THE STRUCTURE OF SOME SUBGROUPS OF THE MODULAR GROUP ${ }^{1}$

BY
Morris Newman
Introduction

Let Γ be the 2×2 modular group. In a recent article [7] the notion of the type of a subgroup Δ of Γ was introduced. If the exponents of

$$
\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right) \text { and }\left(\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right)
$$

modulo Δ are r and s respectively, then Δ is said to be of type (r, s). It is trivial to verify that if Δ is of finite index in Γ, then $r s \neq 0$. In fact if G is any group and H a subgroup of finite index i, then there is an integer $e>0$ such that $g^{e} \in H$ for all $g \in G$, since the $i+1$ elements $1, g, \cdots, g^{i}$ of G cannot all be distinct modulo H.

Thus if Δ is of finite index in Γ, then $\Delta \supset \Gamma^{m}$, the fully invariant subgroup of Γ generated by the $m^{\text {th }}$ powers of the elements of Γ, for some positive integer m. An obvious question to ask is whether Δ is of finite index in Γ if it contains such a subgroup. In this connection see [3], where certain necessary and sufficient conditions are given for this to occur. It is clearly sufficient to consider only $\Delta=\Gamma^{m}$. It turns out that the answer to this question is in the negative, but the proof requires the recent results of Novikov [9] on the Burnside problem.

The purpose of this paper is to elucidate the structure of the groups Γ^{m}, and incidentally to characterize Γ^{\prime}, the commutator subgroup of Γ, by the relationship $\Gamma^{\prime}=\Gamma^{2} \cap \Gamma^{3}$. This has a pleasing similarity to the formula $\Gamma=\Gamma^{2} \Gamma^{3}$. In addition certain related questions will be considered.

The problem is similar to the Burnside problem, the difference being that the modular group Γ is not a free group, but is instead the free product of a cyclic group of order 2 and a cyclic group of order 3.

The groups I^{m}

The modular group $\bar{\Gamma}$ is generated by the matrices \bar{x}, \bar{y}, where

$$
\bar{x}=\left(\begin{array}{cc}
0 & -1 \tag{1}\\
1 & 0
\end{array}\right), \quad \bar{y}=\left(\begin{array}{cc}
0 & -1 \\
1 & 1
\end{array}\right)
$$

with defining relationships $\bar{x}^{2}=\bar{y}^{3}=-I$, where I is the identity matrix. If \bar{z} is any element of $\bar{\Gamma}$ and \bar{z} is identified with $-\bar{z}$, the group so obtained

[^0](which is $\bar{\Gamma}$ modulo its center $\{I,-I\}$) is the modular group Γ, which may be regarded as the group generated by the symbols x, y with defining relationships $x^{2}=y^{3}=1$, and we find it convenient to take this interpretation.

We shall write $\left\{x_{1}, x_{2}, \cdots\right\}$ for the group generated by x_{1}, x_{2}, \cdots. Thus

$$
\Gamma=\{x, y\}, \quad x^{2}=y^{3}=1
$$

The fully invariant subgroups Γ^{m} of Γ are then defined by

$$
\Gamma^{m}=\left\{x_{1}^{m}, x_{2}^{m}, \cdots\right\}
$$

where x_{1}, x_{2}, \cdots are the elements of Γ. It is clear that

$$
\begin{gather*}
\Gamma^{m} \supset \Gamma^{m n} \tag{2}\\
\left(\Gamma^{m}\right)^{n} \supset \Gamma^{m n} \tag{3}
\end{gather*}
$$

It is also true that

$$
\begin{equation*}
\Gamma^{m} \Gamma^{n}=\Gamma^{(m, n)} \tag{4}
\end{equation*}
$$

where (m, n) is the greatest common divisor of m and n. To prove (4) we notice first that the product is well defined since the groups Γ^{m} are normal subgroups of Γ. We have $\Gamma^{(m, n)} \supset \Gamma^{m}, \Gamma^{(m, n)} \supset \Gamma^{n}$ (by (2)), so that $\Gamma^{(m, n)} \supset \Gamma^{m} \Gamma^{n}$. Also let z be any element of Γ. Determine integers m_{1}, n_{1} so that $m_{1} m+n_{1} n=(m, n)$. Then $z^{m_{1} m} \in \Gamma^{m}, z^{n_{1} n} \in \Gamma^{n}, z^{m_{1} m+n_{1} n} \in \Gamma^{m} \Gamma^{n}$, $z^{(m, n)} \in \Gamma^{m} \Gamma^{n}$. This implies that $\Gamma^{m} \Gamma^{n} \supset \Gamma^{(m, n)}$, and so $\Gamma^{m} \Gamma^{n}=\Gamma^{(m, n)}$, completing the proof of (4).

In particular

$$
\begin{equation*}
\Gamma^{2} \Gamma^{3}=\Gamma \tag{5}
\end{equation*}
$$

Wc first work out the structure of Γ^{2} and Γ^{3}.
Theorem 1. The group Γ^{2} is the free product of two cyclic groups of order 3, and

$$
\left(\Gamma: \Gamma^{2}\right)=2, \quad \Gamma=\Gamma^{2}+x \Gamma^{2}, \quad \Gamma^{2}=\{y, x y x\}
$$

The elements of Γ^{2} may be characterized by the requirement that the sum of the exponents of x be divisible by 2 .

Theorem 2. The group Γ^{3} is the free product of three cyclic groups of order 2, and

$$
\left(\Gamma: \Gamma^{3}\right)=3, \quad \Gamma=\Gamma^{3}+y \Gamma^{3}+y^{2} \Gamma^{3}, \quad \Gamma^{3}=\left\{x, y x y^{2}, y^{2} x y\right\}
$$

The elements of Γ^{3} may be characterized by the requirement that the sum of the exponents of y be divisible by 3 .

Proof of Theorem 1. Set $H=\{y, x y x\}$. Then, as is easily verified, H is a normal subgroup of Γ contained in Γ^{2}, and the elements of H satisfy the requirements of Theorem 1 ; that is, the sum of the exponents of x is even.

Let z be any element of Γ. Then we can write

$$
\begin{equation*}
z=y^{c_{1}} x y^{c_{2}} x \cdots y^{c_{n}} x y^{c_{n+1}} \tag{6}
\end{equation*}
$$

where the c_{i} 's are integers which may be 0 . Thus

$$
\begin{array}{ll}
z=y^{c_{1}}(x y x)^{c_{2}} y^{c_{3}} \cdots(x y x)^{c_{n}} y^{c_{n+1}} & \text { for } n \text { even } \\
z=y^{c_{1}}(x y x)^{c_{2}} y^{c_{3}} \cdots y^{c_{n}}(x y x)^{c_{n+1}} x & \text { for } n \text { odd }
\end{array}
$$

Hence $z \epsilon H$ or $z x \in H$. Since x is not in H, this implies that $\Gamma=H+H x=$ $H+x H$. Now $\Gamma \supset \Gamma^{2} \supset H$ and $(\Gamma: H)=2$, which implies that $\left(\Gamma: \Gamma^{2}\right)=1$ or 2 . But $\Gamma \neq \Gamma^{2}\left(x\right.$ is not in $\left.\Gamma^{2}\right)$, and so $\left(\Gamma: \Gamma^{2}\right)=2$. Thus $\Gamma^{2}=H$. It is also clear that H is the free product of two cyclic groups of order 3 since the defining relations for H are $y^{3}=(x y x)^{3}=1$. The proof of Theorem 1 is complete.

Proof of Theorem 2. Set $K=\left\{x, y x y^{2}, y^{2} x y\right\}$. Then K is a normal subgroup of Γ contained in Γ^{3}, and the elements of K satisfy the requirements of Theorem 2; that is, the sum of the exponents of y is a multiple of 3. Let w_{n} be any word of the form $y^{c_{1}} x y^{c_{2}} x \cdots y^{c_{n}} x$. We have $y^{c_{1}} x=y^{c_{1}} x y^{2 c_{1}} \cdot y^{-2 c_{1}}$, so that

$$
w_{n}=y^{c_{1}} x y^{2 c_{1}} w_{n-1}
$$

where $w_{n-1}=y^{c_{2}-2 c_{1}} x \cdots y^{c_{n}} x$. But $y^{c_{1}} x y^{2 c_{1}}=x, y x y^{2}$ or $y^{2} x y$. This implies by induction on n that $w_{n}=k y^{c_{0}}$, where $k \in K$ and c_{0} is an integer. Hence for z as given by (6) we have that $z=w_{n} y^{c_{n+1}}=k y^{c}$ where c is an integer. Since neither y nor y^{2} belongs to K, this implies that $\Gamma=K+K y+K y^{2}=$ $K+y K+y^{2} K$.

Now $\Gamma \supset \Gamma^{3} \supset K$ and $(\Gamma: K)=3$, which implies that $\left(\Gamma: \Gamma^{3}\right)=1$ or 3 . But $\Gamma \neq \Gamma^{3}\left(y\right.$ is not in $\left.\Gamma^{3}\right)$, and so $\left(\Gamma: \Gamma^{3}\right)=3$. Thus $\Gamma^{3}=K$.

To prove that K is the free product of three cyclic groups of order 2, we need only show that no generator belongs to the group generated by the other two, so that K has defining relations $x^{2}=\left(y x y^{2}\right)^{2}=\left(y^{2} x y\right)^{2}=1$. This is easy to verify since the generators are all of period 2 . Thus setting $y x y^{2}=z$, the elements of $\{x, z\}$ are of the form $(x z)^{n},(z x)^{n},(x z)^{n} x,(z x)^{n} z$; and that none of these can equal $y^{2} x y$ may be seen from the matrix representation of x and y given in (1). This completes the proof of Theorem 2.

For the case when m is not divisible by 6 , Theorems 1 and 2 determine Γ^{m} completely. In fact we have

Theorem 3. The groups Γ^{m} satisfy

$$
\begin{array}{ll}
\Gamma^{m}=\Gamma, & (m, 6)=1 \\
\Gamma^{2 m}=\Gamma^{2}, & (m, 3)=1 \tag{7}\\
\Gamma^{3 m}=\Gamma^{3}, & (m, 2)=1
\end{array}
$$

Proof. When $(m, 6)=1, \Gamma^{m}$ contains both x and y since $x=x^{m}, y=y^{ \pm m}$,
so that $\Gamma^{m}=\Gamma$. Suppose that $(m, 3)=1$. Then $y=y^{ \pm 2 m}, x y x=(x y x)^{ \pm 2 m}$, so that $\Gamma^{2} \subset \Gamma^{2 m}$. Since in addition $\Gamma^{2} \supset \Gamma^{2 m}($ by $(2))$, we have that $\Gamma^{2}=\Gamma^{2 m}$. Finally suppose that $(m, 2)=1$. Then $x=x^{3 m}, y x y^{2}=\left(y x y^{2}\right)^{3 m}, y^{2} x y=$ $\left(y^{2} x y\right)^{3 m}$, so that $\Gamma^{3} \subset \Gamma^{3 m}$. Since in addition $\Gamma^{3} \supset \Gamma^{3 m}$ (by (2)), we have that $\Gamma^{3}=\Gamma^{3 m}$. The proof of the theorem is complete.

We also require the structure of Γ^{\prime}. This is well known, and we have
Lemma 1. The commutator subgroup Γ^{\prime} of Γ is a free group of rank 2, and

$$
\begin{equation*}
\left(\Gamma: \Gamma^{\prime}\right)=6, \quad \Gamma=\sum_{r=0}^{5}(x y)^{r} \Gamma^{\prime}, \quad \Gamma^{\prime}=\left\{x y x y^{2}, x y^{2} x y\right\} \tag{8}
\end{equation*}
$$

In fact J. Nielsen has shown [8] that the commutator subgroup of the free product of a finite number of cyclic groups of finite order is a free group of finite rank.

We set

$$
\begin{equation*}
a=x y x y^{2}, \quad b=x y^{2} x y \tag{9}
\end{equation*}
$$

Then a and b have the matrix representations

$$
\bar{a}=\left(\begin{array}{ll}
2 & 1 \tag{10}\\
1 & 1
\end{array}\right), \quad \bar{b}=\left(\begin{array}{ll}
1 & 1 \\
1 & 2
\end{array}\right)
$$

We note that the quotient groups $\Gamma / \Gamma^{2}, \Gamma / \Gamma^{3}$ are cyclic and therefore abelian, so that $\Gamma^{2} \supset \Gamma^{\prime}, \Gamma^{3} \supset \Gamma^{\prime}$. Hence $\Gamma^{2} \cap \Gamma^{3} \supset \Gamma^{\prime}$. By one of the isomorphism theorems (Γ^{2} and Γ^{3} being normal subgroups of Γ),

$$
\Gamma^{2} \Gamma^{3} / \Gamma^{3} \cong \Gamma^{2} / \Gamma^{2} \cap \Gamma^{3}
$$

By (5) this becomes

$$
\Gamma / \Gamma^{3} \cong \Gamma^{2} / \Gamma^{2} \cap \Gamma^{3}
$$

Hence

$$
\left(\Gamma^{2}: \Gamma^{2} \cap \Gamma^{3}\right)=\left(\Gamma: \Gamma^{3}\right)=3
$$

But

$$
\left(\Gamma: \Gamma^{2} \cap \Gamma^{3}\right)=\left(\Gamma: \Gamma^{2}\right)\left(\Gamma^{2}: \Gamma^{2} \cap \Gamma^{3}\right)=2 \cdot 3=6
$$

Since $\Gamma \supset \Gamma^{2} \cap \Gamma^{3} \supset \Gamma^{\prime}$ and $\left(\Gamma: \Gamma^{\prime}\right)=\left(\Gamma: \Gamma^{2} \cap \Gamma^{3}\right)=6$, it follows that $\Gamma^{\prime}=\Gamma^{2} \cap \Gamma^{3}$. Thus we have proved

Theorem 4. The commutator subgroup Γ^{\prime} of Γ satisfies

$$
\begin{equation*}
\Gamma^{\prime}=\Gamma^{2} \cap \Gamma^{3} \tag{11}
\end{equation*}
$$

Because of Theorem 3 we have left only the groups $\Gamma^{6 m}$ to consider. Since $\Gamma^{2} \supset \Gamma^{6}$ and $\Gamma^{3} \supset \Gamma^{6}$, (11) implies that

$$
\begin{equation*}
\Gamma^{\prime} \supset \Gamma^{6} \tag{12}
\end{equation*}
$$

Then because Γ^{\prime} is a free group and $\Gamma^{6} \supset \Gamma^{6 m}$, we have by Schreier's theorem [10]

Theorem 5. The groups $\Gamma^{6 m}$ are free groups.

We can say something more about the groups $\Gamma^{6 m}$. In the first place, $\Gamma^{6 m} \supset\left(\Gamma^{\prime}\right)^{6 m}$ since $\Gamma \supset \Gamma^{\prime}$. Hence if $\left(\Gamma^{\prime}:\left(\Gamma^{\prime}\right)^{6 m}\right)<\infty$, then the same holds for ($\Gamma: \Gamma^{6 m}$). In particular M. Hall's solution of the Burnside problem for 6 (see [2] for an account of this) implies that ($\left.\Gamma^{\prime}:\left(\Gamma^{\prime}\right)^{6}\right)<\infty$, so that $\left(\Gamma: \Gamma^{6}\right)<\infty$. Secondly, we have from (3) and (12) that

$$
\left(\Gamma^{\prime}\right)^{m} \supset\left(\Gamma^{6}\right)^{m} \supset \Gamma^{6 m} .
$$

Then the results of Novikov on the Burnside problem [9] imply that $\left(\Gamma^{\prime}:\left(\Gamma^{\prime}\right)^{m}\right)=\infty$ for $m \geqq 72$, so that $\left(\Gamma: \Gamma^{6 m}\right)=\infty$ for $m \geqq 72$. There are left therefore the 70 cases

$$
\begin{equation*}
\Gamma^{6 m}, \quad 2 \leqq m \leqq 71 \tag{13}
\end{equation*}
$$

in which the index ($\Gamma: \Gamma^{6 m}$) is unknown.
We are going to determine the structure of Γ^{6}. We have
Lemma 2. Let G be a group generated by two elements α, β. Let N be a normal subgroup of G containing

$$
\begin{equation*}
[\alpha, \beta]=\alpha \beta \alpha^{-1} \beta^{-1} \tag{14}
\end{equation*}
$$

Then N contains G^{\prime}, the commutator subgroup of G.
Proof. G is abelian modulo N, which implies that $N \supset G^{\prime}$.
Corollary 1. $\Gamma^{6} \supset \Gamma^{\prime \prime}$, the second commutator subgroup of Γ.
For $\Gamma^{\prime} \supset \Gamma^{6}, \Gamma^{\prime}$ is generated by the two elements a, b given in (9), Γ^{6} is a normal subgroup of Γ^{\prime}, and

$$
[a, b]=(x y x y x)^{6} \in \Gamma^{6} .
$$

Corollary 2. The quotient group $\Gamma^{\prime} / \Gamma^{6}$ is abelian.
We remark that $\Gamma^{\prime \prime}$ is of infinite index in Γ and is countably infinitely generated, being the commutator subgroup of a free group of finite rank [5]. Hence $\Gamma^{6} \neq \Gamma^{\prime \prime}$.

Let p, q be positive integers. We define a class of normal subgroups $\Gamma^{\prime}(p, q)$ of Γ^{\prime} as follows: The element

$$
w=a^{r_{1}} b^{s_{1}} \cdots a^{r_{n}} b^{s_{n}}
$$

of Γ^{\prime} belongs to $\Gamma^{\prime}(p, q)$ if and only if

$$
\sum_{i=1}^{n} r_{i} \equiv 0 \quad(\bmod p), \quad \sum_{i=1}^{n} s_{i} \equiv 0 \quad(\bmod q)
$$

It is clear that

$$
\begin{equation*}
\Gamma^{\prime}(p, q) \supset \Gamma^{\prime \prime} \tag{15}
\end{equation*}
$$

$$
\begin{equation*}
\left(\Gamma^{\prime}: \Gamma^{\prime}(p, q)\right)=p q, \quad \Gamma^{\prime}=\sum_{r=0}^{p-1} \sum_{s=0}^{q-1} a^{r} b^{s} \Gamma^{\prime}(p, q), \tag{16}
\end{equation*}
$$

and that $\Gamma^{\prime}(p, q)$ is a free group of rank $1+p q$. The latter fact follows from Schreier's formula

$$
R=1+i(r-1)
$$

for the rank R of a subgroup of index i in a free group of rank r (see [10]), since Γ^{\prime} is of rank 2 and ($\Gamma^{\prime}: \Gamma^{\prime}(p, q)$) $=p q$. Formula (15) follows from the fact that the word w belongs to $\Gamma^{\prime \prime}$ if and only if

$$
\sum_{i=1}^{n} r_{i}=\sum_{i=1}^{n} s_{i}=0
$$

We are going to prove
Theorem 6. The group Γ^{6} is just $\Gamma^{\prime}(6,6)$. Hence Γ^{6} is of index 216 in Γ and is the free group on 37 generators. We have

$$
\begin{equation*}
\left(\Gamma^{\prime}: \Gamma^{6}\right)=36, \quad \Gamma^{\prime}=\sum a^{r} b^{s} \Gamma^{6}, \quad 0 \leqq r, s \leqq 5 \tag{17}
\end{equation*}
$$

Proof. Let $w=a^{r_{1}} b^{s_{1}} \cdots a^{r_{n}} b^{s_{n}} \in \Gamma^{\prime}(6,6)$. Then because Γ^{\prime} is abelian modulo $\Gamma^{\prime \prime}$ we may write

$$
w=a^{r_{1}+\cdots+r_{n}} b^{s_{1}+\cdots+s_{n}} w_{1}
$$

where $w_{1} \in \Gamma^{\prime \prime}$. Since $\Gamma^{\prime \prime} \subset \Gamma^{6}($ Corollary 1) and

$$
\sum_{i=1}^{n} r_{i} \equiv \sum_{i=1}^{n} s_{i} \equiv 0 \quad(\bmod 6)
$$

it follows that $w \in \Gamma^{6}$. Hence $\Gamma^{\prime}(6,6) \subset \Gamma^{6}$.
Now let u be an arbitrary element of Γ. By Lemma 1 there is an integer $r, 0 \leqq r \leqq 5$ such that $u=(x y)^{r} u^{\prime}$, where $u^{\prime} \in \Gamma^{\prime}$. Then

$$
\begin{aligned}
u^{6}=\left\{(x y)^{r} u^{\prime}\right\}^{6} & =\left\{(x y)^{r} u^{\prime}(x y)^{-r}\right\}\left\{(x y)^{2 r} u^{\prime}(x y)^{-2 r}\right\} \cdots\left\{(x y)^{6 r} u^{\prime}(x y)^{-6 r}\right\}(x y)^{6 r}
\end{aligned}
$$

A simple calculation shows that

$$
\begin{equation*}
(x y)^{6}=a b^{-1} a^{-1} b \in \Gamma^{\prime \prime} \subset \Gamma^{\prime}(6,6) \tag{18}
\end{equation*}
$$

Now if w is any element of Γ, define $S(w)=(x y) w(x y)^{-1}$. Thus

$$
\begin{equation*}
u^{6}=S^{r}\left(u^{\prime}\right) \quad S^{2 r}\left(u^{\prime}\right) \cdots S^{6 r}\left(u^{\prime}\right)(x y)^{6 r} \tag{19}
\end{equation*}
$$

We note that $S^{k}\left(u^{\prime}\right) \in \Gamma^{\prime}$ for every integer k, and that $S^{k}(g h)=S^{k}(g) S^{k}(h)$ for arbitrary elements g, h of Γ. This implies that integers α, β exist such that
(20) $u^{6}=\left\{S^{r}(a) S^{2 r}(a) \cdots S^{6 r}(a)\right\}^{\alpha}\left\{S^{r}(b) S^{2 r}(b) \cdots S^{6 r}(b)\right\}^{\beta} u_{1}$,
where $u_{1} \in \Gamma^{\prime \prime} \subset \Gamma^{\prime}(6,6)$.

$$
\begin{align*}
S(a) & =a b^{-1}, & S(b) & =a, \\
S^{2}(a) & =a b^{-1} a^{-1}, & S^{2}(b) & =a b^{-1}, \\
S^{3}(a) & =a b^{-1} a^{-1} b a^{-1}, & S^{3}(b) & =a b^{-1} a^{-1}, \\
S^{4}(a) & =a b^{-1} a^{-1} b^{2} a^{-1}, & S^{4}(b) & =a b^{-1} a^{-1} b a^{-1}, \tag{21}\\
S^{5}(a) & =a b^{-1} a^{-1} b a b a^{-1}, & S^{5}(b) & =a b^{-1} a^{-1} b^{2} a^{-1} \\
S^{6}(a) & =a b^{-1} a^{-1} b a b^{-1} a b a^{-1}, & S^{6}(b) & =a b^{-1} a^{-1} b a b a^{-1} .
\end{align*}
$$

If we examine the exponent sums of a and of b in table (21) and take formula (20) into account, we find that if $r \neq 0$, then $u^{6} \in \Gamma^{\prime \prime} \subset \Gamma^{\prime}(6,6)$; while if $r=0$, then $u^{6} \in \Gamma^{\prime}(6,6)$. Hence $u^{6} \in \Gamma^{\prime}(6,6)$ always, implying that $\Gamma^{6} \subset \Gamma^{\prime}(6,6)$. Together with the previous inclusion this implies that $\Gamma^{6}=\Gamma^{\prime}(6,6)$ and completes the proof of the theorem.

A noteworthy result implied by the previous discussion is that the decomposition of Γ^{6} modulo $\Gamma^{\prime \prime}$ is given by

$$
\Gamma^{6}=\sum_{r=0}^{\infty} \sum_{s=0}^{\infty} a^{6 r} b^{6 s} \Gamma^{\prime \prime}
$$

Going to the matrix representation of Γ, we define $\Gamma(n)$, the principal congruence subgroup of Γ of level n, as the totality of 2×2 rational integral matrices A of determinant 1 satisfying $A \equiv \pm I(\bmod n)$; and $\bar{\Gamma}(n)$ as the totality of 2×2 rational integral matrices A of determinant 1 satisfying $A \equiv I(\bmod n)$.

It is easy to prove
Theorem 7. $\Gamma^{\prime} \supset \Gamma(6) \supset \Gamma^{6}$.
The proof of the latter inclusion consists of showing that

$$
A^{6} \equiv \pm I \quad(\bmod 6) \quad \text { for matrices } A=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \epsilon \bar{\Gamma}
$$

This is best done from the relationship $A^{2}=t A-I, t=a+d$, by considering t modulo 2 and modulo 3 separately. Furthermore, it is not difficult to show that $\Gamma(2)$ is generated by elements of Γ^{2} and $\Gamma(3)$ by elements of Γ^{3}, so that $\Gamma^{2} \supset \Gamma(2), \Gamma^{3} \supset \Gamma(3)$. Since $\Gamma(2) \cap \Gamma(3)=\Gamma(6)$, it follows from (11) that $\Gamma^{\prime} \supset \Gamma(6)$.

Theorem 7 is in agreement with some recent work of van Lint on the commutator subgroup $\bar{\Gamma}^{\prime}$ of $\bar{\Gamma}$ (see [6]). In particular van Lint shows that $\bar{\Gamma}^{\prime} \supset \bar{\Gamma}(12)$. The observation that $\Gamma^{\prime} \supset \Gamma(6)$ was communicated to the author independently by J. R. Smart.

The remaining subgroups (13), if not of infinite index, are of high index in Γ.

For example we have that

$$
\Gamma^{6} \supset\left(\Gamma^{6}\right)^{2} \supset \Gamma^{12}, \quad \Gamma^{6} \supset\left(\Gamma^{6}\right)^{3} \supset \Gamma^{18}
$$

and on the basis of Theorem 6 we have that

$$
\left(\Gamma^{6}:\left(\Gamma^{6}\right)^{2}\right)=2^{37}, \quad\left(\Gamma^{6}:\left(\Gamma^{6}\right)^{3}\right)=3^{8473}
$$

since Γ^{6} is the free group on 37 generators (see [2]). Hence

$$
\left(\Gamma: \Gamma^{12}\right) \geqq 6^{3} \cdot 2^{37}, \quad\left(\Gamma: \Gamma^{18}\right) \geqq 6^{3} \cdot 3^{8473}
$$

In conclusion we mention that each of the groups Γ^{2} and Γ^{3} is of genus 0 (see [1]).

References

1. L. R. Ford, Automorphic functions, 2nd ed., New York, 1951.
2. M. Hall, Jr., The theory of groups, New York, 1959.
3. A. Karrass and D. Solitar, Note on a theorem of Schreier, Proc. Amer. Math. Soc., vol. 8 (1957), pp. 696-697.
4. F. Klein, Vorlesungen über die Theorie der elliptischen Modulfunctionen, Leipzig, 1890.
5. A. G. Kurosh, The theory of groups, New York, 1955, 1956.
6. J. H. van Lint, On the multiplier system of the Riemann-Dedekind function η, Nederl. Akad. Wetensch. Proc. Ser. A, vol. 61 (= Indag. Math., vol. 20) (1958), pp. 522-527.
7. M. Newman, Subgroups of the modular group and sums of squares, Amer. J. Math., vol. 82 (1960), pp. 761-778.
8. J. Nielsen, The commutator subgroup of the free product of cyclic groups, Mat. Tidsskr. B., 1948, pp. 49-56 (in Danish).
9. P. S. Novikov, On periodic groups, Dokl. Akad. Nauk SSSR, vol. 127 (1959), pp. 749-752 (in Russian).
10. O. Schreier, Die Untergruppen der freien Gruppen, Abh. Math. Sem. Univ. Hamburg, vol. 5 (1927), pp. 161-183.

National Bureau of Standards
Washington, D. C.

[^0]: Received July 5, 1961.
 ${ }^{1}$ The preparation of this paper was supported in part by the Office of Naval Research.

