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Doubly transitive groups in which only the identity fixes three letters have
been the subject of recent investigations by Feit [1] and Suzuki [3], [4]. In
the present paper we shall consider the corresponding class of triply transitive
groups--that is, triply transitive groups in which only the identity fixes four
letters--and shall prove the following:

THEOREM. If G3 is a finite triply transitive group in which only the identity

fixes 4 letters, then G3 is one of the following:
(a) sharply 4-fold transitive, and hence is either the Mathieu group Mll,

the symmetric group S or $5 or the alternating group A6
(b) sharply triply transitive, and hence is either the linear fractional group

Lq over some GF(q) or the group Lrq of transformations
x- (a() + b)/(cx() + d),

over some GF(q), q odd, where A ad bc O, and

x if A is a square,
(r (A)" x -- \x if A is a nonsquare;

(c) the full semilinear fractional group Pq of all transformations
x -- (ax" - b)/(cx" - d) over some GF(2q) where q is a prime, ad bc O,
and a is an automorphism of GF(2q).

Our proof relies heavily on the work of Felt and Suzuki as well as on some
earlier results of Zassenhaus [6]. In Section 1 we list for the sake of clarity
most of the known results which we shall need. Section 2 is devoted to an
initial reduction of the theorem. In Sections 3 and 4, respectively, we then
treat the cases that Ga is of odd degree and even degree.

1. Summary of known results

If G is a t-fold transitive group of degree n -k 1 on the letters P1,
P2 P,-I QI Q2, Qt we shall denote by G the subgroup of Gt
fixing Q+,Q+.,...,Qt for i 0, 1,2,...,t- 1. If no permutation
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Added in proof. Recently Suzuki has completely classified doubly transitive groups

of odd degree in which only the identity fixes three letters, while Ito has solved the cor-
responding problem for groups of even degree. Their classification shows that, apart
from the known classical groups, the new simple groups of Suzuki are the only such
doubly transitive groups. Thus our theorem will follow from known results, once it is
verified that the simple groups of Suzuki do not hve transitive extensions. It should
be dded, however, that the Ito-Suzuki proofs are not elementary.
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except the identity fixes q- 1 letters, then GI is a transitive permutation
group (on the remaining n letters) in which only the identity fixes 2 letters.
By a theorem of Frobenius ([2], Theorem 16.8.8, p. 292) GI contains a transi-
tive normal subgroup A of degree and order n such that GI Go A, Go n A i,
and Go induces a regular group of automorphisms of A. The above notation
will be used throughout the paper (but, of course, only for 2 or 3).
We now list the main results which we shall need for our proof"

I (Witt [5]). If Gt is t-fold transitive, there exist involutions in G for
each i >_ 2 such that
() ( +) o
b normalizes G for 0 <= j <= i 2,
(c) G, _{}G_, i >= 2.
In fact, can be chosen as any involution in G which interchanges Q_ and

Q and fixes Q for j i, i 1.

It will also be convenient to say that Gt is a regular t-fold transitive group
if only the identity fixes -f- 1 letters.

II (Zemmer [8]). If uo- v where u, v G_ then in fact u, v e G_.

III (Zassenhus [6]).
(a) If G3 is sharply triply transitive, then Ga is one of the groups Lq, Ltq
(b) If Gz is a regular doubly transitive group in which Go has even order,

then G is a subgroup of index <= 2 in a sharply triply transitive group.

IV (Feit [1]). If G is a regular doubly transitive group of degree n + 1,
then Gz has index <= 2 in a sharply 3-fold transitive group, or either

(a) Gz contains a normal subgroup of order n + 1, in which case G is
either sharply doubly transitive or the full semilinear ajne group over some
GF(2q), or

(b) n p o(A) for some prime p, and A is non-Abelian.

V (Feit [1]). If G2 is a regular doubly transitive group of degree n -4- 1 in
which Go is of odd order, no subgroup of order n + 1 is normal in Gz and the
normal subgroup generated by A is G then Go is cyclic and x x- for all x
in Go.
VI (Suzuki [3]). If G is a regular doubly transitive group of odd degree,

then G is either simple or sharply doubly transitive.

VII (Suzuki [4]). A nonsolvable group G whose order is divisible by 3 and
in which the centralizer of every involution is a 2-group contains a composition
factor which is isomorphic to some LF(2, q).

2. Reduction of the theorem
LEMMA 2.1. It sujTces to prove the theorem under the following assumptions"

o Go m > 1, where m is odd.
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(b) A is a non-Abelian p-group of order n
(c) If M is a doubly transitive subgroup of G2 containing A and of degree

n 1, then M n Go 1, and M does not contain a normal subgroup of order
n- l.

(d) If G3 is of even degree, then G2 and G3 are both simple.

Proof. Suppose first that G2 is a subgroup of index 2 in a sharply triply
transitive group. If G2 is itself sharply triply transitive, then G3 is sharply
4-fold transitive, so that by a theorem of Jordan (Hall [2], Theorem 5.8.1,
p. 73) G3 is either Mll, $4, $5, or A6. On the other hand, if G is of index
2 in a sharply triply transitive group, G will be of index 2 in a sharply 4-fold
transitive group, and hence G is A5, which is in fact sharply triply transitive.
Hence the theorem holds in either of these

of even order or Go 1 by III. Thus we may suppose that (a) holds.
If G contains normal subgroup of order n + 1, then G is the full semi-

linear aifine group over some GF(2) by IV. It is easy to see that G, being
a transitive extension of G, must then be P.
Hence we may suppose that G itself does not contain a normal subgroup

of order n + 1 and is not of index _<_ 2 in a sharply triply transitive group,
so that by IV, n pe o(A) nd A is non-Abelian. Thus (b) holds.
Now let M be a doubly transitive subgroup of G2 of degree n + 1 containing

A. If M n Go 1, M is sharply doubly transitive and hence is a Frobenius
group (Hall [2], Theorem 20.7.1, p. 382). Thus M AB, where B <:l M
and A is a regular group of automorphisms of B. Since A is a non-Abelian
p-group, A must be a generalized quaternion group (Hall [2], Lemma 20.7.4,
p. 390). But then every element of Go fixes the unique element of order 2 in
A, contrary to the fact that Go acts regularly on A. Thus M n Go l.
On the other hand, if M contains a normal subgroup of order n -4- 1, M is the
full semilinear affine group over some GF(2) since M Go 1. But then
A is cyclic contrary to (b), which proves (c).

Suppose finally that Gs is of even degree. Then G, being of odd degree,
is either simple or sharply doubly transitive by I. Since the theorem has
already been proved if Gs is sharply doubly transitive, we may assume that
G is simple. If G3 contains a normal subgroup N, it follows that G n N 1
and hence that o(N) n d- 2. Since the elements of A fix exactly 2 letters,
it follows easily that N must be an elementary Abelian 2-group and hence
o(N) n -k 2 2s. But since Gs is of even degree, n o(A) 2, forcing
e 1. ThusGsisS4.

Henceforth we shall assume that Gs satisfies all the conditions of the lemma.

3. Odd degree
We define a maximal sequence of subgroups M() of G, i 0, 1, 2,

For then G is projective unimodular group of dimension 2, and the only such
groups with transitive extension are those for which the corresponding full projective
group hs a transitive extension.
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as follows" M() G2, while M(i) is the smallest proper normal subgroup of
M(i-1 which contains A.

LEMM 3.1.
real in M().

Each M() is doubly transitive of degree n 1 and A is not nor-

Furthermore, Go n M() is characteristic in Go for all i.

Proof. We shall prove by induction that M() is doubly transitive of degree
n + 1. Assume the statement for M(-1). Then M(i-1) is a primitive group,
and hence M(), being normal in M(i-1), is at least transitive on n -t- 1 letters.
But the subgroup of M() fixing a point contains A, which is transitive on the
remaining n letters. Thus M() is doubly transitive of degree n -t- 1. Clearly
A cannot be normal in M() since A fixes a letter.

Since Go is a regular group of automorphisms of odd order, its Sylow sub-
groups are all cyclic and Go RS, where R and S are cyclic of relatively
prime order and R <3 Go (Zassenhaus [7], Satz 5). It is easy to see that Go
contains at most one normal subgroup of any given order, which is necessarily
of the same form as Go. It follows that a subnormal series of Go is in fact a
characteristic series. By definition of M() the subgroups Go n M() form a
subnormal series of Go, and hence Go n M() is characteristic in Go, as asserted.
Now set M M(t) M1 M n GI and Mo M n Go Since M D A

and G1 Go A, we have M1 M0 A.

LEMMA 3.2. If X e Mo then x3 x-.
Proof. Since M is doubly transitive on the same letters as G., M contains

an involution a2 which interchanges Q and Q.. By I, we may assume that. and hence that a. is in M. Now by Lemma 2.1, o(Mo) mo > 1,
m0 is odd, and M contains no normal subgroup of order n -t- 1. Furthermore
by construction the normal closure of A in M is M itself. It follows therefore
from V that M0 is cyclic and x x- for all x in M0.
Now a normalizes Go and ( a) Go by I. Since M0 is characteristic in

Go by the preceding lemma, aa normalizes M0. Since Go has odd order, r.

induces an automorphism of M0 of odd order. But M0 is cyclic, and conse-
quently its automorphism group is Abelian, whence 2 za induces an auto-
morphism of M0 of order dividing 2. We conclude that and za must induce
the same automorphism of M0, and hence that x3 x-1 for all x in M0,
proving the lemma.
To prove the theorem we shall now show that e is even. Since induces

automorphisms of G and Go, and A is characteristic in G, induces an
automorphism of A.

If we consider any characteristic series of A whose factor groups are each
elementary Abelian p-groups of type (p, p, p), Mo and aa will induce
automorphisms on each factor group, and it will suffice to show that each of
these factor groups has order p to an even power. Since our argument is the
same for each factor, we shall prove the assertion only for the last term A in
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the series, A1 being a characteristic elementary Abelian subgroup of A of type
(p,, ,p).
The holomorph of M0 and 3 is completely reducible on A1 regarded as a

vector space over GF(p). Hence if Hi, i 1, 2, r, denote the minimal
M0, a3}-invariant subgroups of A1, A1 is the direct product of the H, and
each H is the direct product of either one or two minimal M0-invariant sub-
groups, since 3 has order 2 and normalizes M0. Each of these M0-invariant
subgroups has the same order, say pX. If each Hi is the product of two mini-
real M0-invariant subgroups, then clearly o(A) p2’r, and our assertion
follows. Thus we may assume H1, say, is also a minimal M0-invariant sub-
group.

If H is identified with the additive group and M0 with a subgroup of the
multiplicative group of GF(pf), will then induce an automorphism of
GF(pX), which by the preceding lemma will be of order 2. But GF(p)
possesses such an automorphism only if f is even. We conclude that o(A1) is
even, and hence that e is even.
Now o(G2) mpe(p - 1_), where m and p are odd and e is even, and hence

o(G2) 2s, where s is odd. But then by a theorem of Burnside (Hall [2],
Theorem 14.3.1, p. 203), Ga contains a normal subgroup N of order s. Since
G1 is of odd order, G c N, and it follows that N is doubly transitive. But
this is impossible since N is of odd order.

4. Even degree
In this case the theorem depends upon the following lemma"

LEMMA 4.1. The centralizer of every involution in Ga is a 2-group.

Proof. Since n -t- 2 is even, an involution a of Ga fixes either no letters or
two letters. But if a fixes no letters, it is the product of 1/2 (2 -- 2) 2e-1 + 1
transpositions. Since G3 is simple, e > 1, and hence a is an odd permutation.
But then the even permutations of Ga form a normal subgroup of index 2, con-

trary to the simplicity of Ga. Thus a fixes two letters and consequently is
conjugate to an element of G. Since all the involutions in G lie in A, which
in the present case is a 2-Sylow subgroup of G1 we may assume without loss
of generality that a is in A.

Suppose now that x is in the centralizer of a, so that x-lax a. If z G1,
clearly z is in A. IfzeG,butxeGl,thenz uzv, whereu, veG,and
consequently

V 2U au2v

or

But then va-1 -1eG0byII. This is impossible since thenvav eG0aA 1.
Suppose finally that x e G so that x u with u, in G. As above we

find that vav-1 G1, and hence thata-1
al A. If v e G, then v rz. s,

where r, s e G, whence r-lal rz sas-1. Thus r-lal r Go which is again
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impossible. It follows that v (1 and similarly that u (1. Since 3 nor-
malizesGl,x w3,weG1. But thenx w1+3. Noww ga2,where
g Go and a. e A, and hence x ga g3a gg3a’, where a’ A.
But now since G is simple, the subgroup M constructed in Section 3 is G2,

and hence by Lemma 3.2, gg 1. Thus x a’ is in A, and consequently
x is a 2-element, proving the lemma.

Since G is triply transitive, 3 o(G3); also, Ga is simple, so that by VII,
Ga is isomorphic as a group (not necessarily as a permutation group)to
LF(2, q) for some q.

If q is odd, the 2-Sylow subgroups of LF(2, q) are dihedral. Hence if
Ga LF(2, q), the subgroup A, being of index 2 in a 2-Sylow subgroup of G3,
is either cyclic or dihedral. But if o(A) >= 8, the center of A contains a
unique element of order 2 which is necessarily left fixed by Go, contrary to the
fact that G0 acts regularly on A. Thus A must be dihedral of order 4, and
o(G) 3-4.5.6. Indeed, in this case Ga A6 LF(2, 9).
On the other hand, a simple comparison of o(Ga) m.2e(2 - 1)(2 + 2)

with e > 1 and o(LF(2, 2b)) (2 1)2b(2 - 1) shows that G3 and
LF(2, 2v) never have the same order. This completes the proof of
the theorem.
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