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1. Introduction

The problem of representing invariant probability measures as mixtures of
ergodic probability measures has been treated by a number of different authors
in differing contexts. V. Neumann [13] considered the problem in relation
to continuous-parameter semigroups of measure-preserving transformations
when the underlying space X is a complete separable metric space. De
Finetti [6] and Hewitt and Savage [9] treat the representation question for
symmetrically invariant measures on product spaces. Choquet [3] shows
that his representation theorems give an easy proof of the existence of a unique
representation when the underlying space X is a compact metric space and
the measure-preserving transformations are a group of homeomorphisms of
X onto X.

In a recent paper Blum and Hanson [1] show that if the measure-preserving
transformations @ form a free group on a single generator T, then the repre-
sentation (if there is one) of an invariant probability measure is determined
by the restriction of to the invariant measurable sets. In this paper we take
the methods of Blum and Hanson [1] as a starting point. We show that repre-
sentation of invariant measures may be constructed, using the methods of
Blum and Hanson, under broad enough conditions that we are able to show
how to construct the representation in each of the cases mentioned above.
Throughout this paper X will be a set, a z-algebra of subsets of X.

(X, , ) will be called a probability space if is a nonnegative countably
additive measure defined on such that (X)= 1. A transformation

T :X---X

will be called measurable if A e implies T-1A e . A measurable
transformation T will be called measure-preserving (relative to (X, , )) if
A e implies (A) (T-1A). Throughout, @ will be a set of measurable
transformations of X into X. A probability measure on will be called
invariant (relative to (X, , @) if A e , T e @ imply (A) (T-IA).
Relative to (X, , @) we let be the set of invariant probability measures,
and 1 the set of extreme points of . The convex set may not have any
extreme points, but in the situations discussed in this paper, if is nonempty,
then is also nonempty. In the following, 0 will be the a-algebra of
measurable subsets invariant under the transformations in @, that is, A e 0 if
and only irA e and for all Te@, A T-A. Ameasure ewill be
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called ergodic if A e 0 implies (A) 0 or (A) 1. It can be shown
that if e 1, then is ergodic. See for example Blum and Hanson [1]. In
certain cases it can be shown that if e and is ergodic, then e 1. This
question is discussed again in Section 2, Corollary 1.
We construct a a-algebra ! of subsets of 1 as follows. If A and 0 -<

a _-< 1, then {i e , (A) -< a} e !. ! is the least a-algebra of sets con-
raining all sets of this form. It is easily seen that this definition of f makes
! the least a-algebra of subsets of such that for each A ,e the map
v -- r(A) is a (, )-measurable function. A measure g e is said to be
representable if there exists a probability measure h defined on f such that
if A e , then

t[
In Section 2 three conditions (a), (b), and (c) are stated. If in a given

problem these conditions are satisfied, then an invariant measure has a
uniquely determined representation which may be constructed using the
methods of Blum and Hanson, op. cir. In Section 2 sufficient conditions are
developed that (a) and (b) be satisfied.

Condition (c) is a statement about the existence of extreme points. This
question is discussed in Section 3. In Section 3 a representation theorem is
stated for the case X is a a-compact locally compact space, the Baire sets
of X, and @ a set of continuous functions on X into X, each T e @ being
continuous at .

In Section 4 representation theorems are obtained in the case X is a com-
plete separable metric space, the Borel sets of X.
Some of the results of this paper are obtained using the hypothesis that

@ is a locally compact semigroup having a countable base for the open sets
of @. In order to show that these results are not vacuous, in Section 5 it is
shown that given such a semigroup @ there exist a probability space (X, , ),
X a complete separable metric space, the Borel sets of X, a nonatomic
probability measure, and a semigroup @* homeomorphic and algebraically
isomorphic to @ such that each T e @* is a measurable and measure-preserving
map of X to X, and such that the map (T, x) -- T(x) is jointly continuous
in the product topology of @* X X.

In order to establish continuity properties of @ acting on (X, , ), if @ is a
locally compact semigroup, we suppose throughout that @ is a Baire subset
of @, and that is the a-algebra of Baire subsets of @. If @ is not a group,
if A . , S TS A} T-(A) may not be a set of . Nor is it clear that
if A e , then T(A) {TSIS A} . . To get around these questions of
measurability we suppose in the sequel that if @ is not a group, then @ has a
countable base for the open sets of @. The topology of @ is then metrizable.
The Baire sets of @ and the Borel sets of @ coincide. Since the map S TS
is continuous, it follows that if A , T-I(A) . Further, if C is a compact
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subset, then TC g9 since TC is compact. We will say a measure v on (@, )
is a regular semi-invariant measure if v(C) < for every compact Baire set
C and (T-1A) <= (A) for every T e@, A e . It follows that a regular
semi-invariant measure is a regular Baire measure on . See Halmos [7].
Further, if @ is a compact group, then since T-@ , it follows that.
(T-(.) ) is a finite measure on @, (T-(A)) (A) for every A e ,
() (), and therefore ((A)) (A) for every A e . A
regular semi-invariant measure has the property that if g e L(@, , v), g 0,
T e , then

f f g(TS) d,(S),

as follows from standard approximation arguments. If C e is a compact
set and T e , then xc(S) 1 implies xrc(TS) 1, so that for all S e ,
xc(S) xrc(TS). Integration gives

,(C) f xrc(VS)d,(Z) f xrc(S)d,(S) ,(TC).

If the cancellation law holds in @, then the map S TS is a 1-1 map. If in
addition @ has a coumable base for the open sets of , it follows T(A) e

for every A e . For since T is 1-1,

T U= A Ui--1 TA and T

_
A

_
TA

The set of sets A such that T(A) is therefore a monotone class which
contains all sets which are G’s, and hence every set of is included.
We will say @ is a locally compact semigroup of jointly measurable trans-

formations ff the map (T, x) T(x) is measurable in the product space
( X X, X ). We always assume the identity of @ is the identity
transformation of X.
We assume throughout that the reader is familiar with the basic results of

measure theory such as presented by Halmos [7].

2. A theorem of lm and Hanson
If @ is a group generated by a single transformation T, Blum and Hanson

[1] give an explicit construction for the measure h which gives the representa-
tion of . If is an invariant probability measure on (X, ) and [ 0 is
the restriction of to the invariant sets, then Blum and Hanson, op. cit.,
show that if has a representation, it is unique, and the measure h is deter-
mined in a natural way by ] 0.
A reading of the paper by Blum and Hanson, op. cir., shows their con-

struction remains valid if the following conditions are satisfied.

(a) If and are in , and if for all A e 0, (A) :(A), then for
all A e , (A) (A).
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(b) IfAeand0 =< -< 1, thereisaBe0suchthat

{1=, (A) __< } {1, (B) ]}.

(c) If e and A e 0 such that (A) > 0, then there is a e such
that (A) 1.

Given that (a), (b), and (c) are satisfied, the construction of Blum and
Hanson, op. cit., defines a map 0 by (A) {v (A) 1}. It is
shown that is a -algebra homomorphism of 0 onto . The measure k is
defined, if B e , by A(B) (-B).

It turns out that representations constructed as described above relative
to 0 do not cover all cases which can be treated by the methods of this paper.
It is necessary to define a -algebra o o as follows. Let be the -algebra
ofsetsAe such that A e if and only if (A) 0forevery e. If
T e , let o.r be the -algebra of all sets A e such that A e 0,r if and
only if A T-A. Let 0.r be the least -algebra containing all sets in
0.r and . Define

0 . 0,.

We restate (a), (b), and (c) for 0.
(K) Ifande,and if (A) (A) for every A e 0, then for

all A e , (A) (A).

(5) IfAe,0 a 1, thereisaBe0suchthat

() If A e 0, e , and (A) > 0, there exists e such that v(A) 1.

If (a), (5), and () hold, and if e , o determines uniquely the repre-
sentation of in a manner similar to the way ] 0 determines a representa-
tion of if (a), (b), and (c) hold.

In this section we will develop sufficient conditions for (a), (b), (), or
(5) to be valid. The existence statements of (c) and (5) are investigated
in later sections.
A sub a-algebra is said to be sufficient for the family of prob-

ability measures if and only if the following holds. If f(. is a bounded
-measurable function, there exists a bounded -measurable function
(f)(.) such that if A e , e ,
hag is, ghere is a single funegion 4(f) (") whieh aegs as a eondiional expeea-
gion of f for every e . We will show below in heorem 1 hag if , is a
sueieng sub -algebra for , ghen (a) and (b) are valid; if 0 is a suNeieng

sub -algebra for , ghen () and (g) are valid. rom Theorem 2 below ig
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will follow that if gO is countable, then (a) and (5) are valid. Theorem 3
below gives conditions under which 0 is a sufficient sub a-algebra.

In order to obtain these results we need the following lemma.

LEMM 1. If r e l and A e o, then r(A) O or r(A) 1.

To show this we will need to know the form of sets in 0.r. It can be
shown that A e o,r if and only if there exist B e o,r, U e , V e such
that A (B U) u V. It is a matter of calculation to show that the sets
of this form are a a-algebra and therefore all of 0,r.

Suppose then that r e 1 and that for some Bo e 0,0 < r(Bo) < 1. Let
X Bo

r(A) r(B0)ro(A) + r(B1)rl(A),

where
contradiction will be obtained. Suppose T e @. Since B e 0, Bi e 0,r,
and this implies B (Ci Ui) t V, Ci e o,r, U, V e , i 0, 1. Then

T-1B ((T-1C) (T-iUi)) u (T-1Wi)
(C- T-lUg) t (T-IVy), i O, 1.

And T T Ve9,i= 0,1. Then

r((T-1A) B) r((T-1A) C) r((T-A) (T-IBi))
r( T-I(A Bi) r(A B) i O, 1.

It follows that r e , i 0, 1. This contradiction shows if r e 1, then
r(B) 0 or r(B) 1 for every B e 0.
Suppose then 0 is a sufficient sub a-algebra for . If A e , let x be the

characteristic function of the set A. By hypothesis there is an 0-measurable
function (x)(’) which acts as
To prove (a), suppose 1, e and if B e 0, (B) :(B). Then

,I(A) f @(x.)(x) &,l(x) f @(x.)(x) &,(x) ,(A).

To prove (b), suppose r e . Then for each real a, define

F(a) r{x @(x.) (x) <- a}.

Since {x]@(x)(x) _-< a} e 0, by Lemma 1 it follows that F(a) 0 or
F(a) 1. Since F is a right continuous function, there is an a0 such that
F(ao--) O, F(ao) 1. That is, @(x)(x) a0 a.e.r. Consequently,
r(A) 1. If0-_< a =< 1, let B, {x[()(x) -< a}. Then it follows
that {r Ire , r(A) =< a} {r Ire 1, r(B,) 1}. Therefore (b) is
proved.

If 0 is a sufficient sub a-algebra for , then by using Lemma 1 and argu-
ments similar to those above, the validity of (a) and (5) may be established.
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TEOREM 1. If o is a sufficient sub a-algebra for , then (a) and (b) are
valid. If o is a sufficient sub a-algebra for 3, then () and () are valid.

An immediate corollary is the following.

COROLLXRY 1. If o is a sufficient sub a-algebra for ?, then r e is ergodic
if and only if r e 31. If o is a sufficient sub a-algebra for , then r e 31 if
and only if for every A e o, r(A) 0 or r(A) 1.

We will now obtain sufficient conditions that 0 or 0 be sufficient sub.
a-algebras.

LEMM. 2. If T e @, then the sub a-algebra o,r is sufficient for .
Proof. If f is a bounded -measurable function, then by the pointwise

ergodic theorem, if e 3, {x limned(l/n) .=o f(Tx) exists} 1. Define

(f) (x) lim.(1/n).f(Tx) if this limit exists,

(f) (x) 0 otherwise.

Then (f) is 0,r-measurable, and if A e 0,r, e 3,

fa (f) (x) d(x) fa f(x) d(x).

If @ is a countable set of transformations, then o is a sufficient

(d)
(e)
(f)

(g)

(h)

@ is a compact group of jointly measurable onto transformations;
@ is a countable group;
@ is a locally compact group of jointly measurable onto transformations,
and @ has a countable base for the open sets of @;
@ is a countable set of transformations (not necessarily 1-1 or onto)
such that if T1, T2 @, then TI T. T TI
@ is a locally compact Abelian semigroup of jointly measurable trans-

THEOREM 2.
sub a-algebra.

Proof. By Lemma 2, 0.r, and therefore 0.r, is a sufficient sub a-algebra.
By a theorem of Burkholder [2], 0 gl r, 0, is a sufficient sub a-algebra.

That, in the conclusion of Theorem 2, 0 cannot be replaced by 0, is
shown in the following example. Let R (- , and X R X R, the
Cartesian product of R and R. Let be the Borel sets of X. Define trans-
formations T, T by T((x, x.)) (Xl, x) and T((x, x)) (x, x.).
It is easily verified that the only invariant sets are X and the null set. There-
fore every invariant measure is ergodic. Every measure concentrated on the
diagonal set of X is invariant. The extreme points are those measures r

such that for some x, r({ (x, x)}) 1.

THEOREM 3. Let (X, , ) be a probability space. Suppose @ is a set of
measurable and measure-preserving transformations relative to (X, , ). Sup-
pose @ satisfies one of the following"
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formations such that @ has a countable base for the open sets of @ and
has a nonzero regular semi-invariant measure v.

Then o is a sufficient sub z-algebra for ?.
Before proving Theorem 3 we prove two lemmas.

LEMMA 3. Suppose @ is a locally compact semigroup, @ has a countable
base for the open sets of @, and has a nonzero regular semi-invariant measure v.
If f is a bounded -measurable function and C is compact, then

lim fc f(TS) f(To S) dT(S) O.
T-T

Proof. Suppose g is a real-valued continuous function on @. Then
limr-r0 g(TS) g( To S), S @. By the bounded convergence theorem it
follows that if C c @ is compact, limrr0 g(TS) xc(S) g(T0 S) xc(S) in
LI(@, , 7). For suppose D is a compact neighborhood of To. Then DC is
compact, and if T e D, S e C, then TS DC. Since g is continuous,

sup{lg(S)llS eDC} < .
But 7(DC) < . Therefore the family of functions in question are uni-
formly bounded by a function in LI(@, , 7).
Suppose gl is a bounded and -measurable function. Then given > 0

there is a continuous function g such that

Then if T D,

fc [g(TS) g(TS) dT(S <= f xrc(TS) gI(TS) g(TS) dT(S

By the usual approximation arguments it follows that

lim fc g(TS) g(ToS) dT(S) O.
T-T

LEMMA 4. Suppose (X, , ,) is a probability space and @ is a locally com-
pact semigroup of jointly measurable and measure-preserving transformations
relative to (X, , ,) such that @ has a countable base for the open sets of @.
Suppose has a nonzero regular semi-invariant measure 7. Then if
f eL(X, , ,) and To

lim fx f(Tx) f( Tox) d(x) O.
T-T

Proof. Suppose C is. compact, 7(C) > 0, and D is a compact neighborhood
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of To. Suppose f is a bounded and -measurable function. If T e D, then

v(C) fx f(Tx) f(Tox) &,(x) fc f f(Tx) f(Tox) da(x) d(S)

justification for the steps being the invariance of and Fubini’s theorem.
If x e X, by Lemma 3

lim I If(TSx)0
T-T wC

and these integrals are uniformly bounded by 2v(C)supx
v(C) > 0, by the bounded convergence theorem,

Since

lim f f(Tx) f(Tox) d(x) O.
TT

Finally, if f eLl(X, , ), given > 0 there is a bounded -measurable
function f such that

Since r is invariant, if T e @, then

fx f(Tx) f(Tx) d(x) < .
It follows at once that

f ]f(Vx) f(Tox) ld(x)lira 0.
T-T wX

Proof of Theorem 3. In each of the proofs following we will suppose f is a
bounded -measurable function. The proof then consists of construction
of an 0-measurable function (f) satisfying, if A e 0, e ,

f. f(x) &,(x) f. 4(f) (x) &,(x).

To prove (d) suppose v is the Haar measure on @ such that 7(@) 1.
Define (f) by

h(f) (x) ] f(Tx) d,( T).

It follows at once that (f) is bounded, by Fubini’s theorem that (f) is
-measurable, and from the invariance of Haar measure that (f) is an



invariant function. If A e o and e 3, then

since TA A.
To prove (e), we use Theorem 2. Since o is a sufficient sub -algebra,

there exists an o-measurable function (f)(.) such that if A e o, e 3,
then

d (x) f f(x) &,(x).

By definition of o, (f)(’) is o.r-measurable, T e @. Therefore if

4(f) Tx) 4(f) (x) a.e. .
Let A {x Ib(f)(Tx) (f)(x), all T e @}. Then since @ is countable,
ife,(A) 1. Define

*(f) (x) 0; if x A,

*(f)(x) (f)(x) ifxeA.

Since @ is a group, *(f) (.) is invariant. Clearly if A

f. f(x) d,(x) f. *(f)(x) &,(x).

Therefore o is a sufficient sub -algebra for .
To prove (f) let @o be a countable dense subgroup of @. By (e) just

proved there is a function (f)(.) measurable in CI r,o o.r such that if
A [’1 ,o o,r, 3, then

Let T e @ and {T, n >- 1} @o be a sequence such that T limn T.
By Lemma 4, if e ,

lim f_ I(f)(T,,x) (f) (Tx)0 &,(x)

I <f> <x> (f) (Tx) &,(x).

By a well-known theorem it follows there is u bounded 0-measurable function
*(f) (.) such that if e , *(f) (x) (f) (x) a.e. . See for example
Lehmann [12, p. 225]. Since o r0 o.r, part (f) now follows.
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To prove (g) letq9 {T,i__> 1}. Ifm_ 1, definel(j’) by

j.(f) (x) lim(1/n) _-01 f(T x),
and era(f) inductively by

m+l(f) (x) limn.(1/n) _,,-o (f) (T:+I’ x).

It is easily verified that if m __> 1, ,(f) is invariant under T1, T,.
We use here the hypothesis that T, T commute. If 0() is the set of
sets A e invariant under T, T, then if e ,

4:’,,,(f) E(: <o’’)) a.e. v,

as follows from the pointwise ergodie theorem. Therefore {(f), m >- 1}
form a martingale, and by the martingale theorems, Doob [4], if u e ,

lim,.,(f) E(f[ gl_x 0(m)) a.e. .
The proof is complete.
To prove (h) suppose @0 is a countable dense subsemigroup of q9. If f is a

bounded -measurable function, then by part (g) of Theorem 3 there is a
function g invariant under @0 such that if A e is invariant under @0, then

f.,f(x) &,(x) f. g(x) &,(x), , ?.

The function g is bounded. If x e X, T e @, and T, i

_
1} is a sequence of

transformations in @0 such that T lim** T, then by Lemma 3, if C c @ is
compact,

!im,_., J g(T, Sx) a(TSx) d,(S) O.

Since g is invariant under T, i >- 1, if x X,

fc a(Sx) g(TSx) &q(S) O.

This holds for every compact C c @. Therefore, if x e X,

f( g(Sz) g(TSx) d(S O.

Let h -> 0 be an -measurable function,

Define (.f) by
f h(S) d,(S)

(f) (x) d(S).

b(f) (’) is clearly a bounded function, and by Fubini’s theorem is -measur-
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able. @ is Abelian. If @, x X, since () () a.e.

f g(STx)h(S) d,(S) f g(Sx)h(S)d,(S) (f)(w).(f)(Tx)

Therefore (f) is invariant. If A o, then by Fubini’s theorem,

f ,(f)(x) d(x) f x (x)g(Sx)h(S) d (x)

The proof is complete.

Coaoav 2. Suppose @ is a semigroup of measurable transformations on
(X, ). LetM be the set of all finite nonnegative countably additive meures
defined on , and M the set of measures invariant under $. LetM be
partially &red by ff and only ff (A) (A) for all A e . Then
M is a sublattice of.

Proof. Let o be a countable Abelian subsemigroup of . Suppose
and. Letbedefinedby(A) (A) + (A),Ae. By
the Radon-Nikodym theorem there is an -measurable function f such that
ifA e,

) ]: f(x)
By Theorem 3 there is a function (f) invariant under @0 such that if A is
invariant under o, A e , then

f f(x) d.(x) o(f)(x) d.(x).

Since is invariant under 0, the measure , defined if B e , by

f. off)

is invariant under o. For if T e @o,

(T-’B) rf (f) (x) d(x) f x.(Tx)(f)(x) d(x)
--1B

f x.(Tz)(f)(Tx)d.(x) .f (f)(z)d(x) (B).
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Since condition () is stisfied by @0, it follows that . It follows that
f (f) .e. , nd that if T e @0, f(T(’)) f(.) .e. ,. Repeting this
rgument over all possible Abelin subsemigroups of @ shows that if T e @,
then f(T(. )) f(. .e. ,. It is easily verified that the least upper bound

v nd the greatest lower bound

(/ v ,.)(A) f max (f(x), 1 f(x)) d(x),

( ^ #)(A) f min (f(x), 1 f(x) d(x).

Since is invariant under @, and since if T e @, f(T(. )) f(. a.e. /, it
follows that ]Xi f 2 and 1 2 are invariant measures and therefore in M+

3. Existence of extreme points
In this section we consider conditions under which condition (c) is satisfied.

Condition (c) states the existence of countably additive measures. This
strongly suggests some kind of compactness argument is required. We begin
by proving an existence theorem given that X is a compact Hausdorff space,

the Baire sets of X, and then relax this restriction somewhat to the case
X is a -compact locally compact Hausdorff space, and in Section 4 to the
case X is a complete separable metric space. In addition it is necessary for
our arguments to restrict the set of transformations @.

LEMMA 5. Suppose (X, , ) is a probability space, X a compact Hausdorff
space, and the Baire sets of X. Suppose @ is a family of continuous and
measure-preserving transformations relative to (X, , ). Then each T e @ is a
measurable transformation, and ? is a weat* compact set of linear functionals
on C(X).

Proof. If T e @ and f e C(X), then f(T(. )) is a real-valued continuous
function on X. Therefore f(T(.)) is Baire measurable. If C is a compact
Baire set, there is a sequence {f,, n >= 1} C(X) such that for all x e X,
lim+f(x) xc(x), the characteristic function of C. Therefore xc(T(’))
is Baire measurable, that is, T-C . From this it follows at once that T is
a (Baire) measurable transformation.

Suppose is a weak limit of . If f e C(X), T @, and e > 0, there is a
v such that

and

f f(T(x)) du(x) f f(T(x) dr(x)
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Since is an invariant measure,

S s(r(x)) f S(x) <

Since this holds for every s ) 0,

f f(T(x))d(x) f f(x)d(x).

Since this holds if f e C(X), T @, it follows that is invariant; therefore
e . Since is closed in the weak* topology and is bounded, is a

weak* compact set.

LEMMA 6. Suppose (X, , ) is a probability space, X a a-compact locally
compact Hausdorff space, the Baire sets of X. Suppose q9 is a set of con-
tinuous and measure-preserving transformations relative to (X, , ) such that
each T e @ is continuous at

If X is compact and C X is compact, and if #(C) > O, there exists
such that r(C) > O. If X is (r-compact and A n r o., (A) > O, there
exists r such that r(A 1.

Proof. If X is compact, then is a weak* compact set of linear func-
tionals on C(X), by Lemma 5. Below we use Lemma V8.2, Dunford and
Schwartz [5], to show that certain closed convex subsets of have extreme
points.
SupposeX is compact, C X is compact, (C) 0. If0 _-< a -< 1,
{1 e , (C) _-> a} is a convex and weakly compact set. For suppose.
{f, n -> 11 C(X), if n _>_ 1, fn+ --<_ f, and limf xc, the charac-
teristic function of C. Then

{Y , )(C) " ol} -1 {) . , f fn(X) &,(x) >= }
which is weakly compact since is weakly compact. Let

a0 sup{a I{ lye , (C) >= a} }.

Then { e , (C) >= a0} is a convex weakly compact nonempty set. Let
be an extreme poin of this set. Then e 1 If not, then there are 1,
and0 < f < lsuchthatr -[- (1 ). By constructional(C)
(C) a0 follows. Therefore e{] e , (C) _>- a0}, and is not
an extreme point of this set. This contradiction shows r e . That com-
pletes the proof if X is compact.

If X is locally compact, let q be a point not in X, and let X* [q] u X be
given the one-point compactification topology. See for example Kelley
[10]. Let * be the a-algebra of Baire sets of X*.
X is a-compact. In this case {q} is a compact G and therefore a Baire
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set. Also the complement {q}’ X is a Baire set. Further, *. We
extend and the transformations T e @ to * and T* @*e by the definitions,
if B e *, *(B) (B X). If x X, T*(x) T(x), T*(q) limq T(x).
Then the transformations in @* are continuous on X.
Suppose A e , that is, (A) 0 for all e . If is an invariant prob-

ability measure on *, then (* ) is clearly an invariant measure on .
Let (*1 )(X) . If a 0, then (1/a)(*l ) e, and therefore
(l/a) (*1 ) (A) 0. Therefore *(A) 0 if a 0, *(A) 0 if a 0.
It follows that if an invariant measure r on * is extremal, and if
A e ’l r 0.r, r(A) > 0, then (A) 1.
Suppose then (A) > 0, A e [’l r$ 0.r. By the regularity of there is a

compact set C A X such that *(C) u(C) > 0. By the first part
of the proof there is an extremal measure v on * such that 0 < (C) -<_ (A).
Therefore r(A) 1 and (X) 1. It follows that (vl )(X) 1,
(vl)(A) 1, andrle.
THEOREM 4. Suppose (X, , ) is a probability space, X a locally compact

and a-compact Hausdorff space, the Baire sets of X. If @ is a set of continuous
maps of X to X such that each T @ is continuous at , and if @ is countable
or @ satisfies the hypotheses of Theorem 3, then has a unique representation.

Proof. If @ is countable, then conditions () and (5) are satisfied, while
if gO satisfies the hypotheses of Theorem 3, conditions (a) and (b) are satis-
fied. Suppose Ae0 and (A) > 0. By Lemma 6, there is ve such
that (A) 1. Conditions (c) and (5) are both satisfied. The proof is
complete.

4. Complete separable metric spaces
In this section we generalize Theorem 4 to a form that covers many practical

applications. The main result, Theorem 5, is for countable sets of trans-
formations @. Since the semigroup closure of a countable set of measure-
preserving transformations is again a countable set of measure-preserving
transformations, we assume in Theorem 5 that @ is a semigroup. Further
we may suppose @ has an identity element. The proof of Theorem 5 in the
case @ is a countable semigroup requires the construction of a representation
relative to 0 rather than 0, 0 defined as in the beginning of Section 2.
In special cases, if @ is a group or if @ is Abelian, a representation may be
constructed relative to 0.
By continuity considerations the applicability of Theorem 5 may be ex-

tended. Corollary 3 covers the case @ has a countable subset @0 dense in @
under pointwise convergence, that is, if T e @, then there is a sequence
{T, i >_-1/ of transformations in @0 such that for all x X, T(x)
lim_ T,(x). At the end of this section we apply Corollary 3 to the problem
of a set @ of continuous transformations of a compact metric space. Corol-
lary 4 covers the case @ is a locally compact group having a countable base
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for the open sets of @. Corollary 5 covers the case @ is a locally compact
Abelian semigroup having a countable base for the open sets of @ and having
a nonzero regular semi-invariant measure v (see Introduction for a definition).

THEOREM 5. Suppose (X, , ) is a probability space, X a complete separable
metric space, the set of Borel subsets of X. If @ is a countable semigroup of
measurable and measure-preserving transformations, then has a unique repre-
sentation.

Proof. To prove this theorem we work with the sets in 0. As shown in
Section 2, since @ is countable, conditions () and (5) are satisfied by 0, @.
It remains to verify condition (). To do this we embed X in a compact
metric space Q in such a way that the transformations in @ induce a set of
continuous transformations on Q. The results in Section 3 can then be
applied. To obtain the embedding we show first there is a 1-1 measurable
transformation b" X -+ [0, 1]. Let Q be the Cartesian product of [0, 1]
with itself a countable number of times, Q given the Cartesian product
topology. Then the topology of Q is metrizable, so we consider Q to be a
compact metric space. By Kelley [10] there is a homeomorphism 1 :X --* Q
mapping X into Q. As is well known there exists a 1-1 measurable trans-
formation b.’Q -. [0, 1] onto. Consequently, the mapping b 1 is a 1-1
measurable transformation of X into [0, 1].

Let Q be the set of all functions on @ to [0, 1] in the Cartesian product
topology. Then Q is homeomorphic to Q and is a compact metric space.
We map X into Q$ as follows. Let b b., and let be defined by

(x) {b(Tx), T e @}.

Since is a 1-1 measurable transformation,, the map is a 1-1 measurable
transformation of X into Q (since @ has an identity element).

Let b3"Q -- [0, 1] be a 1-1 measurable transformation of Q$ onto [0, 1].
By Hausdorff [8, p. 269], b-1 is a measurable transformation. Further by
Hausdorff, op. cir., 3 (A) is a Borel subset of [0, 1], and therefore (A) is
a Borel subset of Q, if A e .
Each T e@ induces a transformation T* on Q by the definition

Q(T’y) (S) y(ST). Recall y e is a function on @. The mappings
T* are continuous, and if @ is a group, the mappings T* are 1-1. We let
@* be the set of mappings induced by the transformations in @.

Let * be the Borel subsets of Q. If is a probability measure defined
on (X, ), we define a probability measure (-1) by (-)(A)

*. * * (x)(-A), A We observe that (X) and ((X))
Further if is an invariant measure relative to @, then (-) is invariant
relative to q9*. By definition,

T*((x)) T*({b(Sx), S e@}) {b(STx), S e@} (Tx).
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Therefore

(-)(T*-A) ,(4-T*-A) ,(T-4-A) ,(4-A) (-)(A).
Conversely if * is probability measure defined on * nd *(b(X) 1,

we define probbilitymesure (*) on by, if A e , (*) (A) *((A) ).
This is possible since, as observed erlier, if A e , then (A) e *.
Suppose then * is the set of invrint measures on *, and * the set of

extreme points of *. We let ’ be the extension of the ’ invriant sets
s described in Section 2. We show every * e cn be represented. Since
conditions () nd ([) re stisfied, it suffices to verify (). For this purpose
let A e ’ *(A) > 0. By Lemm 6 there is ’ such that *(A) 1.
It follows * has a unique representation. In particular if e , then (u-)
is invariant under @* and can be represented.
We now show that if A e and if T* @*,

(T*-(A)) (X) (T-A).
To see this, y (x) e T*-(A) if and only if T*(x) (A) if and only if
(Tx) e(A) if and only if x T-A if and only if (x)e(T-A). It
follows that if * e*, ((X)) 1, then, ifAe,Te@,

(,*) (T-A) *((T-A) *((T*-(A) (X)

*(T*-(A) ((A)) (*) (A).
Therefore (*) e .
IfA e0and* e and ((X)) 1, then (*) e , and

(v*)(A) 0 or (r*)(A) 1.

For if (r*) , then there are 0 < f < 1 and ,
/u - (1 f)u. Therefore since. *((X)) 1, v ((v*)-)
(l-i) -t- (1 )(. ), a contradiction. Therefore (*) e i, and
as shown in Corollary 1, (*)(A) 0 or (*)(A) 1, A e 0.

Then, if e , (A) > 0 for some A e 0, since (-) can be represented
and (-)(A)> 0, there is a e such that *(b(X))= 1 and
v ((A)) > 0. Then (*) e , and since (r*)(A) > 0, (*)(A) 1.
Condition (5) is therefore satisfied, and the proof is complete.

COOLLXRY 3. Suppose (X, , ) is as in Theorem 5. Let @ be a set
of measurable and measure-preserving transformations. Suppose @ has a
countable subset @o dense in @ under pointwise convergence. Then is a

sucient sub a-algebrafor . Each e has a unique representation determined
by o

Proof. We prove first that 0 is a sufficient sub a-algebra for ). Suppose
e , g is a bounded function measurable in A r,0 0.r. Then if T e @0,

g(Tx) g(x) a.e. . Suppose T e gO and T, i -> 1} is a sequence of trans-
formations in @0 such that for all x e X, lim T(x) T(x). Let {h ,j >_- 1}
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be a sequence of bounded real-valued continuous functions on X such that

1.im f h(x) g(x) &,(x) O.

By hypothesis on g, invariance of , continuity of h, and the bounded con-
vergence theorem,

f h(x) g(x) &,(x) lim f h(T x) g(T x) &,(x)

Since

it now follows that

.lim / h(T,x) g(x) &,(x)

f h(Tx) g(x) l&,(x).

h(Tx) g(Tx) &,(x) O,

g(Tx) g(x) l&,(x) O.

This holds for every T e gO, e . Consequently if e ,
,({xl g(x g(T’x), i >- 0}) 1.

Since limn. (l/n) -01 g(Tix) is an invariant function, it follows g is
measurable in 0.r. Consequently g is measurable in 0 I’lr,e 0,r.
By Theorem 2 if f is a bounded measurable function, there is a bounded
function (f) measurable in gl r,0 0,r such that if A e gl r,0 0,r, then

Then this holds if A e 0. As just shown (f) is measurable in 0. There-
fore 0 is a sufficient sub z-algebra for .

Let e, A e0, t(A) > 0. By Theorem 5 there is a measure v in-
variant under @0 such that v(A) 1, and if B e gl r0 0.r, then (B) 0
or(B) 1. LetTe@. As shown above,

f h(Tx) dr(x) f h(x) d(x)

for all bounded continuous functions. It follows that for every open set
U, (T-1 U) (U). Since the measures r(T-1(. )) and (. are regular,
it follows r(T-B) r(B) for every Borel set B. Therefore e , and by
Corollary 1, since 0 is a sufficient sub a-algebra, v e .

Therefore (), (D), and (5) are satisfied, and the proof is complete.
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COROLLARY 4. Suppose (X, , ) is as in Theorem 5. Let @ be a locally
compact group of jointly measurable and measure-preserving transformations.
If @ has a countable base for the open sets of @, then has a unique representa-
tion.

Proof. Conditions (a) and (b) are satisfied. We verify condition (c).
Let @0 be a countable dense subgroup of @. If A e 0 and (A) > 0, then
by Theorem 5 there is a measure r invariant and ergodic relative to @0 such
that r(A) 1. We show that r is already an invariant measure relative
to @. Since @ satisfies the hypotheses of Theorem 3, r e 1 follows by
Corollary 1. Therefore condition (c) would be verified.
Suppose then that r is invariant under the transformations in @0 and

{Ti, i _>- 1} is a sequence of transformations in @0 such that Ti --. To as
i --. . By Fubini’s theorem, if B e , then

f xs(S-lx) dr(x) r(SB)

is a bounded -measurable function. By Lemma 3, if C is a compact subset
of @, then

1.im j v(T SB) r(ToSB) d(S) O.

By the invariance of r, T SB) r SB) Therefore

fc lr(SS) r(ToSB) d(S) O,

and since this holds for every compact set C,

O.

Since X is a complete separable metric space, it has a countable base 111
for its open sets. Let 1I be the set of all open sets which are finite unions of
sets in 111. It follows from the above that there is an S e @ such that for
every Uell, (SU) r(ToSU). Since r(S(.)) and r(ToS(.)) are
countably additive measures, it follows at once by taking limits on sequences
of sets in llthatif U c Xisanopen set, r(SU) r(ToSU). It then
follows from the regularity of r(S(. and (T0 S(. that if A e , r(SA)
r(To SA). Since S is 1-1 onto and S-1 is also measurable, it follows for
every A e that r(A) r(T0 A). The proof is complete.

COROLLkRY 5. Suppose (X, , ) is as in Theorem 5. If @ is a locally
compact Abelian semigroup such that @ has a countable base for the open sets of
@, and has a nonzero regular semi-invariant measure, then has a unique
representation.



Proof. Suppose @0 is a dense countable subsemigroup of @ and is in-
variant relative to @0. As in the proof of Corollary 4 we may show

r(S-B) (TS-B) dn(S) O.

We use here the fact that the transformations of @ commute to obtain

( TS)-B) r(S-T-B) (T-S-B)
Suppose g >- O, g e L(@, , ), fog(S) dv(S) 1. Then * defined by

f( .(S-B)g(S) dy(S) r*(B)

is clearly an invariant probability measure. Suppose A e 0, that is, A is
invariant under all T e @. It follows that v(A) r*(A). Suppose A
and (A) > 0. By Theorem 5, if @ is a dense countable Abelian subsemi-
group of @, there is an ergodic invariant measure , invariant under the
transformations of @0, such that (A) 1. From the above it follows the
corresponding * is ergodic and v*(A) 1. It then follows from Corollary 1,
Section 2, that * e , and therefore that condition (c) is satisfied. Since
@ satisfies the hypotheses of Theorem 3, conditions (a) and (b) are also
satisfied. Therefore has a unique representation determined by
A classical theorem in representation theory says that if X is a compact

metric space, the Borel subsets of X, a probability measure on (X, ),
and @ a group of homeomorphisms of X onto X, each T e @ measure-pre-
serving, then the measure is representable.
Suppose p is the metric on X, and C(X, X) the set of continuous functions

on X to X. If f and g C(X, X), define p(f, g) sup p(f(x), g(x)). It
is known that C(X, X) is a separable metric space. See for example Kura-
towski [11, pp. 120, 315]. By Corollary 3 it follows that has a unique
representation. For @ C(X, X), and therefore @ is a separable metric
space under the restriction of p to @. @ therefore has a countable subgroup
which is dense in @ under pointwise convergence.

It is not, however, necessary to assume the transformations in @
are homeomorphisms.

TEOaEM 6. Suppose (X, , ) is a probability space, X compact metric,
the Borel subsets of X. Let @ be a semigroup of continuous and measure-

preserving transformations of X into X. Then has a unique representation
determined by o.

Remark. The existence of a unique representation asserted in Theorem 6
may be proved using the results of Choquet [3]. That Choquet’s theorems
may be validly applied follows from Corollary 2, Section 2 and Lemma 5,
Section 3.
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5. Examples
Suppose @ is a locally compact semigroup having a countable base for the

open sets of@. Let q be a point not in@,@’ {q} u @, and let @’ have
the one-point compactification topology. If T e @, define Tq qT q.
Then it is easily seen that the map (T, S’) TS’ is jointly continuous in
the product topology on @ @’. If is the probability measure supported
on {q}, then is invariant under the transformations in @.

It is clear that if (X, ) is any measurable space such that @ acts on X as
a semigroup of measurable transformations, then if x e X is a fixed point
under @, there exists an invariant probability measure on (X, ). We use
this idea to construct nontrivial examples.

Let @’ be as above, and C(@’, [0, 1]) the set of all continuous functions on
@’ to [0, 1] taken with the sup norm. C(@’, [0, 1]) is a complete separable
metric space. For (@ and hence) @’ has a countable base for the open sets
of (@) @’, and therefore the topology of @’ is metrizable. Therefore @’ is a
compact metric space, and it follows that C(@’, [0, 1]) is a separable metric
space.
@ induces a semigroup @* of transformations on C(@’, [0, 1]), T -- T* e @*

defined by (T*f)(S) f(ST), f C((R)’, [0, 1]), and S (R)’. Since

T1 T2) *f) (S) f(ST1 T2) T* f) (ST1) T* T* f) (S),

T* T*the map T -- is a homomorphism. If T’ 2, then for all
f e C(@’, [0, 1]), S @’,f(STI) f(ST2). Since the functions in C(@’, [0, 1])
separate the points of @’, ST ST,. for all S e @’. Taking S identity
of @ gives T1 T2. Therefore, T -- T* is an isomorphism. We take on
@* the topology which makes this a homeomorphism.
The semigroup @* then acts in a jointly continuous way. For if T, i -> 1}

is a sequence of elements in @*, limi T* T*, and if {fi, i >- 1} is a se-
quence of functions in C(@’, [0, 1]), limf f, then fi converges to f
uniformly as i -- , and

limit, (T f) (S) lim,f(ST) f ST) (T’f) S)

@* acting on C(@’, [0, 1]) has the constant functions as fixed points. The
set 1 of constant functions is clearly homeomorphic to [0, 1], and therefore
I is a compact, therefore a Borel, subset of C(@’, [0, 1]). Let * be any
probability measure defined on the Borel subsets of [0, 1]. Let ** be the
corresponding measure on the Borel subsets of t. Extend ** to a measure
on the Borel subsets of C(@’, [0, 1]) by, if A e , (A) **(A n ).
is clearly an invariant probability measure.

THEOREM 7. Let @ be a locally compact semigroup having a countable base
for the open sets of @. Then there are a probability space (X, , ), X a com-
plete separable metric s.ace, the Borel subsets of X, and a locally compact
semigroup @* of jointly continuous and measure-preserving transformations
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relative to (X, , u) such that @ and @* are isomorphic. The probability
measure u is nonatomic.

Suppose X [0, 1], are Borel subsets of X, and u* is Lebesgue measure
on (X, ). Let % be the set of all measurable and measure-preserving
transformations relative to (X, , u*). : is clearly a semigroup.

THEOREM 8. Let @ be a countable semigroup such that the cancellation law
holds for @. There is a subsemigroup of which is algebraically isomorphic
to @.

Proof. Let Q be the set of ll functions on @ to [0, 1], Q given the product
topology. As is well known, Q, s the Crtesin product of [0, 1] with itself
x0 times, my be made into product mesure spee, starting from Lebesgue
mesure u on [0, 1]. As observed in the proof of Theorem 5, the elements
of @ nturlly induce semigroup @* of continuous maps of Q, defined by
(T’y) S) y( ST) T --> T*, y Q, S @. Since the cancellation lw
holds for @ one may readily verify that each T* @*e is a measure-preserving
transformation. Finally, as is well known, there is a map b’Q -- [0, 1]
which is 1-1, onto, and such that 4 and b7 are each measurable. Further
if u is the product measure on Q and if A is a Borel subset of [0, 1] u(A)
*(A) Let @** be the transformations in given by S e if and only if
S T*, T* @*. are algebraicallyIt is easily verified that @ and @**
isomorphic.

REFERENCES

1. J. l:. BLUM AND D. L. HANSON, On invariant probability measures I, Pacific J. Math.,
vol. 10 (1960), pp. 1125-1129.

2. D. L. BURKHOLDER, Suciency in the undominated case, Ann. Math. Statistics,
vol. 32 (1961), pp. 1191-1200.

3. GUSTAVE CHOQVET, Existence et unicit des representations intOgrales au moyen des
points extrmaux dans les canes convexes, Sminaire Bourbaki, no. 9 (1956/
1957), Paris, 1959, Expost! 139.

4. J. L. DooB, Stochastic processes, New York, Wiley, 1953.
5. NELSON DUNFORD AND JACOB W. SCHWARTZ, Linear operators, Part I, New York,

Interscience Publishers, 1958.
6. BRUNO DE FINETTI, La prvision: se lois logiques, ses sources subjectives, Ann. Inst.

H. Poincar4, vol. 7 (1937), pp. 1-68.
7. PAUL HALMOS, Measure theory, New York, Van Nostrand, 1950.
8. F. HAUSDORFF, Mengenlehre, 3rd ed., Berlin, W. de Gruyter & Co., 1935.
9. EDWIN HEWITT AND L. J. SAVAGE, Symmetric measures on Cartesian products, Trans.

Amer. Math. Soc., vol. 80 (1955), pp. 470-501.
10. JOHN L. KELLEY, General topology, New York, Van Nostrand, 1955.
11. CASMXR KURATOWSKI, Topologie, 4th ed., Warsaw, 1958.
12. E. L. LEHMANN, Testing statistical hypotheses, New York, Wiley, 1959.
13. J. v. NEUMANN, Zur Operatorenmethode in der klassischen Mechanilc, Ann. of Math.

(2), vol. 33 (.1932), pp. 587-642.

CORNELL UNIVERSITY
ITHACA, NEW YORK


