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1. Introduction

CertMn Bnch Mgebrs cn be represented s the Mgebr of M1 continuous
reM-vMued functions on suitable compact spce, provided that they stisfy
certMn types of "reMity conditions." (Compact spces nd locMly compact
spces re Mwys required to be Husdorff spces in this note, in ddition to
the usuM requirements which such spces must stisfy.) For example, SegM
showed in [9] that if commutative Bnch Mgebm A with unit has norm
N such that N(x) N(x) nd N(x y) <= mx (N(x), N(y)) for M1
x and y in A, then A cn be identified with the lgebm of all continuous real-
vMued functions on some compact spce. In [6], Kadison showed that if a
Bnach Mgebr A with unit e has norm N such that

N(a + + d) >_ N(a)

for rbitmr.y a,... d in A, nd if x + e hs n inverse in A for each x
in A, then A cn be identified with the Mgebr of M1 continuous reM-wlued
functions on a suitable compact spce.
These results of SegM nd Kdison are characterized by the fct that the

imposition of condition on the norm of the Mgebm insures that only real-
vMued functions re obtMned, although the extra lgebraic condition of
Kdison lso tends to have this effect. In this note, we shM1 consider connected
normed Mgebrs whose norms stisfy "reality condition" of the type em-
ployed by SegM or Kadison. The corollary of Theorem 5 will include as
speciM cses both SegM’s result nd the commutative cse of Kdison’s result.
SpecificMly, it is shown that if A is nonzero, commutative, complete normed
Mgebra, over the reM field with some power of its ordinary absolute wlue used
s n bsolute wlue, nd if the norm N for A has the property that

N(x + y) >= N(x)

(or N(x) N(x) and N(x y) <= max (N(x), N(y) for all x and y
in A, then A may be identified with the algebra of all continuous real-valued
functions on a suitable compact space in case A has a unit element, and A
may be identified with the algebra of all continuous real-valued functions
which "vanish at infinity" on a suitable noncompact locally compact space
if A is without unit. In the corollary of Theorem 6, a similar conclusion is ob-
tained in case the hypotheses concerning the scalar field are replaced by the
assumptions that the scalar field is some field with absolute value and that the
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algebra is connected. (In this case the given algebra is only identified with
the ring of continuous functions, since the algebra is not given originally as a
real algebra.) The theorems to which these corollaries correspond are some-
wht similar to their corollaries, but they do not ssume commutativity and
they do assume slightly stronger forms for the "reality conditions" on the
norms.
The material contained in this paper depends upon Ostrowski’s results in

[8], whereas M:azur’s Theorem [7] has usually been employed by others in
comparable situations. (See Gelfand’s methods in [5], for instance.) Some
of the results which stem from those of Ostrowski have some intrinsic interest,
in addition to their usefulness in proving the results mentioned in the pre-
ceding paragraph. Thus, Theorem 1 shows that if a connected, complete ring
R with absolute value has a unit element, then R is algebraically and topo-
logically isomorphic to the real field, the complex field, or the division ring of
real quaternions. A corollary of this theorem then shows that if a connected
ring R with absolute value has a nonzero center, then R is algebraically and
topologically isomorphic to a subring of the division ring of all real quater-
nions. The case in which R is a field is well known and is due essentially to
Ostrowski; in this case R would be algebraically and topologically isomorphic
to a subfield of the complex field.

2. Preliminaries
It is assumed that the reader is familiar with the contents of [2]. Since we

shall deal with both rings and algebras, the terms homomorhism and iso-
morphism will be reserved for use when reference is intended only to the ring
structure of the systems under consideration; when these two words are to
have a meaning different from this, the meaning will be specified. A norm-
preserving isomorphism of a metric ring R into a metric ring R’ will be called
an isometry of R into R’. If there exists an isometry of a metric ring R onto
a metric ring R’, then R is said to be isometric to R’.

If p is a real number such that 0 < p <= 1, then the symbols 9(p, (P, and
(P will denote respectively the field of all real numbers, the field of all com-
plex numbers, and the division ring of all real quaternions, each provided with
the ph power of its ordinary absolute value as a norm. Each of these systems
is then a connected, complete division ring with absolute value. Conversely,
a connected, complete division ring with absolute value is necessarily iso-
metric to (P, to (, or to (, where p is a suitable real number such that
0 < p =< 1. This result is given essentially in Theorem 11 of [1]. However,
it will be useful to obtain a more general result than this, and we shall therefore
obtain the same conclusion when the assumption that a division ring is in-
volved is replaced by the weaker hypothesis that the ring has a unit element.

THEOREM 1. Let R be a connected, complete ring with absolute value, such that
R has a unit element e. Then there exists a real number p, with 0 < p <- 1, such
that R is isometric to
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Proof. Case 1. Let the complement of 0 be connected in R. We note tha
R contains no nonzero generalized divisors of zero in the sense of [1], for the
norm of R is an absolute value. Then Theorem 1 of [1] shows that R is a
division ring; the use of Lemma 15 and Theorem 11 of [1] then yields the
desired result.

Case 2. Let the complement of 0 fail to be connected in R. Then [4; Chap. V,
3, Ex. 4] outlines a method of showing that the additive group of R is iso-
morphic as a topological group to the additive group of real numbers. If c is
any nonzero element of R, the mapping x .--+ cx is a continuous endomorphism
of the additive group of R, and it carries the connected set R into the set cR.
Thus, cR is connected and is also a subgroup of the additive group of R.
Furthermore, cR contains the nonzero element ce c. Since the additive
group of real numbers has no connected subgroups other than itself and the
zero subgroup, we may conclude that the subgroup cR coincides with R. It
follows that e is in cR, so that c has a right inverse in R. But c was any non-
zero element of R, and we therefore conclude that R is a division ring. The
proof is completed in the same way as in Case 1.

COROLL2RY. Let R be a connected ring with absolute value, such that R has a
nonzero center. Then there exists a real number p, with 0 p <-_ 1, such that R
is isometric to a subring of (). If, in addition, R is commutative, then R is
also isometric to a subring of ().

Proof. Let D be the set of nonzero central elements of R, and apply
Lemma 17 of [1] in order to construct the metric ring R and an isometry of
R into R.. (Note that the existence of a unit element is not used in the proof
of Lemma 17, although for convenience all rings in [1] were assumed to have
units.) It is clear that R is a ring with absolute value and tha R has a
unit element.
For each fixed s in D, the mapping x -- Ix/s] is a continuous mapping of the

connected space R onto a subset B, of R. Then each B, is connected, each
B, obviously contains 0, and R. is the union of the B, as s ranges over D. It
follows from [4; Chap. I, 11, Prop. 2] that R is connected.
The completion of R. must then satisfy the hypotheses of Theorem 1, and

therefore there exists a real number p, with 0 p -_< 1, such that the comple-
tion of R is isometric to 9(), to (), or to :(). That is, the completion of
R is isometric to a subring of :(), so that R. is isometric to a subring of
(). Thus, R is isometric to a subring of ().

In case R is also commutative, then R is isometric to a commutative sub-
ring of (). But every commutative subring of () is contained in a maxi-
mal commutative subring, and it is easily established that every maximal
commutative subring of() is isometric to (). The second assertion in the
statement of the corollary follows immediately.
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There are two special cases of some interest in which the corollary applies"

(1) If R is a nonzero, commutative, connected ring with absolute value, then
the corollary applies to R.

(2) If R is a connected ring with absolute value such that R has a unit ele-
ment, then the corollary applies to R.

The case in which R is actually a field in this corollary was given essentially
by 0strowski in [8].

It should be noted that the isometrics are not necessarily unique in either
the theorem or its corollary, but the number p is uniquely determined by the
condition I1 2c ]1 2" c II if c is any given nonzero central element of the
ring in question. (Pseudonorms for rings will be indicated generally by
letters such as N and N’, but in the case of norms we may revert to the nota-
tion I] ]1 in some instances.)

3. Pseudonorms which satisfy a reality condition

The results of the preceding section show that certain types of connected
metric rings may be embedded in the division ring of all real quaternions. We
shall now impose further conditions on the norms of such rings, in order to
obtain an embedding in the field of all real numbers. This will be useful in
the next section, where rings of continuous real-valued functions will be con-
structed. The conditions imposed in this section on norms (or pseudonorms)
may therefore be described as "reality conditions," since they lead to real
numbers and to real-valued functions.

DEFINITION. If N is a pseudonorm for a ring R, such that for every
natural number n

+ >- N(xi x,)

whenever (x, x,) and (y, y,) are ordered n-tuples of elements of
R, then N will be called a Kadison pseudonorm. A pseudonorm N for a ring
R will be called a Segal pseudonorm if N(x) N(x) for all x in R, and if
for every natural number n

<- max (N(x 
whenever (x, ..., x,) and (y, ..., y,) are ordered n-tuples of elements
of R.

dion peudonorm N lwy ifie he condition N - )N) for 11 nd y, by definition of Kdion peudonorm. When O,
we have N(x) >- N(x) , so that N(x) N(x) for all x when N is a Kadison
pseudonorm. Thus, Kadison pseudonorms and Segal pseudonorms are
always power multiplicative since they satisfy the condition N(x) N(x)
for all x.
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In the case .of a commutative ring the criteria for determining whether a
given pseudonorm is a Kadison pseudonorm or Segal pseudonorm become
somewhat simpler.

THEOREM 2. Let N be a pseudonorm for a commutative ring R. Then N is
a Kadison pseudonorm (Segal pseudonorm) if and only if

N(x + y) >_ N(x)

(N(x) N(x) and N(x y) <- max (N(x), N(y)
for all x and y in R.

The proof is routine and is left to the reader.
Segal considered in [9] commutative Banach algebras having a Segal norm.

In [6], Kadison considered the case of a Banach algebra with a norm N such
that N(a - d) >- N(a) for arbitrary a,... d. Theorem 2 shows
that for a commutative Banach algebra such an N is actually a Kadison norm
in the sense of this note. The norms considered by Kadison are different from
Kadison norms as defined here when a noncommutative algebra is involved.
However, Kadison also employed a further assumption that the algebras were
"strictly real," as defined in [6]. In this note, the only reality conditions
which will be employed are reality conditions on the norm: It will be as-
sumed that the norms are Kadison norms or Segal norms. It seems to be neces-
sary that we use the fairly strong form of definition given above for Kadison
pseudonorms and Segal pseudonorms.

It is now possible to obtain embeddings in the real field if a "reality condi-
tion" on the norm is added to the hypotheses of the results of Section 2.

THEOREM 3. Let R be a connected, complete ring with Kadison absolute value
( Segal absolute value), such that R has a unit element. Then there exists a real
number p, with 0 < p <-_ 1, such that there exists an isometry r of R onto 9(p).

Proof. Theorem 1 is applied, and the other possible conclusions are elimi-
nated because the absolute values for (P) and () are not Kadison absolute
values or Segal absolute values.

COROLLA.RY. Let R be a connected ring with Kadison absolute value ( Segal
absolute value), such that R has a nonzero center. Then there exists a real num-
ber p, with 0 p <= 1, such that there exists an isometry r of R into 9(p).

Proof. This corollary follows from Theorem 3 in the same way that the
corollary of Theorem 1 follows from that theorem. It is only necessary to
note that when R has a .Kadison absolute value (Segal absolute value), then
RD and the completion of RD also have Kadison absolute values (Segal abso-
lute values).

It has already been observed that p is uniquely determined in such results.
The isometry in Theorem 3 is clearly unique (this is seen more easily if the
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inverse of the isometry is considered), and it follows easily that a is uniquely
determined in the corollary of Theorem 3. Thus, p and a are unique in both
Theorem 3 and its corollary.
We shall be interested in algebras as well as rings in this note, and we there-

fore introduce the definitions which follow.

DEFXNTON. Let A be an algebra, over a field K with absolute value. A
pseudonorm N for A is said to be K-admissible if N(kx) ]c .N(x) when-
ever k is in K and x is in A.

DEFINITION. When an a] bra A, over a field K with absolute value, is
given, together with a K-admissible norm for A, the A is called a normed
algebra over K. (See [4; Chap. IX, 3, No 7], for example, for further infor-
mation concerning normed algebras.)

DEFINITION. _A_ metric ring R with a stable norm will be called a Kadison
ring (Segal ring) if the norm is also a Kadison norm (Segal norm). If a
normed algebra A is also a Kadison ring (Segal ring) then A will be called a
Kadison algebra Segal algebra).

In [2], the notion of induced pseudonorms of a given pseudonorm was con-
sidered, and pseudo absolute values subordinate to a given pseudonorm were
also constructed in some cases. It is desirable to show that various special
properties of the original pseudonorm may be transmitted to the new pseudo-
norms. This is done in the results which conclude this section.

LEMMA 1. Let N be a stable, power multiplicative pseudonorm for a ring A,
and let c be an element of A which is not N-null. Then Nc is a nonzero, stable,
power multiplicaive pseudonorm subordinate to N such that

(i) No(c) N(c);
(ii) if N is a Kadison pseudonorm, then Nc is a Kadison pseudonorm;
(iii) if N is a Segal pseudonorm, then N is a Segal pseudonorm;
(iv) whenever A is an algebra, over a field K with absolute value, such that

N is K-admissible, then N is K-admissible;
(v) N(cx) N(c).Nc(x) for all x in A.

The proof is routine and is left to the reader.

THEOREM 4. Let N be a stable, power multiplicative pseudonormfor a ring A,
and let c be an element of A which is not N-null. Then there exists a nonzero
pseudo absolute value N subordinate to N such that

(i) N’(c) N(c);
(ii) if N is a Kadison pseudonorm, then N’ is a Kadison pscudonorm;
(iii) if.N is a Segal pseudonorm, then N’ is a Segal pseudonorm;
(iv) whenever A is an algebra, over a field K with absolute value, such that N

is K-admissible, then N’ is K-admissible.
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Proof. Let 9 be the set of all stable, power multiplicative pseudonorms
N’ subordinate to N and such that

(i) N’(c) N(c)
(ii) if N is a Kadison pseudonorm, then N’ is a Kadison pseudonorm;
(iii) if N is a Segal pseudonorm, then N’ is a Segal pseudonorm;
(iv) whenever A is an algebra, over a field K with absolute value, such

that N is K-admissible, then N’ is K-admissible;
(v) N’(cx) N’(c).N’(x) for all x in A.
Then Lemma 1 shows that N belongs to 9 so that 9 is not empty. It is

easily verified that 9 is a hereditary system and that 9 contains minimal ele-
ments. If N’ is such a minimal element, then Lemma 2 of [2] shows that N’
is a pseudo absolute value. The properties of N’ stated in the theorem follow
from the fact that N’ belongs to 9.

4. Rings of continuous functions

In this section it will be shown that certain types of Kadison algebras and
Segal algebras can be represented as rings of continuous real-valued functions
on suitable topological spaces. Previous results in representing rings or
algebras as rings of continuous functions have generally dealt either with non-
zero commutative rings, or with rings with unit element in case commuta-
tivity was not assumed specifically; in some cases, such as in Gelfand’s paper
[5], both commutativity and the existence of a unit have been used. In this
note, the rings are subjected to a condition which always holds in nonzero
commutative rings or in rings with unit element.

DEFINITION. /k nonzero ring R is called a centrist ring if the two-sided ideal
generated by the center of R coincides with R.

Every ring with unit element is clearly a centrist ring, and every nonzero
commutative ring is also a centrist ring. We shall therefore prove the next
results for centrist algebras; the corresponding results for algebras with unit
element and for nonzero commutative algebras will then follow as special
cases.
Our terminology follows [4] in the definition of compact spaces and locally

compact spaces. Thus, a compact space is defined to be a Hausdorff space
for which every open covering has a finite subcovering, and a locally compact
space is defined to be a Hausdorff space in which each point is an interior
point of at least one compact subset.

If p is a real number such that 0 < p _-< 1, and if is a compact space,
the symbol C(; 9; p) will denote the set of all continuous real-valued func-
tions x() on , with algebraic operations defined in the obvious way, and
with the norton defined by N(x) sup/I x() lP; e} for allx in C(; 9; p).
In case p is a real number, such that 0 < p -< 1, and is a noncompact locally
compact space, the symbol C(; 9; p) will denote the set of all continuous
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real-valued functions on 9 which "vanish at infinity," with the same defini-
tions for the norm and the algebraic operations as in the case of a compact
space 9. Thus, whenever p is a real number, with 0 < p -< 1, and 9 is a
locally compact space, whether 9 is compact or not, the system C(9; 9; p)
is defined and is clearly a nonzero, commutative, connected, complete normed
algebra over P. In fact, C(9; ; p) is a Kadison algebra and a Segal
algebra; each C(9; ; p) is of course a centrist algebra. We shall show
that, conversely, a normed algebra which possesses sufficiently many of these
properties of a C(9; 9; p) may be identified with a C(9; ; p). The first
result of this type will show that a centrist, complete Kadison algebra or
Segal algebra over an 9cp may be identified with C(9; 9; p), for a suitable
locally compact space 9.

LEMMA 2. Let A be a nonzero, complete normed algebra over 9, where p

is a real number such that 0 < p <-_ 1. Suppose that for each nonzero c in A
there is a homomorphism of A into 9, as algebras over , such
that ]l (c) N(c) and (x) <- N(x) for all x in A, where N is the norm
for A. Then there exist a locally compact space 9 and a norm-preserving iso-
morphism r of A onto C(9; ; p), as algebras over 9, such that A has a unit
element if and only if 9 is compact.

A detailed proof of this key result is given in [3]. The space 9 is taken as
the set of all nonzero homomorphisms of A into 9cp as algebras over
such that ,(x) =< N(x) for all x in A. Alternatively, 9 may be described
as the set of all nonzero homomorphisms , of A into 9 such that (x) =<
N(x) for all x in A; this is true because such homomorphisms are continuous
and must therefore be homomorphisms of A into 9, as algebras over 9.
The mapping is defined by the condition [(x)]() (x) for all in
and 9 is given the coarsest topology which will make all of the functions (x)
continuous on 9. (A "coarser" topology is one which is "moins fine" in
the sense of [4].)

LEMMA 3. Let A be a normed algebra over , where p is a real number
such that 0 < p <= 1, and let A have a nonzero center. Suppose that the norm
for A is a Kadison absolute value or Segal absolute value. Then there exists a
norm-preserving isomorphism r of A into 9, as algebras over .

Proof. The corollary of Theorem 3 shows that there is an isometry r of
A into 9(x), where X is a suitable, uniquely determined, real number such
that 0 < X -< 1. If c is a nonzero central element of A, then the last para-
graph of Section 2 indicates that N(2c) 2x.N(c), where N is the norm for
A. On the other hand, the fact that N is 9(-admissible shows that
N(2c) 2.N(c), so that , p. Thus, r is an isometry of A into 9(p).
That r is actually an algebra-isomorphism follows easily from the continuity
of r.



496 SlLVlO AURORA

THEOREM 5. Let A be a centrist, complete Kadison algebra Segal algebra)
over 9(p) where p is a real number such that 0 < p <- 1 Then there exist a
locally compact space and a norm-preserving isomorphism of A onto
C(; 9; p), as algebras over (P), such that A has a unit element if and only if

is compact.

Proof. Let N be the norm for A, and let c be any nonzero element in A.
If Theorem 4 is applied to N and to the element c, we can find a pseudo
absolute value N’ subordinate to N and such that N’(c) N(c) 0, N’
is a Kadison pseudonorm (Segal pseudonorm), and N’ is P)-admissible.
The ideal I(N’) is then a subalgebra of A, so that A/I(N’) is an

algebra over 9). Let /V be the function on fi defined by the condition
l(n(x) N’ (x) for all x in A, where is the natural mapping of A onto
2:. Then 2 is an 9P-admissible norm for fi, so that becomes a normed
algebra when it is given this norm. Since N’ is a Kadison pseudo absolute
value (Segal pseudo absolute value),/V must be a Kadison absolute value
(Segal absolute value) for A.
The two-sided ideal I(N’) does not contain c and is therefore distinct

from A. Then the center of the centrist algebra A can not be contained
in I(N’), so that there is a central element b in A such that b is not in I(N’).
It is clear that is a homomorphism of A onto fi, as algebras over, and
that the kernel of n is I(N’). Thus, n(b) is a central element of fi, and
(b) is not zero, so that the center of A is not zero. Lemma 3 may now be
applied to 2:, and we obtain a norm-preserving isomorphism r of fi into (a,
as algebras over 9.

Let 9 be the mapping obtained by applying n and then r. Clearly, is
a homomorphism of A into , as algebras over . We have

 (c)II
and also

for all x in A. Application of Lemma 2 completes the proof.

COROllARY. Let A be a nonzero, commutative, complete normed algebra over
(), where p is a real number such that 0 p <- 1. Suppose that the norm
N for A is such that

N(x + y) >_ N(x)

(N(x) N(x) and N(x y)
_

max(N(x), N(y)))

for all x and y in A. Then there exist a locally compact space and a norm-
preserving isomorphism of A onto C(; ; p), as algebras over 9(), such that
A has a unit element if and only if is compact.

This corollary, with p 1, and using the alternative hypothesis (in paren..
theses), coincides with Segal’s Theorem 1 in [9] if it is assumed here that
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A has a unit element. With the additional assumption of commutativity in
Kadison’s Theorem 6.5 of [6], the latter result becomes a special case of this
corollary.
In the last theorem and its corollary, it was assumed that A was a normed

algebra over some (P), and A was therefore necessarily connected. It is
possible to obtain comparable results in case the assumption that A is a
normed algebra over some (P) is replaced by the assumption that A is a
connected normed algebra over some field K with absolute value. This is
accomplished by using the following lemmas in order to reduce the situation
to the one which has just been considered.

LEMMA. 4. Let A be a nonzero Kadison algebra Segal algebra) over a field
K with absolute value. Then the absolute value for K is a Kadison absolute
value Segal absolute value).

The proof is trivial and is left to the reader.

LEMMA. 5.
absolute value.
archimedean.

Let A be a centrist, connected normed algebra over a field K with
If the norm for A is stable and power multiplicative, then K is

Proof. Let N be the norm for A, and let c be a nonzero element in A.
Theorem 4 shows that there exists a K-admissible pseudo absolute value N’
subordinate to N, such that N’(c) N(c). Form the algebra A A/I(N’)
over K, as in the proof of Theorem 5, and let be the natural mapping of
A onto fi. The norm for fi is defined by the condition h(v(x) N’ (x)
for all x in A; with the norm , the algebra fi becomes a normed algebra
over K. Also, h7 is an absolute value for fi. Since A is a centrist algebra,
it follows in the same way as in the proof of Theorem 5 that ft. has a nonzero
center.

Let D be the set of nonzero central elements of 2:. If 2:D is formed, by
using Lemma 17 of [1], then AD is a metric ring with unit element , and the
norm for is an absolute value. (Note that the proof of that lemma does
not require the existence of a unit element in the original ring.) It can also
be shown that fi. is a normed algebra over K.
The mapping is a homomorphism of A onto fi-, as algebras over K, and

it is easy to establish that v is also continuous. Then fi is connected since
it is the continuous image of the connected set A; connectedness of 2:. follows
from the connectedness of A by the use of a device already employed in the
proof of the corollary of Theorem 1. If the corollary of Theorem 1 is applied
to fi, an isometry is obtained of fiD into :(), for a suitable real number p
such that 0 p -< 1. But the mapping k -- kg is clearly an isometry of
K into 2:., and it follows that there is an isometry of K into ).

In :5(p), we have 2 2 > 1. Thus, in K we also have I1 2 > 1, and
Lemma 14 of [1] shows that K is archimedean.
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LEMMA 6. Let A be a centrist, connected Kadison algebra (Segal algebra),
over a complete field F with absolute value. Then there exists a real number p,
with 0 < p <- 1, such that there exists an isometry of F onto (P). The number
p and the isometry o" are uniquely determined.

Proof. Lemma 5 shows that F is archimedean, so that Theorem 11 of
[1] implies that there exists a real number p, with 0 < p _-< 1, such that F is
isometric to 9(p), to (), or to (). But Lemma 4 shows that the absolute
value for F is a Kadison absolute value (Segal absolute value), and it is
impossible for () or () to have a Kadison absolute value or Segal absolute
value; therefore, F is isometric to 9(p). It is obvious that p must be uniquely
determined; also, it is easily seen that the isometry of F onto () is uniquely
determined on the prime field of F, and therefore on F, which is the closure
of its prime field.

THEOREM 6. Let A be a centrist, connected, complete Kadison algebra Segal
algebra) over a field K with absolute value. Then there exist a locally compact
space, a real number p with 0 < p <- 1, and an isometry ( of A onto C(; 9; p),
such that A has a unit element if and only if is compact.

Proof. The completion of A can be considered as a normed algebra over
the completion of K. (See [4; Chap. IX, 3, No 7].) Thus, if F is the com-
pletion of K, then A is a normed algebra over F. Lemma 6 shows that there
is a unique real number p, with 0 < p -< 1, such that F is isometric to ().
Since the isometry of F onto (P) is also unique, we shall identify F with
9(). Theorem 5 may then be applied, but afterward is regarded only as
an isometry in the statement of Theorem 6 since A was not originally given
as an algebra over 9().

COaOLLARY. Let A be a nonzero, commutative, connected, complete normed
algebra over a field K with absolute value. Suppose that the norm N of A is
such that

N(x + y2) >= N(x)

(N(x) N(x) and N(x y2) <- max(N(x2), N(y)

for all x and y in A. Then there exist a locally compact space , a real number
p with 0 < p <-_ 1, and an isometry of A onto C(; 9; p), such that A has a
unit element if and only if is compact.

Note 1. The assumption that the algebra is connected may be replaced,
in Theorem 6 and its corollary, by the assumption that the field K of scalars
is archimedean; for the completion of K would then be connected, and the
algebra would also be connected since it could be considered a normed algebra
over the completion of K.

Note 2. In the corollary of Theorem 3, the conclusion is actually that
is an isometry of R onto 9(), for z(R) would be the continuous image of the
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connected set R and therefore connected, and a(R) would be the homo-
morphic image of the additive group of R and therefore a subgroup of the
additive group of real numbers; thus, a(R) would be a nonzero, connected
subgroup of the additive group of real numbers and would consequently
coincide with 9(p). Similarly, the conclusion of Lemma 3 could be strength-
ened so that the norm-preserving isomorphism r is a mapping onto 9(p), if
the connectedness of the algebra A is noted and employed.
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