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1. Through the work of Riarcinkiewicz and Zygmund [2], it is known that
there is an analogy between the behaviour of the Fourier series and certain
trigonometric polynomials corresponding to a given function f of class L",
p > 1. The polynomials which they consider are of two types, the ordinary
interpolating polynomials and the Jackson polynomials. However, the
usual points of interpolation are translated by an arbitrary real u. Thus we
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for the ordinary and Jackson polynomials of order n respectively. D and
K are the Dirichlet and Fejer kernels respectively. Each interpolates the
periodic function f at the corresponding interpolation points. The Jackson
polynomials have certain smoothness, and the fact that the kernel is positive
makes them easier to treat. Since our own results are much more precise in
this case, we emphasize their treatment and reduce to the status of corollaries
our results about the sequence I,(x; f).

It is known [1] that for every p > 0 there are functions f in L such that
the sequence J,,(x; f) diverges for almost every (x, u): i.e., x and u are real
variables, and the exceptional set is of two-dimensional zero measure. In
the next section, we make this result exact by proving an order condition for
Jackson polynomials which is shown to be best possible by examples. The
construction of the examples involves the sharpening of a known technique
[1]. In the following section, the positive result is generalized to certain
sequences of linear operators; and this general result is then applied to the
ordinary interpolating polynomials I,(x; f). Finally we apply our general
result to the case of Riemann sums; and from this follows result on localiza-
tion theory for Jackson polynomials.

2. THEOREM 1 (i). Let p > 1. Given f in L, then for almos every (x, u)

f) o.
(ii). Given any positive sequence w(n) o(n) and p > O, there exists a

function f of class L such ha for almos every (x, u)
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lim sup Jn,(x; f)IP/(n) .
We may assume that f is real and positive. Let re(y) be the distribution

function of f, i.e., the measure of the set on which f exceeds y. Then (cf.
[4, p. 112]) if p __> 1,

Let be smll positive number. It is sufficient to prove that lmost
everywhere

lim sup J.(x; f)/n/ .
We define the function f(x) to equM f(x) on the set where f(x) sn
nd to equal 0 on the complement of this set, so that 0 f(x) f(x) sn.
Thus for every (x, u) nd every positive integer n

Jn,u(x; f )]Inlip
8,

as is clear from (1) and the fact that K is positive. Also

lira sup J,(x; y)/n1/ + lira sup J.(x; f)/n/.

It remains to show that for almost every (x, u) the second term on the right
is O. This is true if

J.... <
and the last inequality will follow if we prove

(3) Z J.(x; f) du dx A,- If(x) " dx,
nl

where A, is constant depending only on p. It follows esily from (1) that

2
J (x; f) du dx f(x) dx

by integrating first with respect to x. Both integrnds here re positive.
The distribution function corresponding to the function f is constant if
0 y < sn1/’, nd equMs re(y), the distribution function of f, if y sn/’.
We set a(n) n1/. Thus from (2)

2

()

By an applieagion of Abel’s ransformagion, ig follows

2 =- J.(x; f) du dx -- y dm(y)
n=l (n)

(4)

1llq< --A ydm(y),
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where q is the conjugate of p, i.e., 1/p + 1/q 1.
formation involves the fact that

The validity of the trans-

-n11q y din(y) o(1).
a(n)

This is proved by noting that since a(n) <- y, then nllq =< (y/e) ’-1.
the same reason

fa(n+l)T,
1/q

n=l ,]a(n)

For

f.a
(n--l)

y dm(y) <= --eI-P y’ din(y)
n=l a(n)

2

1--, f0 If(x) IPdx.

Combining this with (4) establishes (3) and so part (i) of the theorem.
Since part (ii) of the theorem is a refinement of a known one [1], we shall

be concise in the proof. It my be assumed that the sequence (n) is mono-
tonically increasing. If it is not, it may be replaced by maxgw(m)
without affecting the order condition adversely. Let w(n) n where, by
hypothesis, o(1). The following sequences of reals are defined"

A. (m)I/p, m 2r/ m.
It follows from the assumptions on (m) that lim m , so that
o(1/m). We also note that

(5) 2mA 4 A/(n) A/w(m) 1/ if n m.

The periodic function f(x) is defined to be A if x- 2rj/m for
some j 0, 1, -, m 1 and to be 0 otherwise.

Let E be the subset of (0, 2v) such that for u in E there is a rational
2/mlc/(n + 1) with m6 n + 1 m for which

It is known [1] that [E , the measure of E, exceeds 2 C6 for some
constant C. Let E. be the set E translated by -2j/m, and let I be
the interval]x- 2j/m[ /m,j 0,1, ...,m- 1. Given-umodulo
2v in E. and x in I, there exist integers and n + 1, m n + 1 m,
such that

[u- 2 j/m + + < 2 /m

Ix u + 2 j/m +
The last inequality on the right holds for m large enough since lim m6
The first inequality above implies that f(u + 2}/(n + 1)) A, and
the second that K,(x u 2r}/(n + 1) C(n + 1) for some constant C.
Hence if (x,-u) belongs to the product set I X E. of the xu-plane, there
exist integers } and n + 1, m6 n + 1 m, such that
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(6) J,,(X;fm) >= (1/(n q- 1))f(u -t- 2rlc/(n -nt- 1))

K,(x u 2rlc/(n q- 1)) __> CAm.
m--1Let Hm U.=0 I. X Em,.. Since the sets I. X -gm, are mutually disjoint

and have the same measure, 2r Em I/m, then Hm 2 E => 4r2 Cram.
By (5) fm ]]v 4rtim and fm is 0 outside a set of measure 4rr/m&P

Thus we may let f(x) =fm(i)(X) with the integers re(i) increasing
rapidly enough so that f belongs to L and so that certain other conditions
arc met (cf. [1] for details): in particular, so that H lim sup Hm(o has
measure 4r. By lim sup Hm(o, we mean, as usual, the set of points which
belong to infinitely many Hm(0 Let (x, --u) belong to H and to a particular
Hm. Then by (5) and (6)

p p

for appropriate n.
theorem follows.

Since the inequality occurs for infinitely many n, the

3. Part (i) of Theorem 1 is capable of a good deal of generalization. Let
Tn be a sequence of linear operators transforming certain functions defined
on a measure space R1 into functions defined on a second measure space R2.
Let and v be measures defined on R1 and R respectively. For the sake of
simplicity, we may think of R1 and R as compact subsets of Euclidean spaces,
not necessarily of the same dimension, and and , as Lebesgue measures.
We assume each 7’n is of type (1, 1) by which we mean the following (ef.
[4, p. 951). Letfbe an integrable function defined on Rl’i.e., fR1
Then T f h is defined as an integrable function on R, and

for some number M independent of f. We also write Mn r-n ]]1, the L
norm of Tn It is further assumed that each Tn is of type , ), by which
is meant the following: if f is an essentially bounded function (with respect to
the measure) defined on/1, then T f h is defined as an essentially bounded
function (with respect to the v measure) on R, and

088 sup hl Nn ess sup

for some number N, independent of f. We also write N,,
norm of T. It follows from the Riesz-Thorin interpolation theorem that
each /-’ carries Lv functions on R1 into Lv functions on R2, p >= 1. Let
T(y; f) designate the function T f evaluated at the point y of

THOU 2. Let p > 1. Let T be a equenee of linear operators a defined
above such that T ]1 q- T ]l -< M, a number independent of n. Then

for any function f in L(R)
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lim T,(y; f)l/n 0

for almost every point y of R2.
There is only one minor modification we have to make in the proof of

Theorem 1 (i). Let us assume that f is real and positive. Let f(x) equal
f(x) on the set where f(x) >= an/, and let it equal 0 otherwise. The function
f(x) fn(x) is positive and strictly bounded by anlip so that outside a subset
E of R2 of measure 0, Tn(y; f f)l <= Man/" This is true for every n
outside the union of the E’s, a set of measure 0. The rest of the proof is
precisely that of Theorem 1 (i).

In the proof, we used only the fact that strictly bounded functions are
transformed into essentially bounded functions; but it is convenient, in order
to use the Riesz-Thorin theorem, to have this true for essentially bounded
functions. To see this is so for the sequence Jn of Theorem 1, we argue as
follows. Let f be bounded outside a set E of measure 0. Let G be the union
of E with all its translates by 2rr for r rational. G is of measure 0. Let G’
be the complement of G. If (x, u) belongs to I G’, where I is the interval
(0, 2r), then J.(x;f) has the same bound asf(x) in E’, the complement of E.
It is clear that the other hypotheses of Theorem 2 are true for the sequence
J, so that Theorem 2 is a real generalization of Theorem 1 (i). Further-
more Theorem 1 (ii) shows that no improvement is possible in the general
case.
By a renumbering process, we may consider subscquences of the original

sequence. For example, let n be a lacunary sequence of integers, i.e.,
n+/n >= X > 1. Since lc =< C (log nk)/log X for some constant C and n1 > 1,

limk Jn,u(x;f) l/log nk 0

for almost every (x, u) if f belongs to L, p > 1.

4. It is well known and easy to verify from (1) that the sequence
I,(x; f)/log(n + 1) satisfies the hypotheses of Theorem 2. Hence if f
belongs to L, p > 1, then for almost every (x, u)

lim [n,u(X; f)l’/n(log n) O.

Although it is known [1] that for every p > 0 there are functions in L for
which lira I.(; f)l almost everywhere, the examples do not show
that the above result is best possible. The difficulty is a familiar one: the
Dirichlet kernel is not always positive.
Another example of interest is that of Riemann sums (cf. [2], [3])

Rn(X; f) (l/n) -olf(x + 2-j/n).

Since the hypotheses of Theorem 2 are obviously satisfied, we may say that
if f belongs to L, then In(X; f) O(n/p) for almost every x. There are
examples ([2], [3]) to show that for f in L, p < 2, the order of R,(x; f) may
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be close to n2/-1, and again this falls short of our criterion. However the
misbehaviour of the examples is due to the value of f at only one interpolating
point. Our next theorem shows that no essential improvement is possible
along these lines.

THEOREM 3. Let p >-_ 1, and let f belong to L. For almost every x

lim max,. f(x - 2-j/n)l/n O.

The result in the case p 2 is due to Ursell [3]. Let f be positive, and let
E(y) be the set on which f(x) exceeds ey. Let the distribution function of
fbem(y). Forn 1, 2, ...,letG(n,y) be the set of x values such that
there exists an integer j for which x -- 2-j/n belongs to E(y). Since G(n, y)
is the union of n translates of E(y), G(n, Y)I <- nm(ey). Thus

G(n, n/p) <= nm(en/) <- C f um(euv) du
n=l n=l

’C fo Y-lm(Y) dy,

which is finite by (2). This implies that for almost every x,

lim sup maxj ]f(x + 2rj/n)

which is sufficient for the proof of the theorem.
Let s,(x; f) be the nth partial sum of the Fourier series of f. It is known

[4, p. 166] that almost everywhere s(x; f)] o(log n), if f belongs to
L, 1 < p -<_ 2. Comparison of this result with Theorem 1 (ii) shows how
much better behaved in the matter of order are the partial sums of Fourier
series than Jackson polynomials. On the other hand, Jackson polynomials
behave quite satisfactorily with regard to localization, not without, however,
restrictions on the uniformity, as indicated by our last theorem.

THEOREM 4. Let p > 1, and let f belong to L. Let f(x) 0 when x <-- A.
There is a set E of measure 2- such that for fixed u in E,

Jn.u(X; f) o(nl/p-l) uniformly in x, Ix -< 51 < A.

Iff(u - 2rj/(n - 1)) 0, then Ix-- u-- 2rj/(n-- 1
so that Kn(x u 2j/(n -- 1) <= C/(n -- 1) for some constant C. Thus

Jn.,,(x;f)[ <- (C/(n + 1)e)-0 f(u + 2j/(n - 1))[

(C/(n - 1))R+l(u; Ill).

Since Rn+l(u; If ]) o(n1) almost everywhere according to Theorem 2, the
result follows. The argument does not hold either for p 1 or for the ordi-
nary polynomials I,(x; f). Any improvement in the order of R(x; f)
results in a corresponding improvement in the localization theorem.
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