SYMMETRIC HOMOLOGY SPHERES

BY
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1. Introduction

In the course of thinking about a very suggestive conjecture [1], [2] con-
cerning periodic transformations on the three-sphere, I ran across some in-
teresting four-manifolds, W, which are of the homotopy type of S*, but pos-
sibly not topologically equivalent to S*. The conjecture claims that if a
periodic transformation on the three-sphere has a circle as fixed-point set,
then that circle must be unknotted. On these four-manifolds, W, that are
constructed, one may exhibit an action of the circle group S, with fixed-point
set a two-sphere Z. The fundamental group of the complement, = (W — Z)
is a split extension of the integers by a nontrivial group =, and therefore the
two-sphere is knotted. (It cannot bound a flat disc.) The two-sphere =
does however bound a one-parameter family of Poincaré cells (i.e., manifolds
with trivial homology and with 7 as fundamental group) whose interiors are
disjoint and which sweep out the space W.

The construction of these manifolds W involves the use of homology
spheres with specific kinds of symmetries. Manifolds of that sort, I call
symmetric homology spheres. The Poincaré icosahedral space is an example
of such an object.

By employing a recent (as yet unpublished) characterization of Euclidean
n-space (n = 5) by Stallings, and using the above construction, an action
of the circle on S° may be obtained, with a knotted three-sphere =° as fixed-
point set, whose knot group is again a split extension of the group of integers
by the group, .

It should also be remarked that = may be taken to be the icosahedral group,
thus exhibiting a phenomenon which cannot occur with knotted imbeddings
of 8" in §%: the knot group of =° contains elements of finite order.

2. Terminology

All manifolds and maps in this paper will be combinatorial. Thus homeo-
morphism will mean combinatorial homeomorphism.

I denotes the unit interval, D" the n-cell, 8" the n-sphere. If M is an
n-manifold, 9 is its boundary and int M its interior. M™ will denote M
with a point removed; M, will denote M with the interior of a closed n-cell
removed. A flat disc D* in M" is one which may be thrown onto the standard
k-cell in a closed n-cell D" < M™ by a global automorphism of M". If X, Y
are spaces, f:X — Y a map, fim(X) — m(Y) will be the induced homo-
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morphism on the fundamental groups. R, Z will stand for the real numbers
and integers respectively.

A Poincaré cell will be a manifold with trivial homology and nontrivial
fundamental group, whose boundary is a sphere. The icosahedral group
will be denoted by A, and the Poincaré icosahedral space is the homogeneous
space S°/A where S is considered as the quaternions of norm 1, and A < §°
is considered as a subgroup in a natural manner. More useful for our purposes
will be the description of 8°/A given in [3], or by its Heegard diagram (Figure
1).

Derinttion 1. A symmetric homology n-sphere is a manifold M such that
(1) H,(M) ~ Hy,S") forallg.
(ii) There is an orientation-preserving automorphism

M- M

with the following properties:
(a) It is periodic (.., 7 = 1 for some \).
(b) It leaves some point p ¢ M fized:
(p) = p.
(e¢) It trivializes the fundamental group of M. That ¢s, if N C m (M) s
the normal subgroup generated by elements of the form
{rea-a | aem(M)},
where tim(M) — m(M) is the homomorphism induced by =, then
N = m(M).
Given a symmetric homology n-sphere, M, one may construct a manifold
W which is of the homotopy type of 8™*, with rather interesting properties.
3. The construction of W

Let M be a symmetric homology n-sphere, and 7: M — M its automorphism.
Let
S X, M
be the space I X M after one identifies O X M with 1 X M via the identifi-
cation
#:(0, m) — (1, 7(m)).

Let 8:I X M — S' X. M be the identification map. One may calculate
(8" X, M) simply by observing that S' X, M is a fibre bundle over S,
possessing the cross-section

T = {(t)p) IZGI})

where p is the fixed point of 7 (guaranteed to exist, by (ii b) of the definition
of symmetric homology n-sphere). Therefore, by the homotopy exact
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sequence of a bundle,
(1) 0 — m(M) — m(S' X, M) = m(S") — 0,

and m (S X, M) is a split extension of m (M) by m(S8') = Z. Moreover, if
¢ represents the appropriate generator of m1(.S8') in m(S* X, M), one has the
commutativity relations

tof™ = rea foraem(M) C m(S' X, M).

One must now perform a bit of “surgery” on ' X, M. LetT < 8" X, M
be the curve described before. Let I' X D" be a ‘“‘thickening” of T' (a tubular
neighborhood). Such a tubular neighborhood may be considered T' X D"
simply because (ii) r is orientation-preserving. I may also assume that
T X D"istheimage of I X D" < I X M for some D" € M under the identifi-
cation map

B:I X M— S X, M.

Let Wi be the manifold S' X, M with the interior of T' X D" removed.
Thus

oW, =T X 8".
Consider a space W, = D’ X 8", and a homeomorphism

¢: Wy — W, y
where

$:(dD* X 6) - T X 6 for fixed 6 ¢ S™.
Call W = Wyus We. This is the manifold which is of interest.
4. W is simply connected

It is obvious that m(W1) = m(S" X, M) since the removal of int (I' X D™)
from S* X. M does not affect the fundamental group as longas n = 3. Add-
ing W, to W, has the effect of trivializing . Thus the injection ¢2: Wy — W
induces an epimorphism ¢4:m(Wy) — m (W) where ¢x(¢) = 1. But then

ix(fef e ™) =1 for all @ e m(W3),
and i«(N) = 1, where N is asin (ii ¢), taking into account the fact that
fof ™ = 1x 0 for a e m(W).
It follows from (ii ¢), formula (1), and the fact the ¢« is onto, that
m(W) = {1}.

It is easy to check that W is a homology (n + 1)-sphere, and therefore it is
a simple consequence of the Hurewicz theorem that W is of the homotopy type
of 8"*,
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5. The “knotted” (n — 1)-sphere ="' in W
Let ="' be the (n — 1)-sphere
OXS8"'cDXS8 =W, cW,

where O e D? is the center of the disc.

This =" is knotted in W in the sense that its complement is homeomorphic
with
Sl X,M C lnt Wl,

where M™ is M with a point removed. By formula (1),
7"1( Sl XT M )

is an extension of m1(S') by the group, m(M).

If =, (M) is nontrivial, therefore, =" is knotted (i.e., ="' does not bound
a flat disc in W). Notice, however, that =" does bound a one-parameter
family of homology cells homeomorphic with M, , which span W.

6. The action of R on W
Let &,:W — W for r ¢ B be the automorphism obtained from the auto-
morphism ¢,: 8" X, M — 8" X, M defined as follows:
¢’r(ty a) = (t +r— [T]) Tm“))

where [r] is the greatest integer in r. It is clear that ¢, determines a continu-
ous action of R on S' X, M.
Moreover, ¢, restricts to W, and may be extended to an action ®, of

W =WiuW,

by radial extension of ¢, to D? X § < W, for each fixed 6 ¢ 8”7, ¢, being al-
ready defined on 9D® X 6 € Wy n W,. Moreover, it is also clear that the
set of points fixed for all ®, (r ¢ R) is =",

Since = is periodic, of period A\, we have

cI)r+)\ = &, )
and so ® determines actually an action of the circle
S = R/\Z

on the manifold W. The circle group S has =" as fixed-point set, and
M, as orbit space.

ProrosirioNn 1. The Poincaré manifold S*°/A is a symmetric homology
three-sphere.

Proof. There is a Heegard diagram of S*/A on a five-holed torus 7' (see
Figure 1). The torus T may be represented as a five-spoked wheel, the holes
being arranged symmetrically in a regular pentagon about the center so that
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Figure 1

the entire Heegard diagram is brought into itself by the rotation of 7 about its
center through the angle 2r/5. One-fifth of the Heegard diagram of $?/A is
shown in Figure 1. The curves on the five-holed torus are given by linking
together, in the indicated way, the five strands, which form five disjoint simple
closed curves on 7. I am thankful to Arnold Shapiro for this representation
of 8*°/A. This rotation induces an automorphism

288 /A — S*/A

which is of period five, orientation-preserving, clearly leaves a point p (in
fact an entire circle) fixed. Since 7 permutes the five holes of 7', it permutes
the five generators of the representation of

m(8/A) = A
which this Heegard diagram induces. Thus
raim(SY/A) — m(S°/A)

is not the identity isomorphism. Using the fact that A is a simple group,
it is immediate that = satisfies condition (ii ¢) of Definition 1.

Actually, this could also be proved rather easily without resorting to the
simplicity of A. Therefore, S°/A is symmetric. In fact, any homology
manifold obtainable via such a cyclically permutable Heegard diagram would
be symmetric.

In this case, the constructed manifold W is four-dimensional, and Z is the
“common” two-sphere boundary of a one-parameter family of Poincaré
cells which sweep out W. The circle group S acts on W by revolving the
family of Poincaré cells. It leaves Z fixed. The orbit of a ‘“‘general” point
p € W is a circle S, which rotates “five times’” about =. In connection with a
remark made in the introduction, the commutator subgroup of m(W — Z)
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is finite and nontrivial, whereas knot groups of one-spheres in three-space
contain no nontrivial elements of finite order [4]. I might remark that in this
case, m(W — Z) is isomorphic with the direct product of the integers and the
icosahedral group. This may be seen as follows:

The isosahedral group is a subgroup of index 2 in its automorphism group,
which is the symmetric group on five letters. Therefore, any automorphism
of period 5 (in particular, ) must be an inner automorphism. Let p ¢ A be
an element such that

prxep = 7(x) for all z € A.

Define, then, an isomorphism §:Z X A —» m(W — Z) by

6(z, ) = (P—lg‘; 18),
where z is a generator of Z.
Let ¢ be a point of Z. Then the circle group acts on W — {¢}. Extend
this action to the space
L=W—-{d) XE

by letting the circle group act trivially on the R factor. This space is homeo-
morphic to R’, according to Stallings. Taking the one-point compactifica-
tion of L, L’, one obtains a space homeomorphic to S°* on which the circle
group acts with fixed-point set, =*, a three-sphere, such that

m(L — 2 ~m(W — 2).

This space L’ can be given a combinatorial structure of S° which is almost
the ordinary combinatorial structure of S°, and with respect to which the
circle group acts in a combinatorial manner. The combinatorial structure
given to L’ is such that there is a point « for which L’ — {z} is combinatorially
equivalent to R’.

REFERENCES

1. R. H. Fox, On knots whose points are fixed under a periodic transformation of the 3-
sphere, Osaka Math. J., vol. 10 (1958), pp. 31-35.

2. P. A. SmrtH, Transformations of finite period. II, Ann. of Math. (2), vol. 40 (1939),
pp. 690-711.

3. M. DenN, Uber die Topologie des dreidimensionalen Raumes, Math. Ann., vol. 69
(1910), pp. 137-168.

4. C. D. PAPAKYRIAROPOULOS, On Dehn’s lemma and the asphericity of knots, Proc.
Nat. Acad. Sci. U. S. A., vol. 43 (1957), pp. 169-172.

HarvaRD UNIVERSITY
CAMBRIDGE, MASSACHUSETTS



