A PROBLEM ABOUT PRIME NUMBERS AND THE RANDOM WALK II

BY
P. Erdös

I am going to prove $\gamma=1$. Denote by $u(a, b)$ the probability of the random walk passing through a if it starts at b. It is known and easy to prove that

$$
\begin{equation*}
u(a, b) \sim c_{1}|b-a|^{-1} \tag{1}
\end{equation*}
$$

(see K. Itô and H. P. McKean, Jr., Potentials and the random walk, Illinois J. Math., vol. 4 (1960), pp. 119-132; also a paper of Murdoch cited therein where a sharper result is obtained). In the sequel, the letters p and q denote primes and $u(p, q)=u(a, b)$ in case $a=(p, 0,0)$ and $b=(q, 0,0)$.

Consider the number $e(n)$ of points $(p, 0,0)(p \leqq n)$ that the path hits. We have to prove that for almost all paths $e(n) \uparrow \infty$ as $n \uparrow \infty$.

By (1) and Mertens' estimate $\sum_{p \leqq n} p^{-1} \sim \lg _{2} n\left(\lg _{2}=\lg \lg \right)$, we evidently have

$$
\begin{equation*}
E[e(n)]=\sum_{p \leqq n} u(0, p) \sim c_{1} \sum_{p \leqq n} p^{-1} \sim c_{1} \lg _{2} n \tag{2}
\end{equation*}
$$

Next, we prove by a customary argument

$$
\begin{equation*}
E\left[\left(e(n)-c_{1} \lg _{2} n\right)^{2}\right]=o\left(\lg _{2} n\right)^{2} \tag{3}
\end{equation*}
$$

which establishes the weak law of large numbers for $e(n)$, i.e., it shows that $e(n)=c_{1} \lg _{2} n+o\left(\lg _{2} n\right)$ except for a set of small measure, and this is enough for our purpose.

Clearly by (2)

$$
\begin{equation*}
E\left[\left(e-c_{1} \lg _{2} n\right)^{2}\right]=E\left(e^{2}\right)-c_{1}^{2}\left(\lg _{2} n\right)^{2}+o\left(\lg _{2} n\right)^{2} \tag{4}
\end{equation*}
$$

Further we evidently have

$$
\begin{align*}
E\left(e^{2}\right) & =\sum_{p \leqq n} u(0, p)+\sum_{q<p \leqq n}[u(0, p) u(p, q)+u(0, q) u(q, p)] \\
& =2 c_{1}^{2} \sum_{q<p \leqq n}[1 / p(p-q)+1 / q(p-q)]+o\left(\lg _{2} n\right)^{2} \tag{5}
\end{align*}
$$

Mertens' estimate cited above gives $\sum_{q<p \leqq n} 1 /(q p)=\frac{1}{2}\left(\lg _{2} n\right)^{2}+O\left(\lg _{2} n\right)$, and so

$$
\begin{align*}
\sum_{q<p \leqq n} 1 / q(p-q) & =\sum_{q<p<n} 1 /(q p)+\sum_{q<p \leqq n}[1 / q(p-q)-1 / q p] \\
& =\frac{1}{2}\left(\lg _{2} n\right)^{2}+\sum_{q<p \leqq n} 1 / p(p-q)+O\left(\lg _{2} n\right) \tag{6}
\end{align*}
$$

Thus we have only to estimate $\sum_{q<p \leqq n} 1 / p(p-q)$.
Received May 19, 1960. See the preceding paper for a statement of the problem. This paper is from a letter sent by P. Erdös to the Illinois Journal of Mathematics. It was edited for publication by H. P. McKean, Jr., who then wrote the preceding paper which is a treatment of the same problem.

Put $\varepsilon_{k}=0$ if k is not prime and $\varepsilon_{p}=\sum_{q<p} 1 /(p-q)$. We have
(7) $\quad \sum_{q<p \leqq n} 1 / p(p-q)=\sum_{k=1}^{n} \varepsilon_{k} / k=\sum_{k=1}^{n} s_{k} / k(k+1)+O(1)$
by partial summation $\left(s_{k}=\sum_{i=1}^{k} \varepsilon_{i}\right)$. A well-known theorem of Schnirelmann states that the number of solutions of $p-q=a(p \leqq k)$ is less than $c_{2} k(\lg k)^{-2} \prod_{p \mid a}\left(1+p^{-1}\right)$ where c_{2} is an absolute constant. Thus

$$
\begin{equation*}
s_{k}<c_{2} k(\lg k)^{-2} \sum_{a=1}^{k} a^{-1} \prod_{p \mid a}\left(1+p^{-1}\right)<c_{3} k / \lg k \tag{8}
\end{equation*}
$$

since by interchanging the order of summation we have the well-known

$$
\begin{aligned}
\sum_{a=1}^{k} a^{-1} \prod_{p \mid a}\left(1+p^{-1}\right)=\sum_{d=1}^{k} d^{-1} & \sum_{a \equiv 0(\bmod d), a \leq k} \\
& <c_{4} \sum_{d=1}^{\infty} \lg k / d^{2}<c_{5} \lg k
\end{aligned}
$$

Thus from (7) and (8)

$$
\begin{equation*}
\sum_{q<p \leqq n} 1 / p(p-q)<c_{6} \lg _{2} n \tag{9}
\end{equation*}
$$

From (9), (6), and (5), we finally obtain $E\left(e^{2}\right)=c_{1}^{2}\left(\lg _{2} n\right)^{2}+o\left(\lg _{2} n\right)^{2}$ which proves (3), and thus the proof of our theorem is complete.

By using a sharper estimate than (1), it is easy to show that for almost all paths

$$
\begin{equation*}
\lim _{n \rightarrow \infty} e(n) / c_{1} \lg _{2} n=1 \tag{10}
\end{equation*}
$$

By the same method one can prove that if the integers $q=q_{1}<q_{2}<\cdots$ satisfy

$$
\begin{equation*}
q_{n}-q_{n-1}>c_{7} \lg n \quad(n \leqq 2), \quad \sum 1 / q=\infty \tag{11}
\end{equation*}
$$

then almost all paths pass through infinitely many points $(q, 0,0)$. The primes probably do not satisfy (11) since probably there are an infinite number of prime twins, but one can prove by Brun's method that one can select a subsequence that does satisfy (11).

Australian National University

Canberra, Australia

