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1. Introduction

Throughout this paper A will denote an algebra with unit over a field K.
Modules are all left A-modules; vector spaces are vector spaces over K.
Graded vector spaces or modules are graded by nonnegative degrees, i.e.,
the homogeneous components of negative degrees are 0.
We propose to study filtered modules, for which we adopt the following

definition as leading to an economy of notation. A filtered module is a short
exact sequence

x=(0 x
of graded modules, the maps , " being homogeneous of degrees 1, 0. This
is easily seen to coincide with the more familiar notion when the maps
q Xq -- Xq+l are interpreted as inclusions.

If also Y (0 - Y Y - 0) is a filtered module, a map )"X -- Yis a pair of mps :X -- Y, ?/’ :X" ---+ Y" such that
These constitute, in an obvious way, a graded category F which may be
given an abelian structure [1]; we shall not however make any use of this
structure here. In fact F may be interpreted as a "filtered category": this
notion, which will not be investigated here, the reader may supply for him-
self.
The functor S’X X", S’ " is of course homogeneous additive.

Its value on X is the associated graded module of X; we shall also refer to X as
an extension of S"X.
Two extensions of a graded module A are equivalent if there is an equiva-

lence of filtered modules connecting them, such that S"(I) I:A. The
problem to which we address ourselves here is that of classifying the equiva-
lence classes of extensions of fixed module A. The analogous problem for
abelian groups has been treated by Shih [2], who arrives at a formulation not
readily comparable with that given below. He also announces (but does not
state) results for the case considered here.

In the very simple case that A has only two nonvanishing homogeneous
components, say A0 and A, the classification, viz. Ext’(A1, A0), is of course
well known. We shall see that a similar description is also valid in the
general case. In the course of the discussion we shall also solve another
problem, namely that of attaching to a filtered module a strong enough
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invariant to characterize it completely, and not merely up to nonunique
isomorphism. This is of course necessary if the extension, described by its
invariant, is to have identifiable elements. It should be observed that the
extension class in Extl(At, A0) does not have this character, even in the
simplest case, there being an ambiguity corresponding to the group
Horn(A1, A0) in the extension described by such a class.

2. Computational preliminaries
If A is a A-module, we write PA A (R) K A;if f: A -- B over K, then Pf

(I:A) (R) f:PA -- PB is a A-map. The A-map rA :PA -- A is defined by
rA (h (R) a) ha; if :A -- B is a A-map, then rB(PC) (rA).
We denote the kernel of A by wA :tA -- PA so that

PA 0 - A oA ’APA A -- O)

is exact. Further, K-maps tA:PA -- aA and t*A :A -- PA are defined by

(2.1) oA(tA)(h (R) a) X (R) a 1 (R) ha, (t*A)a 1 (R) a.

It is easy to see that (wA, tA, t’A, -A) is a direct sum decomposition of PA
over K. If also # e A, then 2.1 implies

(2.2) I tA h (R) a tA th (R) a t (R) ha

If f: A -- B, then

(2.3) -B(Pf)t*A f, tB(Pf)(t*A) O.

We define also

2f tB Pf A 2A -- B,(2.4)
[:If vB(Pf)oA’2A -- B.

Observe that f is always a A-map, and that Vlf 0 if and only if f is a
A-map. In fact,

(2.5) f(tA)(h (R) a) hfa fha.

If further g’B -- C, then

Ul (gf) -C(Pg) [oB tB + t*B(rB)](Pf) ooA

[::]g(f) + g(Wlf),
(2.6)

gt(gf) tC(Pg)[coB(tB) + t*B(rB)](Pf)oA

(2g)(gtf),

so that t is a functor. Moreover if ’A -- B is a A-map, then (B)[t
(PO)A, which implies that tO is a A-map.
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Finally, we observe that for any A-module A

(2.7) ] t*A A, [ tA -A,

the latter formula following immediutely from the former and 2.6; these
imply

(2.8) -.
We shall wnt to apply all these operations to graded modules; it is only

necessary to observe thut PA, A are also graded if A is, that oA, rA, tA,
t*A are all homogeneous of degree 0, and that P, Vl, t preserve the degree of
homogeneous mps.

3. Cocycles of a graded module
If A, B are graded A-modules, we denote by Hom=<q(A, B; K) the set of

inhomogeneous K-mps f:A -- B whose homogeneous components f are 0
for p q. The group Hom<q(A, B; K) is defined nMogously.

If A is graded by nonnegative degrees, then ?/A Hom_<0(A, A; K) con-
sists of those maps f such that f0 I:A. It is a group under composition:
if g e Hom<0(A, A; K), then i -t- =g isdefined, and isequal to (1 g)-.
Now if z e Hom<0(2A, A; K), then Vz:A -. A, and z:A -- A. If

(3.1) z -- z(tz) O,

we shall say that z is a cocycle of A; the set of cocycles will be denoted by A.
If f e /A then ff- 1 :A is a A-map. Hence by 2.6,

(3.2) [-lf(f-1) + f( Vlf-) 0; Wlf-1 _f-i([:]f) (tf-1).
This, together with 2.8, leads immediately to the following result.

LEMMA 3.3. If Z e A, f ?IA, then f z (fz [:]f)f- A. Further,
(f, z) -- f z defines an operation of the group ?IA on the set A.
The set of orbits, A/?IA, will be denoted by A. The reader my easily

verify that if A has only two nonzero homogeneous components, sy A0, A,
then A may be identified with Exti(A, A0).

It is now possible to state the classification theorem for filtered modules.

CLASSIFICATION THEOREM 3.4. If A is a A-module graded by nonnegative
degrees, then the equivalence classes of filtered modules having A as associated
graded module are in canonical one-to-one correspondence with the elements of
A.

Rther thn prove this theorem directly, we shall deduce it s corollary
of theorem on the structure of the ctegory of filtered modules., , and are not, to be sure, functors on the ctegory of graded A-mod-
ules. However, if g e Hom=<q(A, B; K) is K-isomorphism such that gq is a
A-map, then (?lg)f gfg- defines an isomorphism [g:A --> IB. More-
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over ggq e B and

(g)z (ggl) gq z2g-l

defines a bijeetion g"A -- B such that

[(g)f] [(g) z] (g) (f z), f e ?IA, z e B.
Thus g preserves orbits, and consequently defines g:A ---> B, once more
a bijection. It is easy to see that 9X, , are functorial on the category of
such maps g.

It should be noted that, in view of 3.5, g gq.

4. The space of splittings
If X is a filtered module we shall want to study the set I,X of left K-splittings

of X, i.e., of K-maps s:X -- X of degree -1 such that s I:X; this is of
course in one-to-one correspondence with the set T*X of right-splittings
s*:X" -- X, which are homogeneous of degree zero and satisfy ’s* I:X’.
The correspondence is given by ss* 0, which implies that s q- s*" I:X.
We shall give to this set the structure of an affine space of a certain groupoid;

we begin accordingly by defining the groupoid. If A is a graded module
and A, then e A, and fA operates transitively on e. Let (A,e)
have as objects the elements z , and as maps the triples (z’; f; z):z--, z’
where f ?IA, , z z’. Composition is given by (z’; f’; z’)(z’; f; z)
(z’;f’f;z).
A (A, )-affine space structure on a set F is given by a map i: F F --(A, ). We shall write, for x, y e F,

it(y, x) (iy; ti0(y, x); fix).

Returning now to the case of a filtered module X, suppose s e ,X, and set

(4.) s "(*) .ax" - x",

where En abbreviates =0, s I’X, and 8 88n-1. Since "s([::Is*)
(’[]s* W1 (’s*) 0, this map is in Hom<0(ftX’, X’).
LEMMA 4.2. If S e X, then s e X’.
The computation is straightforward.
If also r e ,I,X, set

(4.3) o(r, 8) En "rna*’X" X’.

LEMMA 4.4. If r, S e TX, then EJ3o(r, s) o(r, s)s (r)o(r, s).
This is again straightforward.
In consequence of 4.2, 4.4 we have the following result.

PROPOSITION 4.5. If X is a filtered module and s TX, then the orbit X of
s e X" is independent of s. Further, 3(r, s) (ir; ti0(r, s); s) defines on
X the structure of a (X", cX)-adine space.
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5. The main lemma
We denote by the graded ctegory of filtered A-modules. Our principal

objective is to construct "classification" of , i.e., functor on 5: which is a
wekly suriective locM isomorphism. We begin by constructing such

functor not on but on an "enriched" ctegory whose obiects re the
pairs (X, s) with X e , s e I,X, nd whose mps re the triples

(t; +; )-(x, ) (Y, t)

where :X --. Y in :. Composition is defined by

(r; t; t)(t; ; s) (r; tO; s);

the additive structure is inherited from Hom(X, Y).
The functor will take its values in a category constructed as follows.

The objects are the pairs (A, z) with A a module graded by nonnegative
degrees and z A. The group HOmq((A, z), (B, w)) consists of the

(w; f; z), f e Hom_<_q(A, B; K)

satisfying the condition

(5.1) 3f fz w(2f).

Notice that the right side is of degree < q, so that fq is a A-map. Composition
is given by

(v; g; w)(w;f; z) (u; gf; Z)p-q-q

note that 2.6 implies that the right-hand side satisfies 5.1. The additive
structure is inherited from Hom=<q(A, B; K).

LEMMA 5.2. The equations

F(X, s) (X", s),

F(t; O; s) (tit; , ’t%s*; s)

for (, ") e HOmq(X, Y), define a homogeneous functor Fq’ff ---) .
This functor is a surjective local isomorphism.

Observe first that 0 r-q(l" Y) [:](nt + t*n"), whence

0 vrt + t*(")

by 2.6, nd thus t -t([3t*)n", so that

(-n 7"tnqbs*) ., tl"t’( [:]t)2(ts*) q- , n"t’([:]s*),,. n"t"( rqt*)(n’ts*) q- , n’tn( rqs*).

We need only evaluate

En ""tn8* 8 En,l rltttndPS*lttSk l’-] 8*

"., rt’t"4(1 lis)sl"ls*
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En,]c ["tMsk[::]s* "tMsk+l[:]s*]

to see that F(t; 0; s)" F(X, s) F(Y, t). The fct that F preserves com-
position is proved in equally direct fshion. To see that F is surjective on
objects, suppose (A, z) e W, nd define a graded module X by letting X be
{(a, q) a A}, with the operation given by

(5.3) X(a, q) (Xa + z(tA)(X a), q), a A, A;

it follows from 2.2, 3.1 that 5.3 mkes X A-module. The injection
X X+ is A-map, and gives rise to ’X X, of degree 1. Similarly the
projection X, A, is A-map nd defines "’X A. Clearly

X=(OXXAO)
is filtered module. But if s’X X, s*’A X re given by the projections
X,+ X, nd injections A X, then s X, nd, if A, a A,

s(tA)(X @ a) "s(X)(Ps*)(X @ a- 1 @ ha)

"s(tA)(x a) by 5.3

z(tA)(X a),

sothts zndF(X,s) (A,z).
Finally, for (X, a), (Y, t) e we exhibit n inverse

G’Hom(F(X, s), F(Y, t)) Hom((X, s), (Y, t))

of F. If (t; f; s) e Hom(F(X, s), F(Y, t)), we set

* "s s),G(tj f; 8)q (tj n k=0 Ta--n+
wheref is the homogeneous component of degree j. We omit the tedious but
straightforward computations which show that G is indeed inverse to F.
We might, at the cost of additional longwindedness, hve proved Lemma

5.2 by constructing explicitly functor G" such that FG 1",
nd GF is nturMly equivalent to 1 ".

6. The stron classification theorem

We my now consider the diagram

where V(X, s) X, V(t; ; s) . The functor V is clearly a surjective
local isomorphism; we hve shown in 5.2 that the same is true of F.
We shM1 construct functor F’ff where is n "enlargement" of
defined s follows.
The objects of re triples (A, , P) where A is a module graded by non-

negative degrees, e A, nd P is a (A, )-affine spce.
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Homq( (A, e, P), (A’, e’, F’) consists of equivalence classes of triples

(x’;f; x)q, x e F, x’ e F’, f e Hom=<q(A., A’; K)

satisfying

(6.1) [35 f(z) (z’)f,

the equivalence relation being

(6.2) (x; ;f; Xl)q (x’; 0(x’, X’l)fo(Xl, X);X)q.

This becomes a K vector space under the operations inherited from
Hom_<_q(A, A’; K) by keeping x, x’ fixed. Composition is defined by

(6.3) (x";f’; x’)(x’;f; X)r (x",f’f; X)q+r.

TO see that this makes 72 a category, compare 6.1 with 5.1.

PROPOSITION 6.4. (A, e, F) and (A’, e’, F’) e 72 are equivalent if and only if
there is a homogeneous A-isomorphism :A A’ such that

First, suppose that is such an isomorphism, its degree being q. If z
then (see 3.5) z’ 6z(26-1) d. Suppose x F, x’ F’ with tx z, tx’ z’.
Then (x’; ; x)q is an equivalence in 72.

Conversely, suppose (x’;f; x)q is an equivalence in 72. Then fq is a A-map
(as in 5.1) and by 3.5, 6.1, x’ (f)x, so that d (f)e. But clearly
*f *L.
The strong classification theorem is the following assertion.

THEOREM 6.5. The equations

FX (X", X, X),

F(- (t; En tttn8*; 8)q

for ( (, ’) :X Y of degree q, PY, s PX, define a homogeneous
functor F:ff --+ 72. This funetor is a wealcly surjeetie loeal isomorphism.

That the value given for F) is independent of s and follows immediately
from 6.2. The functorial character of F is seen (once representatives are
chosen) to be equivalent to that of F, as expressed in 5.2.
The fact, that F is weakly surjective, i.e., that for any (A, , F) 72 there

is an X with FX equivalent to (A, , F), follows from the surjectivity of F
together with 6.4.

Finally, to see that F is a local isomorphism, fix s and t, and consider the
diagram

VHom(X, Y) - Hom( (X, s),(Y, t))

IF IF
Hom(gX, FY) W( Hom(F(X, s), F(Y, t))
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where W(t; f; s)q (t; f; S)q. This clearly commutes, and V, F, W are
all isomorphisms.
We observe in conclusion that Classification Theorem 3.4 follows imme-

diately from 6.5 and 6.4. Thus (Xtp, X) are a complete set of invariants, up
to automorphism, of X. Theorem 6.5 asserts further that (Xp’, cX, X) is a
complete set of invariants, determining X up to unique equivalence.

It should be remarked that the foregoing treatment lends itself to generali-
zation, without further remark, to the case that K is a commutative ring, with
the sole restriction that all sequences split as sequences of K-modules. Under
suitable additional restrictions, similar observations may also be made with
respect to filtered objects in more general abelian categories.
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