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1. Introduction and definitions
Let Ix1, x2, .-.} be a stochastic process, with finite or countable state

space , defined on a probability measure space (2, 6t, u). In [1] a Hausdorff
dimension dim, M was defined for each set M c ft, in the following way.
A cylinder (of rank n) is defined to be a set of the form {0:xk(o) ak,
/c 1,2, ...,n},whereae. IfMcftandp>0, at-p-coveringofM
is a finite or countable collection {vi} of cylinders such that M [-Ji v and
() < p for each i. If p, a > 0, put L,(M, , p) inf (v)", where
the infimum extends over all u-p-coverings {vi} of M, and let L,(M, )
limp0 L,(M, , p). If L,(M, ) < then L,(M, + e) 0 for all e > 0;
hence we can define

(1.1) dim, M sup {a:L,(M, ) o} inf {:L,(M, ) 0}.

It was shown in [1] that if 2 is the unit interval (0, 1], if t is Lebesgue meas-
ure, and if ]:=1 xn(o)s is, for each o, the nonterminating base s expansion
of o, then this definition reduces to the classical one due to Hausdorff.
The dimension of M depends both on the measure # and the process {x,}.

The dependence upon {x,} is not exhibited in the notation dim, M, since
Ix,} will remain fixed throughout the discussion. However, we will consider
several measures # simultaneously, and the main purpose of the paper is to
investigate how dim, M varies as varies. For o e 2 and n 1, 2, put

u,(o) {o’:x(cJ) x(), lc 1, 2, -.., n}.

In other words, u,(o) is that cylinder of rank n which contains 0. In 2 we
prove several refinements of the fact that if and are probability measures
on , and if

(1.2) M {oa" lim
lg v(u’()) }

then

(1.3) dim, M 6 dim, M.

In 3, the results of 2 are used to extend and simplify some of the theorems
of [1]. The essential idea here is to compute dim, M for certain sets M by
constructing a measure u such that (1.2) holds and such that dim, M 1.
It then follows from (1.3) that dim, M 6. Finally, 4 contains some re-
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In [1] the state space a was assumed to be finite, but the definition applies to a

countable a as well.
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marks on the connection between limits like the one in (1.2) and the Shan-
non-McMillan theorem.

2. Main results
To simplify the statements of the theorems of this section it will be con-

venient to define lg /lg 7 throughout the unit square 0 -<_ , 7 -< 1. We do
this by making the convention that if 0 < , 7 < 1 then

lg /lg 0 lg 1/lg 7 lg 1/lg 0 0,

(2.1) lg 0/lg 7 lg /lg 1 lg 0/lg 1 ,
lg 0/lg 0 lg 1/lg 1 1.

(This is the only wuy to define lg /!g 7 in 0 =< , 7 -< 1 so that it is increas-
ing in , decreasing in 7, nd goes into its reciprocal upon interchange of
and 7.)
Our first theorem, which is essentially a generalization of one due to Gillis

[4], will not be used in the rest of this paper; it is given for comparison with
later results and because it is useful in coding theory [2]. In all that follows,
u and are two probability measures on 6t.

THEOREM 2.1. If t(= U,(w)) 0 for each o (i.e., if all cylinders of
rank have u-measure 0), and if >- O, then

Proof. By our convention (2.1), the set in brackets in (2.2) is contained
in ghe set of o for which, for any e > 0,

(u()) >= .(u.())+
holds for infinitely many values of n. Call this set A; we will prove that
dim A -< 6.
Given e, p > 0, let consist of those cylinders of the form u u,(o) with

t(u,(w)) < O, (u,(0)) >=. t(u,())+, e d.

Then t covers A by the definition of A and the fact that every -eylinder
has u-measure 0. Let 2 consist of those elements of t which re not sub-
sets of other elements of . Then covers A, is disjoint, and if v e 72
then u(v) < p nd u(v) >= u(v)+. Hence X) is a u-p-covering of A, and

1 >= u(v)’2 >= u(v)+’5 >= L,(A, 6 + e, p).

Since p > 0 was arbitrary, L,(A, 6 + e) _<_ 1, and hence dim, A <_- 6 + e.
Since e > 0 was arbitrary, dim, A -< 6.

Before proceeding to the next theorem, we give a heuristic proof of the

If is collection of cylinders, u(v):2$ denotes u(v) summed over v e.
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fact that (1.2) implies (1.3). Let us pretend that for each M, not only
does lg (Un(O))/lg g(Un(o)) approach 6, but that it actually equals for all
n. If 73 is any covering of M each element of which intersects M, then any
element v of 73 has the form v Un(O), with o e M, so that (v) g(v) .
Then

for any covering 73 of M. It follows that L(M, a) L(M, at), from which,
by the definition (1.1), we easily obtain (1.3). In what follows, this argu-
ment is generalized and made precise.

THEOREM 2.2. If

(2.3) MCfo:liminflgg(u()) >i}
then

(2.4)

Proof.

dim, M _>_ 6 dim, M.

We may assume it > 0, in which case the set in brackets in (2.3)

L.(M n Boo e)

for some p0 > 0. Since ti- e > 0, L,(MnBoo,- e, p-) goes to in-
finity as p goes to 0 and, in particular, is positive if p is sufficiently small. If,
in addition, p < p0, then

(2.6) L(M n B e, p-) > O.

Fix a p > 0 for which this is true.
Let 73 be a u-p-covering of M n Bp. If 730 consists of those elements of 73

which meet Bp, then 730 alone covers M n Bo. If v e 730, then it has the
form v un(w) for some n, and hence, since g(v) < p, u(v) <- g(v)- by the

is contained in the set, call it B, where g(un(o)) > 0 for all n, and where for
all e with 0 < e < we have u(u,(o)) -< g(u,(co))a- for all n exceeding
some integer N(o, e). This is because of our convention (2.1). We will
show that if M c B, then (2.4) holds.
We may assume that dim, M > 0. Consider an ewith0 < e <

min (if, t). For p > 0 let Bo be the set of o such that for all n

(2.5) g(u,(o)) < p implies u(u,(w)) =< g(Un(O))-.

Suppose that o e B. Then by the definition of B, (u,()) <- g(u,(o))a-
for all n exceeding some N(o, e). Take p g(u(.)(w)). Then p > 0,
since g(u,(o)) > 0 for o e B, and g(un(w)) < p implies n > N(o, e), so
that u(u,(o)) -< g(Un(W))a-. Hence w e Bo, and it follows that Bo " B as
p+0. Since MB, it follows that MnBo’M as p 0, and hence, by
Theorem 4.1 of [1], dim, (M n Bp) "/ as p + 0. Therefore dim, (M n Bo) >

e for p sufficiently small, and hence
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definition (2.5) of Bp. Therefore

>__ >_-

Sinceu(v) =< t(v)- < p-for v e720, 720 is a u-p -covering of MnBo;
hence

(v)-)-)’72 >= Lv(M n Be, e, p > 0

by (2.6). Since 72 was an arbitrary u-p-covering of M Bp,

L.(M n B, (6- )(- )) >__ L.(M n Bo, (6- )(- ), p) > O,

and hence dim, M _>_ dim,(MaB,) >= (6- )(- e). Since s was
rbitrary, dim, M __> /, which completes the proof. Some of the techniques
used in this proof are to be found in Kinney’s paper [5].

If we interchange the roles of t and in Theorem 2.2 and replace by its
reciprocal, we have

THEOREM 2.3. If
lg (U()) < 6}M C w’limsup
lg tt(Un(W)

then

(2.7) dim, M -< dimv M.

Comparing the last two theorems with Theorem 2.1, one might conjecture
the stronger result that (2.7) holds if

M ]w" lim inf lg v(u()) <

This conjecture is flse.
Combining Theorems 2.2 nd 2.3 we hve the result nnounced in 1 nd

proved heuristically above.

THEOREM 2.4. If

then

M fo" lim
lg P(Un((.O))

dim. M t} dim M.

A result which is more useful for computing the dimensions of specific sets
is the following one.

THEOREM 2.5.

(2.s)

and that

Suppose that ,(f’l = u.(o) 0 for all o, that

M {o" lim sup
lg (u())
lg ;(Un((..O))

(2.9) Mo iw" limlg ’(Un(W))
6t
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for some subset Mo of M. If ,(Mo) > O, then

(2.10) dim M i.

Proof. By (2.8) and Theorem 2.3 we have dim M -< i dim M. Since
every cylinder of rank has v-measure 0, it follows that dim M _<_ 1, and
hence dim M =< i. By (2.9) and Theorem 2.4 we have dim, Mo it dim Mo.
Since (Mo) > 0, dim Mo 1, so that dim Mo ti. But then dim M _>_
dim, Mo ti, from which (2.10) follows.

3. Applications
In this section we show how most of the results of [1] follow in a simple

manner from Theorem 2.5.
Suppose that the state space a is finite, say a {0, 1, s 1}. Sup-

pose further that under t the process {Xn} is independent with

,l’x() i} p > o, i=O, 1, "",s-- 1.

Suppose finally that if (0, i"1, ’,-1) is any set of nonnegative num-
bers which sum to 1, then there is a measure on (B such that {x} is
independent under and {o’x(o) i} ’. This last assumption holds,
for example, if f X X and if the x are the coordinate variables
on f, or if f is the unit interval and --1Xn(O)/S is the nonterminating
base s expansion of o. (See the end of this section for further remarks
along this line.)

Let A be the set of vectors " (i’0, ’1, -1) of s-space such that
’i > 0 and ’-=0" 1. For each oef, n__> 1, andi 0,.-.,s 1, let
ii(o, n) be 1In times the number of integers /c such that 1 =< /c __< n and
x(o) i. Let i(o, n) (ti0(o, n), ..., it_(o, n)) e A. Finally, let

H(’p) :-o ’ lg ,/’.-o ,,; lg pi.

We first show that if

(3.1) M() {w’limn_. ((o, n) ’1,

then

(3.2) dim, M(’) H(’p).

To do this, let be that measure on under which {Xn} is independent with
{’Xn() i} . Since

lg u(u(o)) n .-o .i(o, n) lg p,

g .(u.()) n :0 a(, n)g ,
we have

lira
lg v(u.(co)) H(’" p)
lg u(u.())



296 PATRICK BILLINGSLEY

for any 0 in M(i’). Hence, by Theorem 2.4, dim, M(t’) H (i": p) dimv M(i’).
But since (M(i’) 1 by the strong law of large numbers, dim, M(i’) 1,
and (3.2) follows.
An application of Theorem 2.5 in place of Theorem 2.4 yields a stronger

result. Let S be a subset of A, and put

M(S) {0"lim** p((, n), S) 0},

where p denotes Euclidean distance on A. We will show that

(3.3) dim, M(S) supers H(’" p).

Since neither the set M(S) nor the right-hand side of (3.3) is altered if S is
replaced by its closure, we may assume that S is closed. Let " be an ele-
ment of S such that

H(’p) sup,sH(’p).

Take to be that measure on (B under which {x} is independent with

An application of Theorem 2.5 with M(S) and M(i") (as defined by (3.1))
playing the roles of M and M0 immediately yields (3.3). In [1] it was shown
how a number of results in classical Hausdorff dimension theory follow di-
rectly from (3.3).
The very same technique suffices to prove the following result. Suppose

that S has the property that for some i0, i’0 0 for any i" S. Then (3.3)
still holds if M(S) is replaced by its intersection with the set of for which
i0(, n) 0, n 1, 2, .... From this it follows, for example, that the
(classical) Hausdorff dimension of the Cantor set is lg 2/lg 3.
There is one result of 7 of [1] which cannot be obtained by the present

methods, namely,

(3.4) dim,[’p((o, n), S) O(1/n)} supsH(i"p).

Just as rates of convergence for the strong law of large numbers have never
been obtained without special assumptions and methods, presumably (3.4)
cannot be proved without using techniques like the combinatorial ones of [1].
There remains the question of under what conditions on (, (B, ) and

{xn} one can construct a measure on 6 under which {x,} becomes a process
with specified finite-dimensional distributions. In [1] this problem was taken
care of by assuming that (2, 6, ) together with Xn} satisfies the following
condition (see 4 of [1]).

CONDITION (C). All but a countable number of sequences (a a ...) of
states have the property that either o’x() a ]c 1, 2, ...} is nonempty,
or else {’x(oo) a tc 1, 2, n} 0 for some n.

If {p(a, ..., an)} is any consistent collection of finite-dimensional dis-
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tributions, and if {o:xk() ak, ] 1, n} 0 implies

p(al. a,) O,

then there exists a probability measure r on ( such that

r{w:xk(0) a, k 1, ..., n} p(al, ..., a,),

provided Condition (C) is satisfied. This result is contained in the following
theorem.

THEOREM 3.1. Let
let 5’ be the Borel field generated by sets of the form {o’:0 a}. If
p(al, ..., a,) is a consistent set o,f finite-dimensional distributions, let ,’ be
that measure on 5’ such that ’{’:o a k 1, n} p(a a,).
A necessary and sucient condition that there exist a probability measure , on
the Borel field generated by the x, such that

{o:x(o) a tc 1, n} p(al ..., a,)

is that the o’-set (x(o), x2(), e 2} have /-outer-measure 1.

Since this result is not central to the theory, and is essentially the same as
standard theorems, its proof is omitted.

In this section, attention has been restricted to the independent case for
simplicity only. As in [1], analogous results can be proved under the assump-
tion that {x} is a Markov chain.

4. A connection with the Shannon-McMillan theorem
Suppose that the state space

and are probability measures under which {Xn} is stationary and ergodic.
In the preceding sections the limit

(4.1) lim lg

played a basic role. It would be interesting to have conditions under which
this limit exists [] (that is, except on a set of r-measure zero). If under
the process {Xn} is independent with p{w:xn() i} =- l/s, this becomes

(4.2) limn_ {n- lg8 (u())}.

It follows from Breiman’s version [3] of the Shannon-McMillan theorem that
this limit exists [] and equals the relative entropy of {x} under . Hence
(4.1) exists [] if and only if limn {n-1 lg8 (Un(0))} does. But this is in
turn equivalent to the existence [] of

lim lg

Therefore one asks whether this limit exists. In 8 of [1] it was shown that
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these limits all exist [] if {x} is a Markov chain under both t and . It is
easy to remove the restriction that {Xn} be a Markov chain under . Since
,(u,(oo) )/t(Un()) is the Radon-Nikodym derivative f of with respect to
when both measures are restricted to the Borel field generated by xl, x,

one can remove the restriction that the x have a finite state space and still
ask whether limn n-1 lg f exists []. Some progress in this direction has been
made by Moy [6] and Perez [7].
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