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1. Introduction

In the study of the rational cohomology theory of algebraic linear groups,
the differential forms, constructed from the algebra of the rational representa-
tive functions on the group, play a major role in providing the link between
the group cohomology and the Lie algebra cohomology [5]. Moreover, the
cohomology of the differential forms has some significance as an algebraic
geometric invariant. For instance, it follows from [5, Theorem 4.1] that,
if R is the algebra of the rational representative functions on an irreducible
algebraic linear group G over a field F of characteristic 0, the cohomology
of the differential forms of R is trivial (if and) only if R is an ordinary poly-
nomial algebra over F.
Our main purpose here is to extend the theory of these differential forms

to the case where the group G is replaced by a "homogeneous space" G/K,
K being a fully reducible algebraic subgroup of G. This means that R is
replaced by the subalgebra R of R consisting of the functions that are con-
stant on the cosets of K in G. If the base field F is algebraically closed, the
designation of G/K as a homogeneous space is actually justified" we shall
see (Theorem 5.1) that G/K has then the structure of an affine algebraic
variety, with R as its algebra of polynomial functions. The connections
between the cohomology of the differential forms, the rational cohomology
of the group, and the Lie algebra cohomology extend to this case, with the
relative Lie algebra cohomology taking the place of the ordinary Lie algebra
cohomology (Theorems 3.1, 3.2, 3.3, 4.2). In order to get the full informa-
tion here, it was necessary to extend the known tensor product decomposition
theory for Lie algebra cohomology to the relative case (Section 4), and this
may be of independent interest.
For an arbitrary unitary F-algebra P, there are two known constructions

giving a complex of "differential forms." One of these is based on the F-deri-
vations of P (Section 3), while the other is quite direct and purely formal
(Section 5). We show that, for P R, the two complexes thus obtained
are naturally isomorphic (Theorem 5.2). Actually, this result holds under
more general circumstances; results of Kunz [6] are relevant here.
We take this opportunity to thank M. Rosenlicht for his help in some

clarifying discussions on the topic of differential forms.

2. The algebra of the rational representative functions
Le G be an irreducible algebraic linear group over an infinite field F. We

denote by R(G), or simply by R, the F-algebra of the rational representative
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functions on G, i.e., of the F-valued rational functions defined at every point
of G and with the property that their translates under the action of G span
only a finite-dimensional space of functions. Equivalently, the rational
representative functions are those rational functions which remain every-
where defined under arbitrary extensions of the base field F. If G is given
concretely as an algebraic group of linear transformations of determinant 1,
then R coincides with the algebra of all polynomial functions on G. The
field of quotients, Q, of R is the field of the rational functions on G.
We consider the action of G by left translations on R and on Q; forf e R, and

x and y in G, the left translate x.f of f is defined by (x.f) (y) f(yx). Let
@ denote the Lie algebra of G. The action of G on R by left translations
induces an action of @ on R and hence on Q by which @ acts as a Lie algebra
of F-derivations. In this way, gO becomes identified with the Lie algebra
of all F-derivations of R (or of Q, by canonical extension of derivations) that
commute with the right translations f --. f. x, where (f. x) (y) f(xy). The
Q-space of all F-derivations of Q is spanned by @ and in fact is canonically
isomorphic with Q (R) @. Moreover, the R-module of all F-derivations of
R is canonically isomorphic with R (R) gO (see [5, Lemma 4.1], and [1]).

LEMMA 2.1. Let K be an algebraic subgroup of the irreducible algebraic
linear group G, and let QK denote the subfield of Q consisting of the elements left
fixed by the left translations from K. Then QK separates the cosets xK ofK in G.
Furthermore, every element of @ that annihilates Q belongs to the Lie algebra
ofK.

Proof. Let I denote the ideal of R that is associated with K. We can
evidently find F-linearly independent elements fl,"’, fn of I such that
I Rfl ... Rf and Ff ... + Ffn is stable under the action of K
by left translations. Let V denote the smallest G-submodule of R (under
the action of G by left translations) that contains all the f’s. Let W be the
homogeneous component of degree n of the exterior F-algebra built over V.
We consider the action of G and @ onW that is induced by the action of G on V.
Let w be the exterior product, in W, of fl, f. Then Fw is evidently
a K-stable 1-dimensional subspace of W. If , is any element of the dual
space to W, we define the element "y/w of R by (v/w)(x) "(x.w), for
every x e G. If a and are elements of the dual space to W, and if /w O,
the quotient (a/w)/(/w) is immediately seen to be an element of Q, as a
consequence of the fact that Fw is K-stable. Now let y be an element of
G that does not belong to K. Then y.w Fw, because otherwise y.I c I,
which implies that y e K. Hence we can choose a and from the dual space
to W such that a(w) 1, a(y.w) O, (w) 1, (y.w) 1. Then
(a/w)/(/w) is defined at the points 1 and y of G and takes the values 1 and
0 at these points, respectively. Thus Q separates the cosets yK and K,
which proves the first part of Lemma 2.1.
Now let be an element of @ that does not belong to . Then (w) e Fw,

because otherwise (I) c I which implies that e . Hence we can choose
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and from the dual space to W such that (w) 1, (i’(w) 0,/(w) 1,
((w)) 1. The transform of (o/w)/’(/w) by is

((/())(/) (/)((()))/(/) o.
This establishes the second part of Lemma 2.1.

The transcendence degree of Q over Q is equal to the dimension

Proof. Q is a finitely generated separable extension of QK, whence the
transcendence degree of Q over Q is equal to the dimension of the Q-space
of the Q-derivations of Q. This space contMns the cunonical isomorphic
image of Q (R) whose dimension is equal to the dimension of over F, which
is equal to the dimension of K. Hence it suffices to show that every Q-deri-
ration r of Q belongs to the canonical image of Q (R) . Like every F-deriva-
tion of Q, r is of the form q, with q e Q and e @. Subtracting an
element of Q and multiplying by a nonzero element of R, we obtain a Q-
derivation of Q that has the form f ’, where the f’s are elements of
R and the ’s are elements of @ that are linearly independent mod . NOw
what we have to show is that the f’s are 0. We have fi(q) 0, for

Qg.every q e Translating from the right with an arbitrary element x of G,
and noting that Q.x Q:, we find that (f.x)(q) 0, for every
q e Q. Let q e Q, and let y be an element of G at which each i’(q) is de-
fined. Let z be an arbitrary element of G. Then we have

f,(z)r,(q)(u) ( (f,.zu-)r,(q))(u) o.
Thus we may conclude that f(z)(q) O, for every q e QK. By the
second part of Lemma 2.1, this implies that f(z)e, whence each
f(z) 0. This completes the proof of Lemma 2.2.

:PROPOSITION 2.1. Let G be an irreducible algebraic linear group over the
infinite field F, and let K be an algebraic subgroup of G. If K is unipotent,
or if F is of characteristic 0 and K is fully reducible, then the field of quotients
of R coincides with Q.

Proof. We must show that, if q is any nonzero element of Q,
(Rq R) O.

This is evidently the case if K is unipotent, because in that case every element
of R generates a unipotent K-module.
Now suppose that F is of characteristic 0 and K is fully reducible. Let

V be a nonzero simple K-submodule of Rq n R. Let V’ be the dual K-module
HomF(V, F). Let S be the space of the representative functions on K that
are associated with V. There is a K-module monomorphism of V into the
direct sum of a finite number of copies of S. Since V is simple, so is V’, and
we may conclude that V’ is isomorphic, as a K-module, with a submodule
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of S. Now observe that the restriction of functions on G to K yields a
K-module epimorphism of R(G) onto R(K). Since K is fully reducible
and F is of characteristic 0, R(G) is semisimple as a K-module. Hence
there is a K-module monomorphism R(K) .--. R(G) that is inverse to the
restriction map. Composing this with a K-module monomorphism V’ -- S,
we obtain a K-module monomorphism of V’ into R. Now let vl, v be
a basis for V, and let fl, f be the dual basis for V’. We choose the
visothatvl(1) 1, whilevi(1) 0, foreveryi> 1. Putg= (f). Then,
for every x e G, we have _1 (g.x)v (Rq r R):. Choosing x so that
g(x) O, we ensure that this function is not 0. This completes the proof
of Proposition 2.1.

PROPOSITION 2.2. Under the assumptions of Proposition 2.1, every F-deriva-
tion of R: into R extends to an F-derivation of R.

Proof. Let r be an F-derivation of R into R. Then r extends canoni-
cally to an F-derivation of the field of quotients of R into Q, i.e., by Proposi-
tion 2.1, to an F-derivation of Q into Q. This, in turn, can be extended
to an F-derivation of Q, because Q is separable over Q. Let , ,/’8 be
a basis for , and extend this to a basis i’, ’8+s for @. There is an
F-derivation of Q extending r that has the form ’__ q 8+, with q e Q.
By Lemma 2.2, the transcendence degree of Q over F is equal to t. Since
Q is finitely generated and separable over F, so is Q, and every finite system
of generators for Q over F contains a separating transcendence base for
Q over F. Hence there are elements u, us in R that form a separating
transcendence base for Q over F. Since Q is separable over Q, we can
complete this to a separating transcendence base Ul, us+8 for Q over F.
Then no nonzero F-derivation of Q annihilates each u, and it follows that
the determinant formed with the i’.(u) is different from 0. On the other
hand, i’(u) 0 whenever both i -< and j -< s. Hence the determinant
formed with the ’8+(u), where i and h range from 1 to t, is not equal to 0.
Let D denote this determinant. Now we have

-’= q i’,+(u) r(ui) R, for each i -< t.

Hence Dq, R, for each h. Let J denote the ideal of all f e R such that
fq, e R, for each /. We have just shown that D e J. On the other hand,
we may evidently replace ul,... us by u.x,..., us.x, where x is an
arbitrary element of G. This replaces D by D.x, so that we conclude that
D. x e J, for every x e G. Hence J has no zero on G.

If F is algebraically closed, every proper ideal of R lies in the kernel of some
F-homomorphism R -- F. On the other hand, every such homomorphism
is of the form f--. f(x), with some x e G. Hence we conclude that, if F is
algebraically closed, J R, i.e., q e R, for each k, so that our extended r

actually sends R into R. In the general case, we extend G and K canonically
over the algebraic closure F* of F; let G*, K* denote these extended groups.
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Then we have

R(G*) R(G) (R) F* and (R(GY*))* R(G) (R) F*.
Hence it is clear that Proposition 2.2 for (Gy*, K*) implies Proposition 2.2
for (G, K). This completes the proof.

Observe that Proposition 2.2 implies that the canonical map of R (R) (@/)
into the R-module of the F-derivations of R into R is an epimorphism. The
argument we made at the end of the proof of Lemma 2.2 shows that this
map is also a monomorphism. Thus the R-module of all F-derivations of
R into R is canonically isomorphic with R (R) (@/). Regard @/ as a
K-module via the adjoint representation of G on @, and regard R (R) (@/)
as the tensor product of the K-modules R (by left translation) and @/.
Then we have the following result.

ConoLaY 2.1. Under the assumptions of Proposition 2.2, the R-module
of all F-derivations of R is canonically isomorphic with (R (R) @/) ):.

Proof. Let ’f (R) be an element of R (R) (@/), where fi e R and
Rg.e @/. Let g e Then we have, for every x e K,

x. (f r(g)) -’ (x.f)x.r(g)

Hence our derivation sends R into R if and only if it coincides with the
derivation of R effected by x. (f (R) ), for every z e K. By the re-
mark that just precedes the statement of our corollary, this is so if and only
if ’f, (R) i’ve (R (R) (@/)), Q.E.D.

3. The complex of differential forms
Let P be a commutative unitary F-algebra, where F is a field. Let Te de-

note the P-module of all F-derivations of P. For every positive integer q,
let Aq(T,) denote the P-module of all (P, q)-multilinear alternating maps
from Te to P, and put A(Te) P. The elements of Aq(T,) are called
the homogeneous differential forms of degree q on P. The weak direct sum of
the Aq(Tp) will be denoted A(Te). With every r e Te, we associate a
P-linear homogeneous endomorphism of degree 1 of A (Te), called the
contraction with respect to r and denoted c. This is defined as follows"
c 0 on P; for a e Aq(Te) and q > 0, c(a) is the element of Aq-I(Te)
given by ,..., ,...,
The natural action of Te on P is extended to an action of Te on A (Te) by

homogeneous F-linear endomorphisms t of degree 0, where

t() ( ) ((, )) + ( [ ], )

c] c,, and [t, t] t, NextOne verifies directly that c 0, [t,
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one verifies inductively on the degree that there is one and only one homo-
geneous F-linear endomorphism 8 of degree 1 on A(T.) satisfying
8c -J- c 8 t, for all r e Te. Then 8 commutes with each t and 82 0.
One has the familiar explicit formula for 8"

(Sa) (o, rq) =o (--1)r,(a(ro, e, rq))

+ :,<, (-1)’+’([,, ], 0 ,..., ,,..., ,..-, )
The complex (A (Te), 8) is called the complex of the differential forms on P.
We shall examine this complex in the cases P R and P R. The

case P R was investigated in [5], and we shall obtain results on R from
a certain canonical map of the complex for R into the complex for R.
We identify T with R (R) @, and we define an F-linear projection/" T --. @
by/(f (R) ’) f(1)’. For every ’e @, we define the derivation

* of R by *(f)(x) (x.f)(1), so that ’* commutes with the left transla-
tions by the elements of G and *(f) (1) (f) (1), for every f e R. Clearly,
-*(R) R, and we make the convention that where -* occurs as an argu-
ment with a differential form on R it should be replaced with its restriction
to R. The adjoint action of G on @ is extended to the action r -- x.r of
G on T, where (x.r)(f) x.r(x-l.f), for every feR. Then we have
(x. (f)) s’(x) (x. ).
Now let a e Aq(T:). Then we define a function p(a) on q-tuples of

elements of T and with values in R by setting

() (, ..., ) (x) ((x. )* (. )*) ()

Our last remark shows that p(a) is R-multilinear, and hence one sees im-
mediately that p(a)eAq(T), so that we have defined a homogeneous
R-linear map p of degree 0 of A(T) into A (T).
We claim that p commutes with 8. Since the derivations *, with ranging

over @, span T over R, it suffices to show that

() (to*, ..-, t*) ()(to*, .-., t*),
for all ’ e @. Let " e @. Clearly, .* *, for every e G. Furthermore,
we have B(-*) ’. In order to see this, write ’* f, withf e R and
e@. LetfeRandxeG. Then we have

(f)(x) (f.x)(1) *(f.x)(1) f,(1),(f.x)(l) /(*)(f.x)(1)
(*) (]) (x),

which proves our assertion.
Hence we have (p)(’’, ..., *) (’,..., -*), and the similar

equality for 8 in the place of . Now the equality to be proved follows at
once from the explicit formula for 8, noting that [,*, ,*] [,, ,]*.
The group G operates on T and on T on the right, as follows"

(,. x) () 0’"-)".
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We make Aq(TR) and Aq(TRK) into G-modules, setting

(x.) (, ) (.x, .x) .-.
We shall show that p is a G-module homomorphism. We have

(x’p(a))(rl, rq)(y) p()(TI’X, Tq’X)(x--ly)
a((x--ly r’X)* (x--y rq’X)*) (x--y)

Now one verifies directly that B(x- x-1r.x) .(r) and, for i’e@,
(x-l.")* *.x. Hence-the last expression above is equal to

a(B(y.rl)*.x, (y.rq)*.x)(x-y) p(x.a)(r rq)(y), Q.E.D.

It is seen immediately from the explicit formula that the coboundary
operator ti is also a G-module homomorphism. It is clear that the G-module
structure just defined on A (T.) and A (TaK) is that of a rational G-module,
in the sense of [5]. Hence it induces the structure of a @-module on our
complexes, and it is easily verified that this induced @-module structure
coincides with the @-module structure given by ’-- t.. Since

it follows that the corresponding @-module structure on the cohomology
groups of our complexes is trivial. Hence, if the base field F is of charac-
teristic 0 and G is irreducible, the induced action of G on the cohomology groups
of the complexes A (TR) and A (TRy) is trivial.
By changing sides in the above definition of the G-module structure on

A (TR), we obtain a second G-module structure; we indicate the operations
of this structure by -- x(a), where, for a e Aq(TR), x() is defined by

x() (, ) x (x- "T1 X

One sees immediately that this is the structure of a rational G-module, and
that 8 is a G-module endomorphism also for this new G-module structure.
Let A(T,) denote the subset of all a e A(T) such that x(a) q, for
every x e K, and c(a) 0, for every e . The @-module structure of
A (T.) that is induced by our new G-module structure is given by - -- t,
for every e @. Hence, for each - e , t annihilates A(T), and the formula
tc W c t shows that A(TR) is a subcomplex of A(T.). Evidently,
it is also an R-submodule of A (T.). Finally, one checks easily that A(T)
is also a G-submodule of A (T.), for the G-module structure a -- x.a we
defined originally.
We shall show that p(A(TR)) c At(T). It follows at once from the

definitions that x(p(a) p(a), for every a e A (TK) and every x K.
There remains to show that c o p 0, for all i" e . Let a e Aq(T). Then
we have

(c ) (., ) (x) () (, ., )(x)
((x. )*, (x. )*, (x. )*) (x).



DIFFERENTIAL FORMS AND LIE ALGEBR/L COHOMOLOGY 271

Now the map r -- a(r,/(x, r2)*, ,/(x. rq)*) is an element of AI(TR:).
Hence we see that it suffices to prove that, for every a e AI(T.) and every
x e G, we have a((x. i’)*) (z) 0. But

a((x.’)*) (x) a(*.x-) (x) (x-.a) (’*) (1).

Hence it suffices to show that a(*)(1) 0, for every e A(TR:).
Let S denote the field of quotients of R, and choose a maximal set

(’1, ’n) of elements of @ such that the derivations of S effected by-, * are linearly independent over S. We have F c S c Q, and
Q is finitely generated (as a field) over F. Hence S is finitely generated over
F. Hence there are elements f, f in R such that the determinant
formed from the (f.) is different from 0. Let D be this determinant. If
we replace the i by x-1. i’, with x e G, and the f. by f.x, D is changed to
D.x. Hence we may choose the and the f. so that D(1) 0. Now if
we consider the system of linear equations

we find that there are elements g. e R such that

Da(i’’) . g. ’(f.), for each i.

On the other hand, there is a nonzero element g in R such that g* coincides
on R with an R-linear combination of the . Hence

Da(’*) .= g t*(f),
whence

D(1)a(’*)(1) gj(1)*(f)(1)- g.(1)’(f.)(1)= 0,

so that a(*) (1) 0, Q.E.D.

PROPOSITION 3.1. Let G be an irreducible algebraic linear group over the
field F of characteristic O, and let K be a fully reducible algebraic subgroup of
G. Then the map p is an isomorphism of A T) onto At(T).

Proof. Regard T as a K-module via the extended adjoint representation- x.r. Let I be the inverse image of T. for the restriction map of Ta into
the R-module of the F-derivations of R into R. Clearly, I is a K-submodule
of T., and (T) I. Now T, and hence I, are rational K-modules.
Since K is fully reducible, it follows that I is semisimple as a K-module.
With the trivial K-module structure on T., the restriction map I -- T is
evidently a K-module homomorphism. By Proposition 2.2, it is an epi-
morphism. Hence we conclude that the restriction map is an epimorphism
of (T) onto T. Now (T.) consists precisely of the R-linear combina-
tions of the derivations *, where e @. If a e Aq(T.) and ’1, ’q are
elements of @, we have

..., ...,
Hence it is clear that p is a monomorphism.
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Now let us recall from the proof of Lemma 2.2 that the kernel of the re-
striction map of T. into the R-module of the F-derivations of RK into R is
precisely R (R) . It follows that, if /e A(TR) and rl, rq are elements
of T, then /(rl, rq) depends only on the restrictions of the ri’s to
RK. Moreover, since x(,) ,, for every x e K, we have /(r, rq) e R,
whenever the r’s belong to (T,). Hence the restriction of /to q-tuples of
elements of (T) induces an element Aq(TR). We have

whenever the belong to @. It follows that p(a) ,, and we have shown
that p is an epimorphism. This completes the proof of Proposition 3.1.

Let V be a rational G-module, and consider the rational G-module complex
A(T) (R) V. If , is an element of A(T) and v is an element of V, then, (R) v defines an element of the space Cq(@, V) of the alternating q-cochains
for @ in V by

( (R) )(,..., ) (,..., )().

Thus we have a map h of A(T) (R) V into C(@, V). It has been shown in
[5, Section 5] (and is actually easy to verify directly) that the restriction of
b to (A (T) (R) V) G is an isomorphism of the complex (A (T) (R) V) ( onto
the complex C( @, V).
Now we consider the K-module structure of (A (T) (R) V) obtained by

using the operations a - x(a) on A (T) and the trivial action on V. On
C(@, V), we introduce the usual K-module structure given by

(x.) (, ) x.(x-., -.).
We claim that, for these K-module structures, the restriction of to
(A (T) (R) V) is a K-module isomorphism.
as above. Then we have

(x( (R) )) (, ..., ) x()(,

(x-l" ’1

(X--I.)(X--1.’1
Hence, if e (Aq(T,) (R) V) , this gives

Let x K, and let /and be

’) (1)v
--1,x .)(x)v

--1.-,x .’q)(1)v.

(X(O) (’1, ’q) X" (O/(X--I’’I x--l"q) (1)V)

(x.())(, ..., ).
Thus our isomorphism of complexes b" (A (TR) (R) V) -- C(@, V) is also
K-module isomorphism. Hence we see immediately that b maps

(A:(T,) (R) V) isomorphically onto C(@/, V) :. Under the conditions
of Proposition 3.1, we compose with t.he isomorphism of (A (T.) (R) V) e

onto (A:(T) (R) V) that is induced by the isomorphism p of Proposition
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3.1 to obtain an isomorphism of the complex (A(TRK)(R) V) onto the
complex C(@/o, V) K.

Let K1 be the irreducible component of the identity in K. Then
C(@/, V) is the K/K-fixed part of C(@/, V)1, which is the -anni-
hilated part of C(@/o, V). The cohomology space of the complex
C(@/, V)1 is the relative Lie algebra cohomology space H(@, o, V) for
(@, o) in V. As a module for the finite group K/K, C(@/, V): is semi-
simple. Hence the K/K-fixed part of H(@, , V) is the cohomology space
of the complex C(@/o, V). Hence we have the following result.

THEOREM 3.1. Let G be an irreducible algebraic linear group over the field
F of characteristic O, and let K be a fully reducible algebraic subgroup of G.
Then, for any rational G-module V, the cohomology space of the complex
(A TRK) (R) V) is isomorphic, via the maps p and b defined above, with the
K-fixed part H(@, , V) : of the relative Lie algebra cohomology space for (@, )
inV.

In the special case where G is fully reducible, Theorem 3.1 gives a deter-
mination of the cohomology space of the complex A (T). In that case,
the rational G-module A (TK) is semisimple. Since the action of G on the
cohomology space of the complex A (T) is trivial, this implies that the
injection A(T) - A (TRy) induces an isomorphism of the cohomology
spaces. Hence, if we take for V the trivial G-module F, Theorem 3.1 gives
the following result.

THEOnE 3.2. Let G be an irreducible algebraic linear group over the field
F of characteristic O. Suppose that G is fully reducible, and let K be a fully
reducible algebraic subgroup of G. Then the cohomology space of the complex
A (T,) is isomorphic with H(@, , F).

In the general case of Theorem 3.1, there is a spectral sequence linking
the tensor product of the cohomology space of the differential forms on R and
the space of the rational cohomology for G in V to the relative Lie algebra
cohomology space for (@, ) in V. In order to derive this result, we need
more information on the G-module A (T.).
Under the present assumptions, A (T.) may be identified with AK(T.),

and we shall show that A:(T,) is a direct G-module summand of A(TR).
Since K is fully reducible, we have a direct K-module decomposition
@ + . For each q > 0, the R-module Aq(TR) is the direct sum of
two R-submodules A(T.) and A?(T.), consisting of the elements annihi-
lated by the c with e , or of the elements annihilated by the c with e ,
respectively. Since and are K-submodules of @, it is clear that these two
R-submodules are stable under the operations a -- x(a), with x e K. With
reference to this K-action, the K-fixed part of Aq(TR) is therefore the
direct sum of A(T.) and the K-fixed part of A(TR), and it is clear that
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this is a direct G-module decomposition for the G-module structure
a -- x.a. Hence AK(T,) is a direct G-module summand of the K-fixed
part (for the action a x(a)) of A(T,). Since K is fully reducible,
the rational K-module A(T,) (for the action a -- x(a)) is semisimple.
Hence the K-fixed part of A (T.) is a direct G-module summand of A (T.).
Thus AK(T.) is indeed a direct G-module summand of A (T.).

It follows at once from [5, Proposition 2.2] and from the form in which
A (T.) is exhibited in [5] that, for every rational G-module V, the G-module
A (T.) (R) V is rationally injective, in the sense of [5]. In virtue of what
we have just proved, this implies that, under the assumptions of Theorem 3.1,
the G-module A(T) (R) V is rationally injective.
Put U Aq(T:) (R) V, U q Uq. Then U is a rational G-module,

and we consider the complex C(G, U) C(G, U) of the nonhomo-
geneous rational representative cochains for G in U, in the sense of [5, Section
2]. Let a denote the coboundary operator of this complex, and let v de-
note the coboundary operator of the complex U. Then C(G, U) has the
structure of a double complex of rational G-modules, with total coboundary
operator ti a + (-1)Pti, on C’(G, U).

Since U is rationally iniective as a G-module, the rational cohomology
groups Hn(G, U) for G in U are (0), for all n > 0. A standard argument
[3, Proposition 4], shows that the injection U -- C(G, U) c C(G, U) in-
duces an isomorphism of Hn(u, ) onto Hn(C(G, U), ), for all n => 0,
where the grading on C(G, U) is given by C(G, U) _p+q=n CP( G, uq).
We introduce a decreasing filtration (L) on this double complex, where

CpL >__ (G, U) The spectral sequence derived from this filtration is
the spectral sequence of Cartan-Leray, with the ordinary group cohomology
replaced by the rational cohomology of G. The arguments and results of
[3, Chapter I, Section 5] apply without change to the present situation, giving
the following result. Let H(Ua), denote the subspace of H(U) whose
image in H(C(G, U)) is the image of H(L). Then the limit E. of the
spectral sequence is given by

EP’q uP+q( UG) p/IP+q( UG) p+l
the term E of the spectral sequence is given by

E’q Hp(G, Ha( U) ),

Now we have Ha(U) Hq(A (T,:)) (R) V, and we have seen earlier that
the action of G on Hq(A (TRK)) is trivial. Hence we obtain

E’q= HP(G, V) (R) Hq(A(T,:)).

On the other hand, by Theorem 3.1, H( U) H(@, , V)K.
Thus we have the following result, which is the analogue of a result for

Lie groups due to van Est [7, Theorem 3].
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THEOREM 3.3. Let G be an irreducible algebraic linear group over a field F
of characteristic O, and let K be a fully reducible algebraic subgroup of G. Let
V be a rational G-module. Then there is a spectral sequence with

E. H G, V) (R) H A (T.K)

and with E the graded space obtained from a filtration of H(@, , V):.

4. Relative Lie algebra cohomology
While the connection expressed in Theorem 3.3 is rather vague, we have

very precise connections of this type in two special cases. One of these is
the case where G is fully reducible, which case is covered by Theorem 3.2.
The other is the case where K is a maximal fully reducible subgroup of G.
In this case, the spectral sequence of Theorem 3.3 collapses, in the sense that
E coincides with E H(A T) H(A T) F, and the result
becomes a superficially different form of the isomorphism of [5, Theorem
5.2]. In order to express the relative Lie algebra cohomology in terms of
the cohomology of differential forms on an algebra of representative functions
and the rational cohomology of G, we make a reduction to the above special
cases on the level of the relative Lie algebra cohomology. The reduction
is based on an imbedding of the given fully reducible subgroup of G in a
maximal fully reducible subgroup of G, which enables us to use an easy
generalization of the tensor product decomposition of the Lie algebra co-
homology given by [4, Theorem 13].

THEOREM 4.1. Let @ be a finite-dimensional Lie algebra over the field F of
characteristic O. Let be a reductive subalgebra of @, and let be an arbitrary
subalgebra of . Suppose that the restriction map H(@, , F) -- H(, 9, F)
is an epimorphism. Let V be a finite-dimensional @-module that is semisimple
as a -module. Then, for each n >= O, Hn(@, , V) is isomorphic with

+q:, H (, 9, F) (R) Hq(@, , V)

an isomorphism of the second space onto the first is obtained in the natural way
from any homogeneous linear monomorphism H(, , F) ---> H(@, , F) inverse
to the restriction epimorphism, the canonical map H(@, , V) ---> H(@, 9, V),
and the cup product H(@, , F) (R) H( @, , V) ---. H( @, , V).

The proof is almost identical with the proof of [4, Theorem 12].
quires the following generalization of [4, Theorem 10].

It re-

LEMMA 4.1. Let be a finite-dimensional reductive Lie algebra over the
field F of characteristic O, and let M be a finite-dimensional semisimple -module
such that M (0). Then, if is any subalgebra of , Hn(, , M) (0),
for all n >= O.

Proof. We may evidently suppose that M is simple and that n > 0.
Let be the center of . Then is the direct sum of [, ] and , and
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[, ] is semisimple. For every "r e , "M is a -submodule of M, and thus
is either (0) or M. Suppose first that .M M. Let f be a relative n-
cocycle for (, 9) in M. Then c,(f) is a relative (n 1)-cochain for (, )
in M, and 8(c.(f)) .f. But , acts as a @-module automorphism p on

--1M, and .f p f. Hence we havef p. 8(c.(f) 8(p--1 c.(f)), and
--1
p. o c.(f) is evidently a relative (n 1)-cochain for (, 9) in M. Hence
we may now suppose that .M (0).

Let denote the annihilator of M in . Then contains , whence
is a direct sum Z: d- , where is a semisimple ideal of and the representa-
tion of (R) on M is faithful. Let be the Casimir operator of this representa-
tion. If pt is the representation of on M, we have i pt p,,
where i’i and r are elements of S and ([a, ’] (R) r + ’ (R) [a, r]) 0,
for all a e . Now put g pt o c(f). Then one shows by a familiar
computation (see [2, p. 118]) that 8(g) f, so that

f -10 8(g) 8(/-10 g).

Hence there remains only to see that h-lo g is a relative cochain for (, 9)
in M. Clearly, cr(-1 o g) 0, for every e 9. Also

8(c(g,- g) .. (- g) c(8(g,-1 o g) r" (’- g) c(f).

Taking i" , we see from this that . (- o g) 0. Thus -1 g is indeed
a relative cochain, and the proof of Lemma 4.1 is complete.
In order to prove Theorem 4.1, one can now proceed in exactly the same

way as in [4], replacing the ordinary cochain complex C(@, V) by the relative
complex C(@, 9, V) C(@/9, V). One considers the filtration of this
complex that is obtained by intersecting the filtration groups used in [4]
with C(@, 9, V). For the corresponding spectral sequence, one shows first
that E’q Hq(., , C’(@/., V) ). Here, the only deviation from the proof
in [4] is that the projection , -- , of @ onto used in the proof of [4, Theorem
1] must now be chosen so that it is a -module projection, which is possible,
because is reductive in @. Next one proceeds to show, as in the proof
of [4, Theorem 11 and Corollary], that E’q Hq(, , F) (R) H’(@, ,t, V),
replacing the use of [4, Theorem 10] with an appeal to Lemma 4.1 above.
The rest of the proof of Theorem 4.1 is exactly as the proof of [4, Theorem 12],
where one now ignores the mutiplicative feature of the isomorphism to be
established.
Now suppose that there is an ideal 9 in @ such that @ is the semidirect

sum 9, where is a reductive subalgebra of @. Let 9 be any sub-
algebra of . Then it is easy to see that the restriction map

H(@, 9, F) -- H(, 9, F)

is an epimorphism. Furthermore, it is seen exactly as in [4, p. 603] that
H(@, , V) is naturally isomorphic with H(, V), for every @-module V
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that is semisimple as a -module. Hence Theorem 4.1 shows that H(@, , V)
is isomorphic with H(, , F) (R) H(9, V).
Now let G be an irreducible algebraic linear group over the field F of char-

acteristic 0. Let V be a finite-dimensional rational G-module, and let L
be a fully reducible algebraic subgroup of G. Let K be a maximal fully
reducible subgroup of G that contains L. Then K is irreducible as an alge-
braic linear group, and G is the semidirect product K.N, where N is the
maximum unipotent normal subgroup of G. Now if @, , , are the Lie
algebras of G, K, L, N, respectively, all of our above assumptions hold. The
algebra of the rational representative functions on K may be identified with
RN. Hence Theorem 3.2 shows that H(, , F) is isomorphic with
H(A(TL.N)). On the other hand, by [5, Theorem 5.2], the cohomology
space H(9, V) is isomorphic with the space H(G, V) of the rational co-
homology for G in V. Passing to the L-fixed parts in the above isomorphism
result for the Lie algebra cohomology, we obtain the result that H(@, , V) is
isomorphic with H(G, V)(R) H(A(TL.)). Thus the change from the
lgebr R to the sublgebm R’ closes the gap left by Theorem 3.3, and
we have the following result.

THEOREM 4.2. Let G be an irreducible algebraic linear group over a field F
.of characteristic O, and let K be a fully reducible algebraic subgroup of G. Let
V be a finite-dimensional rational G-module, and let N be the maximum uni-
potent normal subgroup of G. Then H(@, , V) K is isomorphic with
H(G, V) (R) H(A (T:.) ).

5. The universal differential forms
Let P be a commutative unitary F-algebra, where F is a field. Besides

the complex A (Te) which we defined at the beginning of Section 3, one can
.define a formally similar complex without referring to the derivations of P.
This construction, which is well known, is as follows. Regard P (R) P as a
P-module such that a(b (R) c) (ab) (R) c. Let J be the submodule that
is generated over P by the elements of the form 1 (R) (ab) a (R) b b (R) a.
Let D denote the factor module (P (R) P)/J. The elements of D are called
the universal differential forms of degree 1 on P. It is immediately verified
that the P-module Te of all F-derivations of P is naturally isomorphic with
Home(D, P); the isomorphism is induced by attaching to each r e Te the
map P (R) P -- P that sends a (R) b onto at(b).
We define an F-derivation d’P ---. D by d(a) 1 (R) a J. Then d(P)

evidently generates D over P. Put D P, and let De D denote
the exterior P-algebra built over D. It is easily verified that the map
d"D --D has a unique extension, still denoted d, to a homogeneous F-linear
antiderivation of degree 1 and square 0 on De. The complex (De, d) is
called the complex of the universal differential forms on P.
The dual of the natural P-module isomorphism Te --. Home(D P)
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preceded by the canonical P-module homomorphism of D into its bidual,
gives a natural P-module homomorphism :D - AI(Te). For f e P and
r e Tp, we have (df)(r) r(f). The map extends canonically to a.
homogeneous P-module homomorphism of De into A(Te), still denoted ,
such that d o , i.e., extends to a homomorphism of the complex
(D, d) into the complex (A(Te), ). It can be shown in an elementary
fashion that, if D is finitely generated and projective as a P-module, then
is an isomorphism. We shall see that this is the case for P R, where R
is the algebra of the rational representative functions on the irreducible alge-
braic linear group G, and K is a fully reducible algebraic subgroup of G, the
base field F being of characteristic 0.

LEMMA. 5.1. Let G be an irreducible algebraic linear group over the field F
of characteristic O, and let K be a fully reducible algebraic subgroup of G. Then
R: is finitely generated as an F-algebra.

Proof. Let G be given as an algebraic group of linear automorphisms of
determinant 1 of a finite-dimensional F-space V. Let P be the algebra of all
polynomial functions on the space of all linear endomorphisms of V, and let
p denote the restriction epimorphism P- R. Let I be the kernel of p.

We regard P as a K-module, with K operating by left translation. Then,
since K is fully reducible, P is semisimple as a K-module. By the fundamen-
tal theorem of invariants, P is therefore finitely generated as an F-algebra.
Since P is semisimple as a K-module, p induces an epimorphism of P onto
R, whence R is finitely generated.

LEMM.4, 5.2. In addition to the assumptions of Lemma 5.1, assume that F is
algebraically closed. Then every homomorphism R---. F leaving the constants
fixed is of the form f f(x), with some x G.

Proof. Let be such a homomorphism, and let I be the kernel of . We
have a direct K-module decomposition R R -{- S, where S consists of the
elements of the form (x.f f), with f e R and x e K. This shows that
RS S. Now we have IR IR + IS c I- S. If we had IIR,
we could accordingly write 1 i W s, with i e I and s e S. But then s
1 i e R, whence s 0 and 1 e I; a contradiction. Thus we have IR R.
Let J be a maximal ideal of R containing IR. Then, since I is a maximal
ideal of R, we have I J n R. Since R is finitely generated and F is
algebraically closed, we have R/J F. Hence we conclude that extends
to a homomorphism R F. But this is of the form f-- f(x), with some
x e G, so that Lemma 5.2 is proved.

Combining Lemma 5.1 with Lemma 5.2, we have immediately the follow-
ing result.

THEOREM 5.1. Let G be an irreducible algebraic linear group over an alge-
braically closed field of characteristic O. Let K be a fully reducible algebraic
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subgroup of G. Then the set G/K of the cosets xK has the structure ofan ane alge-
braic variety, with R: as the algebra of the polynomial functions.

LEMM/k 5.3. Let G be an irreducible algebraic linear group over the field F
of characteristic O, and let K be a fully reducible algebraic subgroup of G. Then
the canonical map q’DRK ---> A (TK) is an isomorphism.

Proof. By extending the base field F to its algebraic closure and using the
remarks made at the end of our proof of Proposition 2.2, we see that no gen-
erality is lost in assuming F to be algebraically closed, which we shall now do.

Let e DR, and suppose that (a) 0. We may write

O Z---I ai d(bi)

where ai and bi are elements of R, and the bi are different from 0. We can
choose elements fl, f in RK so that they are algebraically independent
over F and RK is algebraic over Fill, fn]. Then there are F-derivations
a,..., as of the field of quotients Q of R such that a(fj) j. Since
R is finitely generated over F, we can find a nonzero element f e R such
that each fa sends RK into itself. Thus we obtain elements rl,..., r
of T. such that the determinant formed with the elements r(f.) is different
from 0.
Now let p be a nonzero polynomial with coefficients in F[f, fn] and

of minimal degree such that pi(b) 0. Let p. denote the polynomial
obtained from p by differentiating its coefficients with respect to f., and let
p denote the ordinary derivative of the polynomial p. Then we have

p(bi) d(bi) - =p(b) d(f) 0, and p(b) O.

Put p p(bl) p(b). Then p 0, and we have

pa ._ g d(f) with g e R.
Since (a) 0, we have

0 for each ].

Since the determinant formed from the coefficients of the g here is not 0,
this gives g 0, for each i, whence pa 0.
Make R (R) R into a G-module such that x. (f (R) g) (f.x-) (R) (g.x-).

Then the kernel of the canonical epimorphism of R (R) R onto DK is evi-
dently G-stable, so that we get an induced G-module structure on D.

D. isClearly, the F-space spanned by the transforms of any element of
finite-dimensional. Applying the above argument to a finite number of
transforms of , we see therefore that there is a nonzero element f in R such
that f(x.o) O, for every x e G. Hence (f.x)o 0, for every x e G.
Now let I be the ideal of all g e R such that ga 0. Our last result

shows that I has no zero on G. By Theorem 5.1, this means that I R,
whence a 0. Thus we have shown that is a monomorphism.
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Finally, we observe that the argument that just precedes the statement of
Proposition 3.1 shows that, if is any given element of Al(TRK), the ideal

Rof all g e such that g, e (DK) has no zero on G, whence we conclude that
is an epimorphism. This completes the proof of Lemma 5.3.
We have a direct K-module decomposition @ - . Hence, as an

R-module, (R (R) @) is the direct sum of (R (R) t) and (R (R) ). Now
T is isomorphic, as an R-module, with (R (R) @/), and hence with
(R (R) ). Thus we see that T, is isomorphic with a direct R-module
summand of (R (R) @). On the other hand, (R (R) @)K may be identified
with R (R) (R)*. Hence T. is a direct R-module summand of a finitely
generated free R-module. In other words, T,. is a finitely generated projec-
tive R-module.

If M is any R-module, let E(M) denote the exterior R-algebra built
over M. Evidently, A (Ta) may be identified with Hom.(E(T), R).
On the other hand, if M is a free R-module with a finite R-basis, the canon-
ical map E(Hom.K(M, R))-- Hom,(E(M), R) is an isomorphism.
Since T. is a direct R-module summand of such an M, it follows that the
canonical map E(A1(T.) -- Homx(E(T.), RK) is also an isomorphism.
Thus, using the above identification, the canonical map of E(A(T,))
into A (T.) is an isomorphism. Taking account of Lemma 5.3, we have the
following result.

THEOREM 5.2. Let G be an irreducible algebraic linear group over a field of
characteristic O, and let K be a fully reducible algebraic subgroup of GI Then
the canonical map of the complex D,: of the universal differential forms on R:

into the complex A T:) of the differential forms based on the F-derivations of
R: is an ismorphism. Moreover, these complexes are finitely generated projec-
tive R:-modules, and the homogeneous components of degree larger than the
dimension of @/ are (0).

Only the last statement of this theorem still requires verification. Let q
be the dimension of @/. Then we can find elements f, fq in R such
that R is algebraic over F[f, fq]. Let g, gq+ be arbitrary ele-
ments of R. By an argument we used in proving Lemma 5.3, we see that
there is a nonzero element p in R such that p d(g) can be written in the

r--q RK"form =lad(f), with a.e Hence we find that

p pq+d(g) d(gq+) O.

Since Dq is a projective R-module, this implies that d(g) d(gq+) O,
Q.E.D.
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