) = Z.x(8) & 8.

The restriction of each valuation w; = w to Z(w) s different from the restriction
of wto Z(w).

This follows from the facts that M | S is a purely inseparable extension
(hence the restrictions wf , w® are distinct) and that the restriction of w to
Z(w) has only one prolongation to L.

Z(w) 1s the smallest field between K and M with the above property.
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Let F be an intermediate field such that wi > w" forevery ¢ = 2, --- , g;
since F | (F n S) is a purely inseparable extension, wi"* > w""% All the
valuations in & have the same restriction w® to S, and hence also the same
restriction w™"*to F n 8. On the other hand, if  is a prolongation of w""* to
L, then u e &, for otherwise * = wf for some ¢ > 1, and hence w""% = wiN%,
a contradiction. By Theorem 1 (b), we conclude that

FOFnS2DZ(8) = Z(w).
Similarly, for every u ¢ & we have
[Z(w) -Z(w) :Z(u)] = ezaix(w) -fzanix(w) -x*
(with ¢ = 0), and the number of distinct prolongations of » to M is equal to

[S:K]
(Z(u)-S:Z(w)]’

where u is any prolongation of v to L.

This last assertion follows at once from Theorem 3 (b), applied to the ex-
tension L | K and the intermediate field F = 8, if we observe that each valu-
ation of S has only one prolongation to M.

The following example shows that the results of Theorem 3 are, in a sense,
the best ones to be expected.

Example. There exists a field K, endowed with a discrete valuation v, of
rank 1, such that, given any two integers p > 1, » > 1, there exists a finite
Galoisian extension L of K, with the following property: There exists a dis-
tinguished set & of valuations, prolongations of v to L, such that if « is the
restriction of any w e & to the decomposition field Z(§), then

ez ix(u) = u, fzeix(u) = ».

In this construction, we shall use Krull’s existence theorem (cf. [2]).

Given u, », let p be any prime number such that uv < p, and let
t=(p—w) +1>1.

Let K be a field of characteristic zero, with a discrete valuation » such that
K /v has also characteristic zero, and let us assume that K admits at least
one more nonequivalent discrete valuation »’. We may take, for example,
K = Q(X), v being that prolongation of the trivial valuation of Q such that
v(X) = 1; then K/v = Q; moreover, we may take v’ equal to the natural
prolongation of the 2-adic valuation of Q to Q(X) = K, so v’ is also discrete.

By Krull’s existence theorem, there exists a separable extension F | K, of
degree p, such that v admits ¢ prolongations u; , us, - - - , u: to F, for which we
have epx(u)) = u, frx() = v, epx(us) = 1, frx(u;) = 1, for every
=2, 1

Let L | K be the smallest normal extension of K containing F, and let &
be the set of all the prolongations of u; to L.

We show now that Z(8) = F. Indeed, Z(&) is the smallest subfield of L
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such that all the valuations of & have the same restriction to Z(8), but some
valuation of L, extending » and not in &, has distinct restriction to Z(8). As
F has this property, then F 2D Z(8). As [F:K] = p prime, if F = Z(8),
then Z(&) = K; this means that Z(8) = & = Gal (L|K), s0o § = U (set
of all the prolongations of v to L), which is impossible, since any prolongation
of u;, 7 = 2, to L does not belong to &.

The same example shows us that there may exist cases in which Z(w) - Z(8&)
contains strictly Z(w), that is, Z(w) does not contain Z(8), for some w ¢ &.

Similarly, if in the previous example we take p such that p = 2u» — 1,
then ¢ = uv. Let w e §; since [Z(w)-Z(8) :Z(w)] = uw, then the number g
of prolongations of v to L is

_ t-12(8):K]
Y= Zw) - Z(8):Z(w)]

Hence, contrary to the case where & is reduced to only one valuation, in
general we have [Z(8) :K] # ¢.

# [Z(8):K] .
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