THE STRUCTURE OF SOME SUBGROUPS OF THE MODULAR GROUP¹

BY

Morris Newman

Introduction

Let Γ be the 2 \times 2 modular group. In a recent article [7] the notion of the type of a subgroup Δ of Γ was introduced. If the exponents of

$$\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$$
 and $\begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}$

modulo Δ are r and s respectively, then Δ is said to be of type (r, s). It is trivial to verify that if Δ is of finite index in Γ , then $rs \neq 0$. In fact if G is any group and H a subgroup of finite index *i*, then there is an integer e > 0such that $g^e \in H$ for all $g \in G$, since the i + 1 elements $1, g, \dots, g^i$ of G cannot all be distinct modulo H.

Thus if Δ is of finite index in Γ , then $\Delta \supset \Gamma^m$, the fully invariant subgroup of Γ generated by the m^{th} powers of the elements of Γ , for some positive integer m. An obvious question to ask is whether Δ is of finite index in Γ if it contains such a subgroup. In this connection see [3], where certain necessary and sufficient conditions are given for this to occur. It is clearly sufficient to consider only $\Delta = \Gamma^m$. It turns out that the answer to this question is in the negative, but the proof requires the recent results of Novikov [9] on the Burnside problem.

The purpose of this paper is to elucidate the structure of the groups Γ^m , and incidentally to characterize Γ' , the commutator subgroup of Γ , by the relationship $\Gamma' = \Gamma^2 \cap \Gamma^3$. This has a pleasing similarity to the formula $\Gamma = \Gamma^2 \Gamma^3$. In addition certain related questions will be considered.

The problem is similar to the Burnside problem, the difference being that the modular group Γ is not a free group, but is instead the free product of a cyclic group of order 2 and a cyclic group of order 3.

The groups Γ^m

The modular group $\overline{\Gamma}$ is generated by the matrices $\overline{x}, \overline{y}$, where

(1)
$$\bar{x} = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}, \quad \bar{y} = \begin{pmatrix} 0 & -1 \\ 1 & 1 \end{pmatrix}$$

with defining relationships $\bar{x}^2 = \bar{y}^3 = -I$, where *I* is the identity matrix. If \bar{z} is any element of $\bar{\Gamma}$ and \bar{z} is identified with $-\bar{z}$, the group so obtained

Received July 5, 1961.

 $^{^{1}}$ The preparation of this paper was supported in part by the Office of Naval Research.

(which is $\overline{\Gamma}$ modulo its center $\{I, -I\}$) is the modular group Γ , which may be regarded as the group generated by the symbols x, y with defining relationships $x^2 = y^3 = 1$, and we find it convenient to take this interpretation.

We shall write $\{x_1, x_2, \dots\}$ for the group generated by x_1, x_2, \dots . Thus

$$\Gamma = \{x, y\}, \qquad x^2 = y^3 = 1$$

The fully invariant subgroups Γ^m of Γ are then defined by

$$\Gamma^m = \{x_1^m, x_2^m, \cdots\},\$$

where x_1, x_2, \cdots are the elements of Γ . It is clear that

(2) $\Gamma^m \supset \Gamma^{mn}$,

$$(3) \qquad (\Gamma^m)^n \supset \Gamma^{mn}.$$

It is also true that

(4)
$$\Gamma^m \Gamma^n = \Gamma^{(m, n)},$$

where (m, n) is the greatest common divisor of m and n. To prove (4) we notice first that the product is well defined since the groups Γ^m are normal subgroups of Γ . We have $\Gamma^{(m, n)} \supset \Gamma^m$, $\Gamma^{(m, n)} \supset \Gamma^n$ (by (2)), so that $\Gamma^{(m, n)} \supset \Gamma^m \Gamma^n$. Also let z be any element of Γ . Determine integers m_1, n_1 so that $m_1 m + n_1 n = (m, n)$. Then $z^{m_1m} \in \Gamma^m, z^{n_1n} \in \Gamma^n, z^{m_1m+n_1n} \in \Gamma^m \Gamma^n,$ $z^{(m, n)} \in \Gamma^m \Gamma^n$. This implies that $\Gamma^m \Gamma^n \supset \Gamma^{(m, n)}$, and so $\Gamma^m \Gamma^n = \Gamma^{(m, n)}$, completing the proof of (4).

In particular

(5)

$$\Gamma^2 \Gamma^3 = \Gamma$$

We first work out the structure of Γ^2 and Γ^3 .

THEOREM 1. The group Γ^2 is the free product of two cyclic groups of order 3, and

$$(\Gamma:\Gamma^2) = 2, \qquad \Gamma = \Gamma^2 + x\Gamma^2, \qquad \Gamma^2 = \{y, xyx\}.$$

The elements of Γ^2 may be characterized by the requirement that the sum of the exponents of x be divisible by 2.

THEOREM 2. The group Γ^3 is the free product of three cyclic groups of order 2, and

$$(\Gamma:\Gamma^3) = 3, \qquad \Gamma = \Gamma^3 + y\Gamma^3 + y^2\Gamma^3, \qquad \Gamma^3 = \{x, yxy^2, y^2xy\}.$$

The elements of Γ^3 may be characterized by the requirement that the sum of the exponents of y be divisible by 3.

Proof of Theorem 1. Set $H = \{y, xyx\}$. Then, as is easily verified, H is a normal subgroup of Γ contained in Γ^2 , and the elements of H satisfy the requirements of Theorem 1; that is, the sum of the exponents of x is even.

Let z be any element of Γ . Then we can write

$$(6) z = y^{c_1} x y^{c_2} x \cdots y^{c_n} x y^{c_{n+1}},$$

where the c_i 's are integers which may be 0. Thus

$$z = y^{c_1}(xyx)^{c_2}y^{c_3}\cdots (xyx)^{c_n}y^{c_{n+1}} \text{ for } n \text{ even,}$$

$$z = y^{c_1}(xyx)^{c_2}y^{c_3}\cdots y^{c_n}(xyx)^{c_{n+1}}x \text{ for } n \text{ odd.}$$

Hence $z \in H$ or $zx \in H$. Since x is not in H, this implies that $\Gamma = H + Hx = H + xH$. Now $\Gamma \supset \Gamma^2 \supset H$ and $(\Gamma:H) = 2$, which implies that $(\Gamma:\Gamma^2) = 1$ or 2. But $\Gamma \neq \Gamma^2$ (x is not in Γ^2), and so $(\Gamma:\Gamma^2) = 2$. Thus $\Gamma^2 = H$. It is also clear that H is the free product of two cyclic groups of order 3 since the defining relations for H are $y^3 = (xyx)^3 = 1$. The proof of Theorem 1 is complete.

Proof of Theorem 2. Set $K = \{x, yxy^2, y^2xy\}$. Then K is a normal subgroup of Γ contained in Γ^3 , and the elements of K satisfy the requirements of Theorem 2; that is, the sum of the exponents of y is a multiple of 3. Let w_n be any word of the form $y^{c_1}xy^{c_2}x \cdots y^{c_n}x$. We have $y^{c_1}x = y^{c_1}xy^{2c_1} \cdot y^{-2c_1}$, so that

$$w_n = y^{c_1} x y^{2c_1} w_{n-1}$$
,

where $w_{n-1} = y^{c_2-2c_1}x \cdots y^{c_n}x$. But $y^{c_1}xy^{2c_1} = x$, yxy^2 or y^2xy . This implies by induction on *n* that $w_n = ky^{c_0}$, where $k \in K$ and c_0 is an integer. Hence for *z* as given by (6) we have that $z = w_n y^{c_{n+1}} = ky^c$ where *c* is an integer. Since neither *y* nor y^2 belongs to *K*, this implies that $\Gamma = K + Ky + Ky^2 = K + yK + y^2K$.

Now $\Gamma \supset \Gamma^3 \supset K$ and $(\Gamma:K) = 3$, which implies that $(\Gamma:\Gamma^3) = 1$ or 3. But $\Gamma \neq \Gamma^3$ (y is not in Γ^3), and so $(\Gamma:\Gamma^3) = 3$. Thus $\Gamma^3 = K$.

To prove that K is the free product of three cyclic groups of order 2, we need only show that no generator belongs to the group generated by the other two, so that K has defining relations $x^2 = (yxy^2)^2 = (y^2xy)^2 = 1$. This is easy to verify since the generators are all of period 2. Thus setting $yxy^2 = z$, the elements of $\{x, z\}$ are of the form $(xz)^n$, $(zx)^n$, $(xz)^nx$, $(zx)^nz$; and that none of these can equal y^2xy may be seen from the matrix representation of x and y given in (1). This completes the proof of Theorem 2.

For the case when m is not divisible by 6, Theorems 1 and 2 determine Γ^m completely. In fact we have

THEOREM 3. The groups Γ^m satisfy

(7)

$$\Gamma^{m} = \Gamma, \quad (m, 6) = 1,$$

 $\Gamma^{2m} = \Gamma^{2}, \quad (m, 3) = 1,$
 $\Gamma^{3m} = \Gamma^{3}, \quad (m, 2) = 1.$

Proof. When (m, 6) = 1, Γ^m contains both x and y since $x = x^m$, $y = y^{\pm m}$,

so that $\Gamma^m = \Gamma$. Suppose that (m, 3) = 1. Then $y = y^{\pm 2m}$, $xyx = (xyx)^{\pm 2m}$, so that $\Gamma^2 \subset \Gamma^{2m}$. Since in addition $\Gamma^2 \supset \Gamma^{2m}$ (by (2)), we have that $\Gamma^2 = \Gamma^{2m}$. Finally suppose that (m, 2) = 1. Then $x = x^{3m}$, $yxy^2 = (yxy^2)^{3m}$, $y^2xy = (y^2xy)^{3m}$, so that $\Gamma^3 \subset \Gamma^{3m}$. Since in addition $\Gamma^3 \supset \Gamma^{3m}$ (by (2)), we have that $\Gamma^3 = \Gamma^{3m}$. The proof of the theorem is complete.

We also require the structure of Γ' . This is well known, and we have LEMMA 1. The commutator subgroup Γ' of Γ is a free group of rank 2, and

(8)
$$(\Gamma:\Gamma') = 6$$
, $\Gamma = \sum_{r=0}^{5} (xy)^{r} \Gamma'$, $\Gamma' = \{xyxy^{2}, xy^{2}xy\}$

In fact J. Nielsen has shown [8] that the commutator subgroup of the free product of a finite number of cyclic groups of finite order is a free group of finite rank.

We set

$$(9) a = xyxy^2, b = xy^2xy.$$

Then a and b have the matrix representations

We note that the quotient groups Γ/Γ^2 , Γ/Γ^3 are cyclic and therefore abelian, so that $\Gamma^2 \supset \Gamma'$, $\Gamma^3 \supset \Gamma'$. Hence $\Gamma^2 \cap \Gamma^3 \supset \Gamma'$. By one of the isomorphism theorems (Γ^2 and Γ^3 being normal subgroups of Γ),

$$\Gamma^2\Gamma^3/\Gamma^3\cong\Gamma^2/\Gamma^2$$
 n Γ^3

By (5) this becomes

(

$$\Gamma/\Gamma^3 \cong \Gamma^2/\Gamma^2 \cap \Gamma^3.$$

Hence

$$(\Gamma^2:\Gamma^2 \cap \Gamma^3) = (\Gamma:\Gamma^3) = 3.$$

 \mathbf{But}

$$\Gamma:\Gamma^2 \cap \Gamma^3) = (\Gamma:\Gamma^2)(\Gamma^2:\Gamma^2 \cap \Gamma^3) = 2 \cdot 3 = 6.$$

Since $\Gamma \supset \Gamma^2 \cap \Gamma^3 \supset \Gamma'$ and $(\Gamma:\Gamma') = (\Gamma:\Gamma^2 \cap \Gamma^3) = 6$, it follows that $\Gamma' = \Gamma^2 \cap \Gamma^3$. Thus we have proved

THEOREM 4. The commutator subgroup Γ' of Γ satisfies

(11)
$$\Gamma' = \Gamma^2 \cap \Gamma^3.$$

Because of Theorem 3 we have left only the groups Γ^{6m} to consider. Since $\Gamma^2 \supset \Gamma^6$ and $\Gamma^3 \supset \Gamma^6$, (11) implies that

(12)
$$\Gamma' \supset \Gamma^6$$
.

Then because Γ' is a free group and $\Gamma^6 \supset \Gamma^{6m}$, we have by Schreier's theorem [10]

THEOREM 5. The groups Γ^{6m} are free groups.

We can say something more about the groups Γ^{6m} . In the first place, $\Gamma^{6m} \supset (\Gamma')^{6m}$ since $\Gamma \supset \Gamma'$. Hence if $(\Gamma':(\Gamma')^{6m}) < \infty$, then the same holds for $(\Gamma:\Gamma^{6m})$. In particular M. Hall's solution of the Burnside problem for 6 (see [2] for an account of this) implies that $(\Gamma':(\Gamma')^6) < \infty$, so that $(\Gamma:\Gamma^6) < \infty$. Secondly, we have from (3) and (12) that

$$(\Gamma')^m \supset (\Gamma^6)^m \supset \Gamma^{6m}$$

Then the results of Novikov on the Burnside problem [9] imply that $(\Gamma':(\Gamma')^m) = \infty$ for $m \ge 72$, so that $(\Gamma:\Gamma^{6m}) = \infty$ for $m \ge 72$. There are left therefore the 70 cases

(13)
$$\Gamma^{\circ m}, \quad 2 \leq m \leq 71$$

in which the index $(\Gamma:\Gamma^{6m})$ is unknown.

We are going to determine the structure of Γ^6 . We have

LEMMA 2. Let G be a group generated by two elements α , β . Let N be a normal subgroup of G containing

(14)
$$[\alpha,\beta] = \alpha\beta\alpha^{-1}\beta^{-1}.$$

Then N contains G', the commutator subgroup of G.

Proof. G is abelian modulo N, which implies that $N \supset G'$.

COROLLARY 1. $\Gamma^6 \supset \Gamma''$, the second commutator subgroup of Γ .

For $\Gamma' \supset \Gamma^6$, Γ' is generated by the two elements *a*, *b* given in (9), Γ^6 is a normal subgroup of Γ' , and

$$[a, b] = (xyxyx)^{6} \epsilon \Gamma^{6}.$$

COROLLARY 2. The quotient group Γ'/Γ^6 is abelian.

We remark that Γ'' is of infinite index in Γ and is countably infinitely generated, being the commutator subgroup of a free group of finite rank [5]. Hence $\Gamma^6 \neq \Gamma''$.

Let p, q be positive integers. We define a class of normal subgroups $\Gamma'(p, q)$ of Γ' as follows: The element

$$w = a^{r_1}b^{s_1}\cdots a^{r_n}b^{s_n}$$

of Γ' belongs to $\Gamma'(p, q)$ if and only if

$$\sum_{i=1}^n r_i \equiv 0 \pmod{p}, \qquad \sum_{i=1}^n s_i \equiv 0 \pmod{q}.$$

It is clear that

(15)
$$\Gamma'(p,q) \supset \Gamma'',$$

STRUCTURE OF SUBGROUPS OF THE MODULAR GROUP

(16)
$$(\Gamma':\Gamma'(p,q)) = pq, \qquad \Gamma' = \sum_{r=0}^{p-1} \sum_{s=0}^{q-1} a^r b^s \Gamma'(p,q),$$

and that $\Gamma'(p, q)$ is a free group of rank 1 + pq. The latter fact follows from Schreier's formula

$$R = 1 + i(r-1)$$

for the rank R of a subgroup of index i in a free group of rank r (see [10]), since Γ' is of rank 2 and $(\Gamma': \Gamma'(p, q)) = pq$. Formula (15) follows from the fact that the word w belongs to Γ'' if and only if

$$\sum_{i=1}^{n} r_i = \sum_{i=1}^{n} s_i = 0.$$

We are going to prove

THEOREM 6. The group Γ^6 is just $\Gamma'(6, 6)$. Hence Γ^6 is of index 216 in Γ and is the free group on 37 generators. We have

(17)
$$(\Gamma':\Gamma^6) = 36, \quad \Gamma' = \sum a^r b^s \Gamma^6, \quad 0 \leq r, s \leq 5.$$

Proof. Let $w = a^{r_1}b^{s_1} \cdots a^{r_n}b^{s_n} \in \Gamma'(6, 6)$. Then because Γ' is abelian modulo Γ'' we may write

$$w = a^{r_1 + \cdots + r_n} b^{s_1 + \cdots + s_n} w_1,$$

where $w_1 \in \Gamma''$. Since $\Gamma'' \subset \Gamma^6$ (Corollary 1) and

$$\sum_{i=1}^n r_i \equiv \sum_{i=1}^n s_i \equiv 0 \pmod{6},$$

it follows that $w \in \Gamma^6$. Hence $\Gamma'(6, 6) \subset \Gamma^6$.

Now let u be an arbitrary element of Γ . By Lemma 1 there is an integer $r, 0 \leq r \leq 5$ such that $u = (xy)^r u'$, where $u' \in \Gamma'$. Then

$$u^{6} = \{(xy)^{r}u'\}^{6} = \{(xy)^{r}u'(xy)^{-r}\}\{(xy)^{2r}u'(xy)^{-2r}\} \cdots \{(xy)^{6r}u'(xy)^{-6r}\}(xy)^{6r}.$$

A simple calculation shows that

(18)
$$(xy)^{6} = ab^{-1}a^{-1}b \ \epsilon \ \Gamma'' \subset \ \Gamma'(6, 6).$$

Now if w is any element of Γ , define $S(w) = (xy)w(xy)^{-1}$. Thus

(19)
$$u^{6} = S^{r}(u') S^{2r}(u') \cdots S^{6r}(u') (xy)^{6r}$$

We note that $S^k(u') \in \Gamma'$ for every integer k, and that $S^k(gh) = S^k(g)S^k(h)$ for arbitrary elements g, h of Γ . This implies that integers α , β exist such that

$$(20) \quad u^{6} = \{S^{r}(a) S^{2r}(a) \cdots S^{6r}(a)\}^{a} \{S^{r}(b) S^{2r}(b) \cdots S^{6r}(b)\}^{\beta} u_{1},$$

where $u_1 \in \Gamma'' \subset \Gamma'(6, 6)$.

$$\begin{split} S(a) &= ab^{-1}, & S(b) &= a, \\ S^2(a) &= ab^{-1}a^{-1}, & S^2(b) &= ab^{-1}, \\ S^3(a) &= ab^{-1}a^{-1}ba^{-1}, & S^3(b) &= ab^{-1}a^{-1}, \\ S^4(a) &= ab^{-1}a^{-1}b^2a^{-1}, & S^4(b) &= ab^{-1}a^{-1}ba^{-1}, \\ S^5(a) &= ab^{-1}a^{-1}baba^{-1}, & S^5(b) &= ab^{-1}a^{-1}b^2a^{-1}, \\ S^6(a) &= ab^{-1}a^{-1}bab^{-1}aba^{-1}, & S^6(b) &= ab^{-1}a^{-1}baba^{-1}. \end{split}$$

If we examine the exponent sums of a and of b in table (21) and take formula (20) into account, we find that if $r \neq 0$, then $u^6 \epsilon \Gamma'' \subset \Gamma'(6, 6)$; while if r = 0, then $u^6 \epsilon \Gamma'(6, 6)$. Hence $u^6 \epsilon \Gamma'(6, 6)$ always, implying that $\Gamma^6 \subset \Gamma'(6, 6)$. Together with the previous inclusion this implies that $\Gamma^6 = \Gamma'(6, 6)$ and completes the proof of the theorem.

A noteworthy result implied by the previous discussion is that the decomposition of Γ^6 modulo Γ'' is given by

$$\Gamma^6 = \sum_{r=0}^{\infty} \sum_{s=0}^{\infty} a^{6r} b^{6s} \Gamma''.$$

Going to the matrix representation of Γ , we define $\Gamma(n)$, the principal congruence subgroup of Γ of level n, as the totality of 2×2 rational integral matrices A of determinant 1 satisfying $A \equiv \pm I \pmod{n}$; and $\overline{\Gamma}(n)$ as the totality of 2×2 rational integral matrices A of determinant 1 satisfying $A \equiv I \pmod{n}$.

It is easy to prove

Theorem 7. $\Gamma' \supset \Gamma(6) \supset \Gamma^6$.

The proof of the latter inclusion consists of showing that

$$A^6 \equiv \pm I \pmod{6}$$
 for matrices $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \epsilon \overline{\Gamma}$.

This is best done from the relationship $A^2 = tA - I$, t = a + d, by considering t modulo 2 and modulo 3 separately. Furthermore, it is not difficult to show that $\Gamma(2)$ is generated by elements of Γ^2 and $\Gamma(3)$ by elements of Γ^3 , so that $\Gamma^2 \supset \Gamma(2)$, $\Gamma^3 \supset \Gamma(3)$. Since $\Gamma(2) \cap \Gamma(3) = \Gamma(6)$, it follows from (11) that $\Gamma' \supset \Gamma(6)$.

Theorem 7 is in agreement with some recent work of van Lint on the commutator subgroup $\overline{\Gamma}'$ of $\overline{\Gamma}$ (see [6]). In particular van Lint shows that $\overline{\Gamma}' \supset \overline{\Gamma}(12)$. The observation that $\Gamma' \supset \Gamma(6)$ was communicated to the author independently by J. R. Smart.

The remaining subgroups (13), if not of infinite index, are of high index in Γ .

(21)

For example we have that

$$\Gamma^{6}\supset\,(\Gamma^{6})^{2}\supset\,\Gamma^{12},\qquad\Gamma^{6}\supset\,(\Gamma^{6})^{3}\supset\,\Gamma^{18};$$

and on the basis of Theorem 6 we have that

 $(\Gamma^{6}:(\Gamma^{6})^{2}) = 2^{37}, (\Gamma^{6}:(\Gamma^{6})^{3}) = 3^{8473},$

since Γ^6 is the free group on 37 generators (see [2]). Hence

$$(\Gamma : \Gamma^{12}) \ge 6^3 \cdot 2^{37}, \qquad (\Gamma : \Gamma^{18}) \ge 6^3 \cdot 3^{8473}.$$

In conclusion we mention that each of the groups Γ^2 and Γ^3 is of genus 0 (see [1]).

References

- 1. L. R. FORD, Automorphic functions, 2nd ed., New York, 1951.
- 2. M. HALL, JR., The theory of groups, New York, 1959.
- 3. A. KARRASS AND D. SOLITAR, Note on a theorem of Schreier, Proc. Amer. Math. Soc., vol. 8 (1957), pp. 696-697.
- 4. F. KLEIN, Vorlesungen über die Theorie der elliptischen Modulfunctionen, Leipzig, 1890.
- 5. A. G. KUROSH, The theory of groups, New York, 1955, 1956.
- J. H. VAN LINT, On the multiplier system of the Riemann-Dedekind function η, Nederl. Akad. Wetensch. Proc. Ser. A, vol. 61 (= Indag. Math., vol. 20) (1958), pp. 522-527.
- 7. M. NEWMAN, Subgroups of the modular group and sums of squares, Amer. J. Math., vol. 82 (1960), pp. 761-778.
- 8. J. NIELSEN, The commutator subgroup of the free product of cyclic groups, Mat. Tidsskr. B., 1948, pp. 49-56 (in Danish).
- 9. P. S. NOVIKOV, On periodic groups, Dokl. Akad. Nauk SSSR, vol. 127 (1959), pp. 749-752 (in Russian).
- O. SCHREIER, Die Untergruppen der freien Gruppen, Abh. Math. Sem. Univ. Hamburg, vol. 5 (1927), pp. 161-183.

NATIONAL BUREAU OF STANDARDS WASHINGTON, D. C.