# ON THE NUMBER OF NILPOTENT MATRICES WITH COEFFICIENTS IN A FINITE FIELD 

BY<br>Murray Gerstenhaber

Fine and Herstein have demonstrated [1] that the number of nilpotent $n \times n$ matices with coefficients in the finite field of $q$ elements, $G F(q)$, is $q^{n^{2}-n}$. The present (self-contained) note gives an alternate proof, suggested by algebraic geometry, and not involving sums over partitions of $n$. Using a lemma of [1], Reiner [2] has determined the number of matrices over $\operatorname{GF}(q)$ having a given characteristic polynomial. This result is here obtained directly from the Fine-Herstein theorem.

## 1. Proof of the Fine-Herstein theorem

Throughout, $N_{k}$ will denote the $k \times k$ matrix having zeros everywhere but on the first diagonal above the principal one and unity everywhere there. If $k=n$, we write simply $N$. Given a nilpotent $n \times n$ matrix $A$, we shall denote by $L(A)$ the linear space of all matrices $Y$ such that $N Y=Y A$, and by a the union of the spaces $L(A)$ for all nilpotent $A$. The matrices in $\mathbb{Q}$ will be called admissible. One sees that $L\left(T^{-1} A T\right)=L(A) T$, whence $Y$ is admissible if and only if $Y T$ is admissible for any nonsingular $T$.

We determine now a necessary and sufficient condition that $Y \in \mathbb{Q}$. Given $Y$, let $v$ be a row vector such that $v Y=0$. If $Y \in \mathbb{Q}$, then $v N Y=v Y A$ for some $A$, so $(v N) Y=0$, i.e., the null space of $Y$ is preserved by $N$. Let $v=\left(v_{1}, \cdots, v_{n}\right)$. Then $v N=\left(0, v_{1}, \cdots, v_{n-1}\right)$. This implies that if the rank of $Y$ is $r$, then the last $n-r$ rows of $Y$ are zero (and the first $r$, therefore, are independent). Conversely, suppose $Y$ has this property. Then for some nonsingular $T, Y T=E$ is the direct sum of the $r \times r$ identity matrix $I_{r}$ and the $(n-r) \times(n-r)$ zero matrix $O_{n-r}$. Now $E$ is admissible, for $N E=N_{r} \oplus O_{n-r}$ is nilpotent and $N E=E(N E)$. Therefore $Y=E T^{-1}$ is admissible. The necessary and sufficient condition that $Y \in \mathbb{Q}$ is therefore

If rank $Y=r$, then the last $n-r$ rows of $Y$ vanish.
We see next that $\operatorname{dim} L(A)=n$ for all nilpotent $A$. Observe that $N Y=Y A$ implies $N^{k} Y=Y A^{k}$ for all $k$. Let $e_{i}$ denote the row vector having one in the $i^{\text {th }}$ place and zeros elsewhere. Then $e_{1} Y$ (i.e., the first row of $Y$ ) may be prescribed arbitrarily, but $e_{k} Y$ is then determined for all $k$ by the relation $e_{k} Y=e_{1} N^{k-1} Y=e_{1} Y A^{k-1}$.

Given $Y \in \mathbb{Q}$, let there be assigned to it a multiplicity $m(Y)$ equal to the number of distinct nilpotent matrices $A$ such that $N Y=Y A$. If $O$ is the zero matrix, then $m(O)$ is just the number of all nilpotent matrices, which we

Received May 18, 1960; received in revised form October 6, 1960.
wish to determine. We shall denote this quantity by $u$. Consider the correspondence $f$ which assigns to a nilpotent $A$ the set of all elements of $L(A)$. This $f$ is, by our previous result, exactly $q^{n}$-valued for every nilpotent $A$, and if $Y \in \mathbb{Q}$, then $m(Y)$ is just the number of elements in $f^{-1}(Y)$. Therefore $\sum m(Y)=q^{n} u$, the sum being taken over all $Y \in \mathbb{Q}$. Since $m(O)=u$, we may write $\sum^{\prime} m(Y)=\left(q^{n}-1\right) u$, where in $\sum^{\prime}$ the zero matrix is omitted. Now $m(Y)$ and $m(Y T)$ are identical for any nonsingular $T$. If $Y$ has rank $r$, then we have seen that the last $n-r$ rows of $Y$ vanish, and for suitable $T$ we have $Y T=E=I_{r} \oplus O_{n-r}$. Therefore $m$ depends only on the rank of $Y$, so we may define $m(r)=m(E)=m(Y)$ for any $Y \in \mathbb{Q}$ with rank $Y=r$. Let $\alpha(r)$ denote the number of elements of $\mathbb{Q}$ with rank $r$; this is just the number of matrices whose first $r$ rows are independent and last $n-r$ rows vanish. Then

$$
\left(q^{n}-1\right) u=\sum^{\prime} m(Y)=\sum_{r=1}^{n} \alpha(r) m(r)
$$

We compute $\alpha(r)$ by observing that the first row of any $Y \in \mathbb{Q}$ of rank $r(\geqq 1)$ is anything but zero, for which vector there are $q^{n}-1$ possibilities, and that for $k \leqq r$ the $k^{\text {th }}$ row may be any vector not in the space spanned by the first $k-1$ rows, for which vector there are therefore $q^{n}-q^{k-1}$ possibilities. The last $n-r$ rows are determined, being all zero. It follows that

$$
\alpha(r)=\left(q^{n}-1\right)\left(q^{n}-q\right) \cdots\left(q^{n}-q^{r-1}\right)
$$

To compute $m(r)=m(E)$, observe that $N E=E A$ for some $A$ if and only if $A$ is of the form

$$
\left(\begin{array}{cc}
N_{r} & O \\
P & Q
\end{array}\right)
$$

where $P$ and $Q$ are matrices of dimensions $r \times(n-r)$ and $(n-r) \times(n-r)$, respectively. Therefore $m(r)$ is the number of nilpotent matrices of this form. Such a matrix is nilpotent if and only if $Q$ is nilpotent. Denoting by $u(k)$ the number of nilpotent $k \times k$ matrices with coefficients in $G F(q)$, let us make the inductive assumption that $u(k)=q^{k^{2}-k}$ for $k<n$. It follows that

$$
m(r)=q^{r(n-r)} q^{(n-r)^{2}-(n-r)}=q^{(n-r)(n-1)} \quad \text { for } \quad 1 \leqq r \leqq n
$$

Writing the terms in $\sum_{r-1}^{n} \alpha(r) m(r)$ in reverse order, starting with the term for $r=n$, we now have

$$
\begin{aligned}
\sum_{r=1}^{n} \alpha(r) m(r)=\left(q^{n}\right. & -1)\left(q^{n}-q\right) \cdots\left(q^{n}-q^{n-3}\right)\left(q^{n}-q^{n-2}\right)\left(q^{n}-q^{n-1}\right) \\
& +\left(q^{n}-1\right)\left(q^{n}-q\right) \cdots\left(q^{n}-q^{n-3}\right)\left(q^{n}-q^{n-2}\right) q^{n-1} \\
& +\left(q^{n}-1\right)\left(q^{n}-q\right) \cdots\left(q^{n}-q^{n-3}\right) q^{2(n-1)} \\
& +\cdots \\
& +\left(q^{n}-1\right) q^{(n-1)^{2}}
\end{aligned}
$$

The sum of the first term and the second is

$$
\left(q^{n}-1\right)\left(q^{n}-q\right) \cdots\left(q^{n}-q^{n-2}\right) q^{n},
$$

the sum of this and the third is

$$
\left(q^{n}-1\right)\left(q^{n}-q\right) \cdots\left(q^{n}-q^{n-3}\right) q^{2 n}
$$

and continuing so, one finds the sum of all to be $\left(q^{n}-1\right) q^{(n-1) n}$. Therefore

$$
\left(q^{n}-1\right) q^{(n-1) n}=\left(q^{n}-1\right) u
$$

i.e., $u=q^{n^{2-n}}$, completing the induction and the proof.

## 2. Determination of the number of matrices over $G F(q)$ with given characteristic polynomial

We determine first the number of $m d \times m d$ matrices over $G F(q)$ satisfying an equation $f(x)^{m}=0$, where $f$ is an irreducible polynomial of degree $d$. The set of all $r \times r$ matrices with coefficients in $G F(q)$ will be denoted by $G F(q)_{r}$, and the number of nonsingular ones by

$$
\beta(q, r)=\left(q^{r}-1\right)\left(q^{r}-q\right) \cdots\left(q^{r}-q^{r-1}\right)
$$

Let $\sigma$ be a fixed representation of $G F\left(q^{d}\right)$ in $G F(q)_{d}, \sigma^{(m)}$ the naturally induced representation of $G F\left(q^{d}\right)_{m}$ in $G F(q)_{m d}$, and $\lambda$ a fixed root of $f(x)$. Set $\sigma(\lambda)=M$. An element of $G F(q)_{d}$ is in the image of $\sigma$ if and only if it commutes with $M$; likewise, an element of $G F\left(q^{d}\right)_{m}$ is in the image of $\sigma^{(m)}$ if and only if it commutes with $\sigma^{(m)}\left(\lambda I_{m}\right)=M \otimes I_{m}$. If $R \epsilon G F\left(q^{d}\right)_{m}$ has coefficients in $G F(q)$, then $\sigma^{(m)}(R)=I_{d} \otimes R$. In particular, this is the case if $R$ is a nilpotent matrix in Jordan normal form, i.e., a direct sum of matrices of the form $N_{k}$. For such an $R$, the Jordan normal form of $\sigma^{(m)}\left(\lambda I_{m}+R\right)$ is, writing $\lambda$ for $\lambda I_{m},\left(\lambda_{1}+R\right) \oplus \cdots \oplus\left(\lambda_{d}+R\right)$, where $\lambda_{1}, \cdots, \lambda_{d}$ are the zeros of $f(x)$ (distinct since $G F(q)$ is perfect). On the other hand, if $A$ is any matrix in $G F(q)_{m d}$ satisfying $f(x)^{m}=0$, then the Jordan normal form of $A$ is also of the form $\left(\lambda_{1}+R\right) \oplus \cdots \oplus\left(\lambda_{d}+R\right)$, where $R$ is some nilpotent matrix in Jordan normal form, the nilpotent part associated with each proper value $\lambda_{i}$ being the same since $\lambda_{i} \rightarrow \lambda_{j}$ induces an automorphism of $G F\left(q^{d}\right)$ over $G F(q)$. A fortiori, every $A$ in $G F(q)_{m d}$ satisfying $f(x)^{m}=0$ is similar to $\sigma^{(m)}(\lambda+P)$ for some nilpotent $P$ in $G F\left(q^{d}\right)_{m}$, and on the other hand it is clear that matrices of the latter form all satisfy $f(x)^{m}=0$. If $C$ is a nonsingular matrix in $G F(q)_{m d}$ and $P, P^{\prime}$ nilpotent matrices in $G F\left(q^{d}\right)_{m}$ such that

$$
C^{-1} \sigma^{(m)}(\lambda+P) C=\sigma^{(m)}\left(\lambda+P^{\prime}\right)
$$

then in fact $C$ commutes with $\sigma^{(m)}(\lambda)$, for

$$
(\lambda+P)^{q^{m d}}=\left(\lambda+P^{\prime}\right)^{q^{m d}}=\lambda
$$

Therefore $C$ is in the image of $\sigma^{(m)}$, and conjugation by $C$ carries the set of all matrices $\sigma^{(m)}(\lambda+P), P$ nilpotent, onto itself. The number of such $C$ is the
number of nonsingular matrices in $\operatorname{GF}\left(q^{d}\right)_{m}$, namely, $\beta\left(q^{d}, m\right)$. There being $\beta(q, m d)$ nonsingular matrices in $G F(q)_{m d}$, and, by the Fine-Herstein theorem, $\left(q^{d}\right)^{m^{2}-m}$ nilpotent matrices $P$ in $G F\left(q^{d}\right)_{m}$, it follows that the number of solutions of $f(x)^{m}=0$ in $G F(q)_{m d}$ is $\left(q^{d}\right)^{m^{2}-m} \beta(q, m d) / \beta\left(q^{d}, m\right)$.

Finally, let $A$ be an element of $G F(q)_{n}$ whose characteristic polynomial is $f=f_{1}^{m_{1}} \cdots f_{k}^{m_{k}}$, where the $f_{i}$ are distinct irreducible polynomials of degree $d_{i}$ over $G F(q)$, and necessarily $\sum m_{i} d_{i}=n$. Then $A$ is similar to a direct sum $A_{1} \oplus \cdots \oplus A_{k}$, where the characteristic polynomial of $A_{i}$ is $f_{i}^{m_{i}}$. Every such direct sum has characteristic polynomial $f$, and if two such are similar, then the matrix $C$ effecting the similarity must itself be a direct sum $C=C_{1} \oplus \cdots \oplus C_{k}$, where the dimensions of $C_{i}$ are $m_{i} d_{i} \times m_{i} d_{i}$. Letting $t_{i}$ denote the number of elements of $G F(q)_{m_{i} d_{i}}$ satisfying $f_{i}^{m_{i}}=0$, it follows that the number $t$ of elements of $G F(q)_{n}$ whose characteristic polynomial is $f$ must be $\prod t_{i} \cdot \beta(q, n) / \prod \beta\left(q, m_{i} d_{i}\right)$. Substituting for $t_{i}$ its value from the preceding paragraph, one has (after cancellations)

$$
t=\Pi\left(q^{d_{i}}\right)^{m_{i}^{2}-m} \cdot \beta(q, n) / \Pi \beta\left(q^{d_{i}}, m_{i}\right)
$$

If one sets $F(q, r)=q^{-r^{2}} \beta(q, r)=\left(1-q^{-1}\right)\left(1-q^{-2}\right) \cdots\left(1-q^{-r}\right)$, then one may also write, observing that $\sum m_{i} d_{i}=n$,

$$
t=q^{n^{2}-n} F(q, n) / \Pi F\left(q^{d_{i}}, m_{i}\right)
$$

## References

1. N. J. Fine and I. N. Herstein, The probability that a matrix be nilpotent, Illinois J. Math., vol. 2 (1958), pp. 499-504.
2. I. Reiner, On the number of matrices with given characteristic polynomial, Illinois J. Math., vol. 5 (1961), pp. 324-329.

University of Pennsylvania
Philadelphia, Pennsylvania

