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1. Introduction
Consider a sequence X1, X2, of independent, identically distributed

random variables, taking integer values only. We assume that every integer
is a possible value (compare [5]), i.e., if

(1.1) S ’i1Xi,
then there exist integers u and v such that

(1.2) P{S --1} > 0 and P{Sv -11 > O.

Let I be any finite set of integers, containing u(I) points, and put

(.3) ...,N(A) the number of terms Sk in the infinite sequence S, S2,
such that Sk e I and Si _-< A for i 1, 2, k,

(1.4) N(A,
S, S,

-B) the number of terms S in the infinite sequence
such that S e I and -B -<_ Si -< A for i 1, 2, ..., /.

In a recent research note (Theorem 6 of [11]) of Spitzer and a paper [13]
of Spitzer and Stone the asymptotic distributions of N(A) and N(A, A)
were given for the case t(I) 1, Xi symmetrically distributed and EX .
At the same time Spitzer suggested in [11] that some formulae would be valid
for any finite u(I) and even for nonsymmetrically distributed X with zero
mean. We shall drop the condition EX but instead assume that the
characteristic function (t) Eetxl is such that

limt,0 (1 --(t))/t" Q with Re Q > 0

for some a with I -< a _-< 2. (In some places 0 a 1 is also considered.)
The generalizations suggested by Spitzer for N(A) will be derived, and

the corresponding results for 1 -< a 2 are also found. If there are two
barriers, we consider mostly variables with symmetric distributions, i.e.,
for which P{X /} P{X -/I. We do not require, however, that
the barriers be symmetrically placed, i.e., we shall find the asymptotic dis-
tribution of N(A, -B) where B not necessarily equals A.

Received March 2, 1960.
As usual, P{A} probability of the event A;

P{A B} conditional probability of A, given B;
E{X} expectation of the random variable X; and

E{X B} conditional expectation of X, given B.
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For 1 < a -<_ 2 the results are of the form

lim_,, PIN,(A <- A-IC(I)x} 1 e-x,
and ifP[X k} PIXi -]c},forc > 0

lim, PIN,(A, cA) -<- A-ID(I)x} 1 e-z,
where C and D are constants depending on a, Q, and c.

If a 1, one obtains similar formulae with A- replaced by log A.
The case a < 1 does not lead to theorems of this type, since for a < 1

PI Sk e I for infinitely many k} 0.

It is of course possible to derive similar results if (1.2) is not fulfilled, but
if instead

P{S -4-d} > 0, P{S -d} > 0, P{S =j} 0

ifj 0 (mod d).
There is some duplication between this note and the papers [12] and [13],

especially in Section 3. Since we treat slightly more general cases than
Spitzer, most proofs are nevertheless reproduced in full. The behavior of
N,(A) for 1 _<_ a < 2 follows from Spitzer’s method just as well. The main
difference lies in the methods for N,(A, B).
The author is indebted to Professor F. Spitzer for communicating results

and methods before they appeared in print.

2. The exponential form of the limiting distributions

X1, X2, is a sequence of independent, identically distributed random
variables, such that, with

(2.1) Sn-’- in...lXi,
there exist positive integers u and v for which

(2.2) P{S -4-1} > 0, P{S, -1} > 0.

Putting (t) Eetxl we also assume

(2.3) limt,0 (1 6(t))/t Q with Re Q > 0

for somea > 0. In general we take 1 _<_ a -< 2. Since6(-t) 6(t),it
follows from Theorem 3 in [5] that all integers are recurrent values in this
case, i.e., S b for infinitely many k with probability 1 for every integer b.
Thus, if (2.2) and (2.3) are satisfied,"

k=IP{S b, Si b for 1 =< i < k} 1.

This implies immediately

(2.4) lim -’P{S b,b S-< A for 1 -< i < k} 1
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as well as

lim,+._.= "= P{S b, S # b, -B -< S -< A(2.5)
for 1<i<}=1

Put

(2.6) pa(A) "=,P{S b,b S <- A for 1 -< i < k}
and

(2.7) p(A, --B) .. P{S b, S, b, -B <= S <= A
for

pb(A) is the probability to visit b, before any partial sum exceeds A. In
terms of random walks, we can think of A 1 as an absorbing barrier, and
then pb(A) is the probability of reaching b without absorption. A similar
interpretation can be given to p(A, B).

If I contains iust the point 0, one has almost immediately from the definition
(1.3)

(2.8) P{NioI(A) >- N} [po(A)],
and thus by (2.4) and (2.6)

lim P{NIo(A) >__ x(1 no(A) )-}
(2.9)

lim_, [1 (1 po(A))](1-())- e-.
The generalization of this formula for general finite sets I is proved in the
following lemma.

LEMMA 1. Let I be any finite set of integers, containing (I) points.
Nr(A) and N(A, B) by (1.3) and (1.4). Then

(2.10) lim,_,PIN(A) >- t(I)x(1 po(A))-l e

Define

and

(2.11) lim._..,,_..P{Nr(A, -B) >- u(I)x(1 po(A, -B))-} e-.
Proof. We shall only prove (2.10), the proof of (2.11) being practically

the same. If J is any set of integers, put Mj(n) the number of terms Sk
in the finite sequence S, $2, ..., S, such that Sk e J. Let I now consist
of the t integers a, a. By Theorem 2 of [3] and its corollaries one has

(2.12) lim,_.Mo(n)M{,l(n 1 (i- 1, ..., ),
and therefore

(2.13) lim= M-(n)Mz(n) t with probability 1.

Define n(,) as the first index for which S > 3’, i.e., n(/) 1 if Sk >
while S -< for i 1, .-., k 1. One has then for any e > 0 and integer m
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P{tNoI(A)(1 e) <= Nz(A) <= uNI01(A)(1 -t- e)}

>= 1 P{n(A) < m} P{there exists an n >= m such that
u-M(o](n)M(n) 1[>

Since by (2.13)

limm_,= P{ there exists an n >- m such that
t-lM-(n)Mz(n) l I> e} 0,

and for each fixed m
lim P{n(A < m} O,

it follows that for each s > 0

limp{I t-INIoI(A).N(A) 1] <__ e} 1.

This together with (2.9) implies (2.10).
From the lemma we see that one only needs to find the asymptotic behavior

of 1 po(A) and 1 po(A, -B) in order to find the asymptotic distribu-
tions of NI(A) and NI(A, -B). From (2.9)

(2.14) ENIoI(A) p0(A)(1 po(A))-,
and thus, by using (2.4) and (2.6)

(2.15) lim (1 po(A))ENo}(A) 1.

Similarly

(2.16) lim (1 no(A, -B))ENo(A, -B) 1.

The relations (2.15) and (2.16) will be one of the main tools in the next two
sections.

3. The asymptotic behavior of 1 po(A) and Nz(A)
We have already interpreted in (2.14) (1 po(A) )-1 as the expected num-

ber of terms S in the infinite sequence S0, S, S ,... (S0 0) with S 0
and Si-< Afori -< k. Let us put

S+ max(0, S) and S-= max(0,-S).
Then

A(3.1) (1 po(A )-1 "ooP{ S,, O, max_ S+ p}.

In order to find the asymptotic behavior of this sum we shall derive an expres-
sion for

e-8=0 P{ Sn 0, maxl__ S p}

and apply Karamata’s Tauberian theorem to this expression.
The computations in the next few lemmas could be greatly simplified by

considering symmetric distributions of Xi only. The reader may find it pro-
fitable to consider that case only (i.e., (t) (-t), t 0). It seemed
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worth while though, to do the more general case to obtain the expressions
(3.6) and (3.7) for C(a, Q) (cf. also the remark immediately after the proof
of Theorem 1).

LEMlgA 2. If (2.3) is satisfied, then for s > 0

E e-SP E P IS, O, max S+ p}
p..O =O

)(t y) -- s
log [1 (t)] dt

(3.2)

where

Hence

Spitzer (Theorem 6.1 in [9]) has shown that

E xnE E e-(S-iu)’e-(S+iu)q’P{max S+ p, max S+ S q}
n=0 p0 q=0 l<=k_<n l_k_n

X
exp - [+ (s iy) -- b[(s -- iy) 1],

k=l

b+ (s) Ee-Ss+ b-[ s Ee-Ss.

E x" E e-8"P {max St p, S. O}
n=0 :p=0 1Nk’<n

E x"E e-P max S+ P, max St S.
n----O p----O l___k_<n l__<kNn

P{max S+, max S+ S,
l<k<_n l<_k<_n

2r J- dy exp
X

k=l - [b+(s iy --I-- b- s + iy 1].

In another place (Theorem 3 in [10]), Spitzer showed that if

dt <1 (t)

then fors >= 0,0-< x < 1

( f0z 1[g,+()- i exp f: S (t)-- 1 dt)dz
t(t is) (1 z)(1 z(t))

By analytic continuation we are allowed to replace s by s -+, iy for s > O,
y real. Changing +X into -X we obtain
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X- [b-(s -t- iy) 1]
k=l

Taking into account that

one verifies immediately

s + iy 1
dt

t(t + y is) (1 z)(1 z(-t)) ]

(3.4)

s -iy (t) 1
t(t y + is) (1 z)(1 z(t))

xk

f dzexp exp
1 z

(3.5) lims0 -__1 [f(t) -f(y)]
(t y)2 + s2

dt 0

uniformly in Y <= .
Proof. Let v be some small positive number. Split the integral up in

three pieces: I1 from - to y 7, I. from y to y 7, and I3 from
y+to.

I < s__r f,"lf(y t)t f(Y) dr.

Then

and

LEMMA 3.

lim
1

xT1

f(o) o.

which proves the lemmu.

Let (2.2) and (2.3) be satisfied. Put

’log [1 4,(t)] a log log Qf(t) log [1 )(t)] a log It log Q
fort > O,
fort <0,

dy exp ( lI:’ s )-- (t y) + s
log [1 x4,(t)] dt

1 f
+’ ( 112 )2-

dy exp log [1 4()] d
r (t y) + s

Since 4)(t) is close to 1 only when is close to 2rk, ]c O, 1, -4-2, ..., (by
(2.2)), and if 2r/ -- t’, log (1 x4)(t)) O( Ilogt’ I) (t’--O)
(by (2.3)), it follows from the Lebesgue dominated convergence theorem
that fors > 0

X
exp [b+(s- iy)- 1 + -(s + iy)- 1 -k 1]

k=l

( t)exp
r (t y)Z .+. S2

log [1 x4(t)] d
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By (2.3) lim**0f(t) =/(0) 0, while by (2.2) it- k.2rl >= e for all k
implies (t) =< 1 C(e) < 1 for some function C(e) > 0. In addition
by (2.3)

log [1 4)(t)l 0([ log (t k.2r)[) as --> k2-.

Using these facts, one sees

’cl

f(Y t) f(Y) dt 0(,-) (, O)

Hence I] O(s-), and similarly I O(s-). On the other hand

I sup f(t) -f(y)f+ sdt < sup f() -f(y)[.-, (t- y)+ s

By the continuity of f(t) it follows that I 0, as n 0, uniformly in s.
The lemma follows by combining the estimations for I, I, and I.
LEMMA 4. If (2.2) and (2.3) are satisfied with 1 a 2 and

Q Q ]e ( fl < /2), then, as s O,

e-:’ Z P{S, 0, max S p}
0 n0

Q i)- s + cos

( Q 1)- cos log s- for a 1.

Proof. We hve shown in Lemmas 2 nd 3 that

=0 =0

2- dy exp o(

where o(1) -- 0 as s

for 1 < a =< 2,

log Q log QI q- i (note that II < r/2 since we assumed Re Q > 0)
one can write for the integral in the exponent

log Q f y i If(R) s dt f** s dt 1--- (t-- y)-- s (t + y) +
a

logt
s-- iy s+iy

r + (s iy) + + (s - iy)
dt

log QI f(Y) i f+us-, (1 q- t2) -1 dt
71" d--ys-

1 f’ s(a log tl q- log Q + f(y))1) r (t 22 -yi _- s dt

1_ fo s(a 1oglt’ + log O + f(Y) dtq
rL (t-- y)+s J’

$ 0 uniformly in y r. Substituting
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ra i(R) [log (s iY)lt -’ lg (s + iy) t]
dt

(1+ dr- log( + )
d--ys--

We therefore have to determine the asymptotic behavior of

1 +
y)-./, ( (lt)-dt)dy2 ]QI

(s W exp o(1) f(y) iv .-f+’-
1 ( +-IQI cos (1+t)-dt dy

i, Qi f-" exp( 2iB ’- t)- )2
(s T y)-" f (1 W dt

Let us prove the result for 1, the proof for 1 < 2 being very similar,
even simpler. We have then

)(s + y)- exp (1 + dt [exp(o(1) f(y)) 1] dy

(s + [exp(o(1) f(y)) 1]dy W 0 (s + y)-/dy

Since limo f(y) O, the integral from - to e can be made less than

(sWy)-mdy =0 Iog

for any y > O, by choosing smll enough.
The integral from to is O(log -) uniformly in s > O. Hence

lira (log s-)- (s + exp (1 + dt

Since

cos (1+ dt -cosO as s$O,

one also has

1i(1 -)- ( )- (1 1 O.
so

cos B ( + )- d cos B (1 + d cos log -as 0, from which he required forma fNlows.
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If Q Q e with 1[ < r/2 and if 1 < a =< 2, we put

C(o, Q)

( Q 2-"r())- f. ( +
and for the same Q with a 1 we put

)cos (1 -kt)-ldt dy,

(3.7) C(1, Q) (r Q ])- cos .
We then have the following

THEOREM 1. If (2.2) and (2.3) are satisfied with 1 <- o <= 2, then

(3.8) lim-.Al-"(1 no(A)) -1 C(, Q) if 1 < a <- 2

and

(3.9) lim (log A)-1(1 po(A))- C(1, Q) if a 1.

Consequently, if 1 < <= 2,

(3.10) lim_, P{Nx(A =< A-C(a, Q)(I)x} 1 e-z,
and if o 1,

(3.11) lim_. P{Nx(A <= log A .C(1, Q)(I)x} 1 e-.
Proof. (3.8) and (3.9) follow immediately from (3.1) and Lemma 4 by

applying Karamata’s Tauberian theorem [6]. That (3.8) and (3.9) imply
(3.10) and (3.11) respectively has already been proved in Lemma 1.
Note that changing -kX into -X only changes the sign of /. Hence

N(-k oo, -A) the number of terms S in the infinite sequence S, S,
such that S e I and S => -A for i 1, 2, / has the same asymptotic
behavior as N(A) even though we did not require X to be symmetrically
distributed.

4. Asymptotic behavior of 1 po(A, -B) and N(A, --B)
We shall derive the asymptotic behavior of Ns(A, B) directly from that

of N(A) without any such explicit expression as given by Lemma 2. Except
for the case a 2 we shall assume in this section that the X have a symmetric
distribution, i.e.,

(4.1) PlX } P{X -}.

Define n(,) as in the proof of Lemma 1 by

(4.2) n(,) / if S >’), while S =<-r for i 1, 1- 1.

Put now

(4.3) Z S(0)

By definition Z is the first positive term in the sequence S, S ....
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LEMMA 5.
then for s >= 0

Ee-sz 1 exp
(4.4)

/f (2.3) is satisfied for some 0 < a <= 2, and if (4.1) is satisfied,

But by (4.1)

s
__

t log [1 4(t)] dt

exp P{Sk 0}
k=i 2k

It is shown in Corollary 3.2 of [12] that for s >= 0

)1
e-st dtP{Sk <

k=l q-
Ee-z 1 exp (-

e-stdtP{S < t} +(s) 1 1/2P{S 0}2
+

where, as before,
+(s) E exp(-sS+).

Putting d exp (P{ S 0 }/2/) (d < by Theorem 1 in [4] ), one has

Ee-.z 1 d exp(- ((s) )).
The lemmu follows now by letting tend to 1 in equation (3.2) and Lemma
2 of [10]. The distribution of Z wus first found in [1].
The anMogue of the next lemma for stable processes was proved by Ray

in [8].

LEMMA 6. U (2.3) and (4.1) are satisfied, then, if a 2,

(4.5) lim. P{S() A x} F(x),

where F:(x) is a proper distribution function with lim.F(x) 1. If
0 a 2, then

lim P{S() A Ax} F,(x),(4.6)

where

F,(x) sin (ra/2) f0 t-"/(1 - t)-I dt.

Proof. Consider a sequence Z1, Z2, of independent random variables,
each having the same distribution as Z, put

i1Zi

and let q(A) be the first index for which U > A, i. e., q(A) / if U > A
whileUi<- Afori 1, ...,it- 1. Just asS(0)-0 Z, it is easily seen
that Sn(A) A has the same distribution as Uq(A) A. Hence we can find

This lemm does not depend on (2.2). A change of scale does change F(x) but not
F.(x) for < 2. A similar remark holds for Lemmas 8 and 9.
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the distribution of Sc) A from renewal theory if we know the distribution
of Z. But using Lemma 5 and the estimates of Lemma 3 for y 0 one ob-
tains

lim,, 1 dQ-.
(Recall that Q in (2.3) is real when (4.1) is satisfied.)
has (compare Theorem 3.4 in [12])

EZ dQ <

Hence for 2, one

from which (4.5) follows by well known results in renewal theory (cf. for in-
stance Theorem (3.1) and the identity (5.1) in [7]). For 0 < < 2, (4.6) is
merely equation (5.5) of [7].

In addition to n() we define

(4.7) m(,) k if Sk </ while

and

for i 1,...,]c-- 1

r(,-) ]c if Sk < -- or S >,
(4.8)

while t < S < for i 1, k- 1

Sm() is the first partial sum smaller than, and S(._) is the first partial sum
greater than or smaller than -. Finally, we put

e(A,-B) P{S,,,_,) > A},

z(A,-B) 1 (A,-B) P{S(a._n) < -B}.

e is the probability of crossing the upper boundary before the lower boundary,
and similarly for E with the words upper and lower interchanged.

THEOREM 2. If (2.2) and (2.3) are satisfied with a 2, then for any fixed
cO
(4.9) lima.= (A, -cA) lima.= 1 E(A, -cA) c(1 + c)-,
and

(4.10) lima.= A-(1 po(A, -cA))- c(1 + c)-C(2, Q).

Consequently

(4.11) lima.= P{N(A, cA) Ac(1 + c)-C(2, Q)u(I)x} 1 e-.
Remark. Note that if a 2, Q EX/2 and must be real even without

the condition (4.1). Related to this is the fact that (4.5) is valid for a 2
even without (4.1), as follows from the proof of (4.5) and Theorem 3.4 in [12]
which states that always EZ < whenever a 2. We therefore do not
require symmetric distributions in this theorem but can nevertheless use
(4.5).
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(1 po(A) )-1 E {number of indices ]c < n(A) for which Sk 0}

E {number of indices ] _-< r(A, -B) for which Sk 0}
(4.12)

-t- _(A, --B) E{numberofindices]cwithr(A, -B) < k < n(A)
for which S 01 Sr,_,) < -BI.

Assume now Sr(,_.) -C 1 -B, and let

(4.13) n(0) the first index greater than r(A, -B) for which S. > -1.

In that case Sn,(O) 1) has the same distribution as S.(c) C. Hence, it
follows from (4.5) that

(4.14) lim P{S,(0) > x S(a._)<-B} 0

uniformly in B > 0. Since by the definition S 0forr(A, -B) < k < n’(0)
one has

Elnumber of indices ] with r(A, B) < ] < n(A)
for which S 0[ S(,_) < --B}

(4.15)

E{number of indices ] with n’(0) -<_ k < n(A)
for which S 01 S,,(0) j}.

However, for fixed j > 0

E{number of indices ] with n(0) -<_ ] < n(A)
(4.16) for which S 0 S,(0) j}

p_j(A)(1 no(A))-1.

Hence from (4.12), (4.14), (4.15), (2.4), (2.6), and

Elnumber of indices ]c -< r(A, B) for which Sk 0} (1 p0(A, B) )-1

one obtains, by substituting B cA and multiplying (4.12) with 1 po(A),

limA [1 _(A,- cA) (1 po(A,-cA))-1(1 p0(A))]
(4.17)

lim [(A, -cA) (1 po(A, -cA))-1(1 po(A))] 0.

Repeating the argument with the roles of the upper and lower boundaries
interchanged, gives

(4.18) limA [c_(A, -cA) (1 po(A, -cA)-ic(1 po(cA))] 1.

Since by (3.8) for a 2

limA (1 po(cA) )c(1 po(A) )-1 1,
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one gets by subtracting (4.18) from (4.17)

lim_, [(A,-cA) c_(A, cA)] O.

Combining this with
(A, -cA) - _(A, -cA) 1

one obtains (4.9). (4.10) follows from (4.17) and (3.8), while (4.11) fol-
lows then from Lemma 1.
Even easier than the case a 2 is the case a 1. The remarkable content

of the next theorem is that the addition of a second absorbing barrier has
asymptotically no influence on the number of visits to I when a 1.

THEOREM 3. /f (2.2), (2.3), and (4.1) are satisfied with a 1, then for
any c > 0

(4.19) limlogA(1 po(A, -cA)) limlogA(1 po(A)) Q.

Consequently

(4.20) lim._.PIN(A,-cA) <= logA.C(1, Q)(I)x} 1 e-x.
Proof. Instead of the quantities we shall here work with

(A, -B) P{Sr(A._B) > A and there exists a lc > r(A,-B) such
that Sk 0 but S >= -B for r(A, -B) <= i <= k}(4.21)

and

(4.22) P- (A’ B) PI S(,_B) < B and there exists / > r(A, B)
such that S 0 but S _<- A for r(A, -B) <__ i <= ]}.

The interpretation is again easy. E.g., is the probability that the upper
boundary is reached first and that afterwards zero is visited before the lower
boundary is reached. Instead of (4.15) and (4.16) use now

E{number of indices ] with r(A, -B) < ] < n(A) for which S 0}

=P{there exists a first/c with r(A, -B) < ]c < n(A) for which S 0}

( po(A) )- e(A, -B) (1 po(A) )-.
Analogous to (4.12) one then has for c > 0

(4.23) (1 po(A))- (1 po(A, -cA))- + g(A, cA)(1 po(A))-.
Changing the role of the upper and lower boundary gives

(4.24) (1 po(cA))-
(1 po(A, cA))- + (A, -cA)(1 no(cA))-.

Subtracting (4.24) from (4.23) and multiplying by (log A)-, one obtains
by (3.9) as A -(4.25) lim_, [p_(A, -cA) (A, -cA)] 0.
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On the other hand, if n’(0) has the same meaning as in (4.13)

p_(A, -cA) <- P{Sr(,_) < -cA and S,(0) -<_ A},

while by (4.6)

lim P{ S,(o) <-_ A S(,-c) -A < -cA}

lim. P{ Sn(’A) -A <- A} Fx(-).
Consequently

(4.26) lim SUpA_) P (A, cA El (c-1).
Using the obvious inequality

(A, -cA <= (A, -A if _>_ c

one derives from (4.25) and (4.26)

lim sup (A, -cA) <- lim sup p_ (A, -A <= F(-).
As lim. F(-1) 0, it follows that lira sup. (A, -cA) 0 for each
fixed c > 0. (4.19) follows then from (4.23) or (4.24) and (3.9). The
proof is completed by an application of Lemma 1.
For the case 1 a 2 it seems much harder to get explicit results. We

have seen in the proofs of Theorems 2 and 3 that it is useful to know the
conditional distribution of S(,_.) given S(,_.) -B and the distribution
of Sn,(O). These will be considered in the next lemmas and Theorem 4.

LEMMA 7. Let

F,(x) sin (a/2) f0 t-"/(1 - t)- dr.

If O < a < 2, then for any c, d > O and x >- 0

lim f dF,(x d-) dF,(x(1 - C - Xl) -1)
J0

(4.27) dF,(x(1 + c - x)-)

f dF.(x(1 + c -- x_)-) F.(x(1 + c - x)-)

exists and is independent of d. If this limit is denoted by L,(x; c), then for
1 o 2, L,(x; c) is a proper distribution function giving probability 1 to
[0, ), while for 0 < o <- 1, L,(x; c) 0 for all x.

Proof. Put in (4.27)

XI Ul d, x u(1 - c + Xi--i i 2, k

y u+i(1 -- c -- Xk).
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One has then

y-- Uk+l(1 W c) u,+l xk

(4.28) u+l(1 + c) + u+l u(1 - c) + u+l uxk_l

(1 + c) v’+ VI+ z+

and the repeated integral in (4.27) represents P{y <- x} if ul, u+l are
independent random variables for each of which

P{ui <= u} F,(u).

Reversing the numbering of the u’s, the repeated integral represents

(4.29) P{ (l + c)(ul + ulu2 + + ulu2 uk) + dul u+ <= x}.

Assume now 1 2.

E log us
sin (-o/2r) fo

Then

log -"2 (1 )-1 dt

sin (va/2) log t(1 - t)-l[t-"- "2-] dt < O,

and (1 + c)(ul - u u: + + u u: u) + dul u+l converges with
probability 1 to a random variable not depending on d as k --, o. The
limit L,(x; c) in (4.27) therefore exists and is the distribution function of this
limiting random variable.

If, however, 0 < a 1, we obtain E log ui > 0 and for a 1, E log u 0.
In both cases one sees

lim inf_ u u u 1 with probability 1

(if a < 1 by the strong law of large numbers, and if a 1 by Theorem 4 u
[5]). Consequently, for a =< 1 the limit in (4.27) equals zero for every
c=>0, d>0.
Let (2.3) be satisfied with 0 < a < 2. The distribution of Sr(._) is then

determined by the following two functions:

G,(x; A, c) P{ (x + c)A <= S(,_ < -cA}

U,(x; A, c) P{A < St(A,-cA) <= (1 + x)A}.

G and H are monotonic in x and bounded. Hence we can find a sequence
A , A < and bounded monotonic increasing functions G,(x; c) and
H,(x; c) such that

(4.30) lim. G,(x; A c) G,(x; c),

(4.31) lim._. H,(x; A c) H,(x; c).
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It is not hard to see that G.(x; c) and H.(x; c) have to be continuous, using
the definitions of G and H, (4.6), and the fact that F(x) is continuous.

LEMMA 8. If (2.3), (4.1), (4.30), and (4.31) are satisfied with 0 < < 2,
then

(4.32) G(x; c) _,o V(,)(x; c) + gL,(x; c),

(4.33) H.(x; c) oU)(x; c) - hi.(x; c),

where

G(,) (x; c)

f dF,(x c-) f dF,(x(1 -t- c -t- x)-) dF,(x(1 + c + x_)-’)

F(x(1 + c -t- x)-)

f dF,,(xl) f dF.(x2(1 + c + Xl) -1) dF.(x2k+(1 + c W x,k)-)

F,(x(1 -t- c - X2k.t_l) -1)

and

H) (x; c)

f dF,(x) f dF,(x(1 + c -t- x)-) dF,(x(1 -t- c + x_)-)

F,(x(1 -t- c -t- X2k) -1)

f dF,(x C-1) dF,(x2(1 -t- c -t- Xl) -1) dF,(x2+(1 -t- c "t- x2)-)

E.(x(1 -t- c - x2+1)-).

Proof. We shall prove (4.32). Practically the same proof applies to
(4.33). Let

s(A,-cA) the first index s > n(A) for which S < -cA.

Note that s(A, -cA) m(-cA) only if the upper boundary is reached

and

G(.)(x; c) F.(xc-) f dF.(x)F.(x(1 -t- c + x)-)

H(.)(x; c) F.(x) dF.(x c-)F.(x(1 + c -t- x)-).
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before the lower boundary, i.e., if S(,_) S() > A. We have then

G.(x; A. c) P{-(x + c) <- S(_) < -cA}

Plr(A, -cA) n(A) < m(-cA) s(A, -cA) and
-(x + c)A <= S,(,_) < -cA}

(4.34)
P{-(x + c)A <= S(_) < -cA}

P{ (x -4- c) <- S.(,_) < -cA}

+ P{r(A,-cA) m(-cA) < n(A) < s(A,-cA) and
--(x + c)A <- S(.,_,) < A}.

By (4.6)
limP{-(x + c)A <= S(_.) < -cA} F,(xc-),

and similarly

limP{-(x -4- c)A <= S,(.,_.) < cA} [ dF,(x)Fa(x(1 4- c -t-- x)-l).
A-- ,o

The last term, for A A-can be written as

dG,(x A, c) A(1 -4- c -4- x) <= A}dP S + (I++ X2

PI-S.(-.(++)) A(1 -4- c -4- x.) <= xAl
and tends as j -+ to

f dG.(x ;c) dF.(x(1 2f_ _lt_ x)-l)Fa(x(1 2f_ c 2f_ x2)-).c

Combining these results one sees from (4.34) by letting A -+ through the
values A ., that

Ga(x;c,) Fa(xc_,-1) f dF.(x)F.(x(1 -4- c + x)-)

"- fo dG,(x ;c) f0 dF,,(xe(1 "4- c -1- x)-l)r,(x(1 -t- c -t- xe)-).

Iterating this equation one obtains

G.(x;c) G(.)(x;c) 4- f dG.(x ;c> f dF.(x(i -4-c A-x>->
k---O

(4.35)

fo dF.(x2(1 -t- c A- x2-) F.(x(1 A- c A- x.)-).

Since F.(x) decreases as x decreases, it follows from the definition that
G(.> (x; c) >= 0 (this is also obvious from the interpretations (4.28) and
(4.29)). Hence, letting N -+ + in (4.35) and using Lemma 7 one gets
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G,(x; c) G(,k) (x; c) +
k--0

dG,(xl c)L,(x; c),

This proves (4.32) with g 0 if a __< 1, and if 1 < c < 2 with

(4.36) g f dG,(xl ;c) xlim G,(x; c).

(Since G, was already known to be bounded, the proof shows at the same
time that

(x; c)

converges and that g is finite, so that (4.32) makes sense.)
Notice that g and h may still depend on the sequence/A}. That this is

not so will be proved in Lemma 10.
Let us consider again the quantities p_b(A) probability of reaching -b

before any partial sum exceeds A.
It seems reasonable that p_b(A) has a limit if A, b -- , such that bA-1 --, y

and that this limit is continuous in y. Since the proof of this fact is slightly
tedious and not enlightening, we do not reproduce it, but rather compute the
value of this limit.

LEMMA 9. Let (2.2), (2.3), and (4.1) be satisfied with 1 < a < 2, and let
p_(A) p.(y) if A, b-- such that bA--, y(1 y)- (0 < y < 1).
Then

w-" 1 w "n- dw.

Proof. Analogous to (4.23)one has for 0 < y < 1

po(A) )-1 (1 po(yA) )-1 + E {numbe of indices/ with
n(yA) < k < n(A) for which S 01

(1 po(yA))- + dP{Sn(a) <- tA} p-ta((1 t)A) (1 po(A)) -1.

Multiplying by 1 po(A) and using (3.8) and (4.6) one gets as A --
1 y"- -t- sin (a/2) f (t Y)-a]2 a/2o-1y p,t) dt,

or

sin (ra/2)
[t-p,(t)](t y)-" dr.
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This is an integral equation of Abel’s type [2] for t-lpa(t).
the standard lines gives the lemma (cf. [2], pp. 8-10).

LEMMA 10.

(4.37)

and

(4.38)

exist, and

(4.39)

(4.40)

Solving it along

If (2.3) and (4.1) are satisfied with 0 < < 2, then

lim G,(x; A, c) G,(x; c)

lim Ha(x; A, c) Ha(x; c)

Ga(x; c) -oG)(x; c) q- gLa(x; c),

Ha(x; c) ’d-o H(a)(x; c) q- hLa(x; c),

where g and h for 1 < a < 2 are determined by

g+h=l(4.41)

and

1.--ca-l-- f dG,,(xl ;c)f. pa(x2) dF,,(x2(c Xl) -1)
(4.42)

ca-1 dHa(xl c) p,(x ) dF,(x.(1 + xl)-1).

For O <= 1, g h O. Furthermore, if1 a < 2

(4.43) g lim P{ Sr(,-) < -cA}, h lim P{ Sr(,_) > A}.

Proof. Let {A j} be any sequence such that (4.30) and (4.31) are satisfied
for some G, and Ha. For 0 < a =< 1 it was proved in Lemma 8 that (4.39)
and (4.40) have to be satisfied withg h 0. If1 2, then

limP{S(.,_) < -cAj} limGa(x; c) g

(cf. (4.36)), while similarly

lim._, P{ S(.,_.) > A} h.
Hence

g+h=l.
In addition, for x >__ 0

One can also prove that G, must satisfy the equation

p,(x) (1 y)"-p,(y(1 q- Y)-D dG,(y(1 x)-, x(1 x)-D.

This of course can be used to determine G, instead of (4.41) and (4.42). The quantities
in (4.41) and (4.42), however, have interesting probability interpretations and will
be computed in a subsequent paper.
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lim.P{Sr(A.-cA) <-cAt and Sn,(O) <= xA}

Jo dG,(xl ;c)Fa(x(c -t- xl)-).

Hence if _p(A, -cA) has the same meaning as in (4.22), then

lim (A, --cAt) . d<(x; c) p,(x) dF,(x(c + x)-).

Even though Lemma 9 was proved with the help of assumption (2.2), it is
easily seen that the above expression remains valid without (2.2); compare
also footnote 2. Similarly

lim (A, -eAi) dH(; e) p(e-) dP((1 + )-t).

Insgead of (4.2), we obgain from (4.2a) and (4.24)

lim A 1 p0(A) - limi A}- 1 po(cA) -
limi (Ai, -cAi)AI-"(1 po(Ai))-

limi (Ai, -cA)A-"(1 po(cAi))-.
By using (3.8) this reduces to (4.42). Clearly (4.39) (4.42) determine
g and h uniquely, so that g and h cannot depend on the particular sequence
Ai}, and (4.37), (4.38), (4.43) must hold.

THEOREM 4. If (2.2), (2.3), and (4.1) are satisfied with 1. < < 2, then

(4.44) lim A-"(1 po(A, -cA))- (1 )C(, Q)

where

Consequently

(4.46) lim P{N(A, -cA) <- A"-I(1 p_)C(a, Q)(I)x} 1 e-.
Proof. By Lemma 10

lim_p(A, -cA)

is given by (4.45). (4.44) follows now from (4.23) and (3.8), while (4.46)
follows from Lemma 1.

Remarlc. The solutions for G, and H, have recently been obtained by
R. M. Blumenthal and R. K. Getoor and independently by H. Widom and
will be discussed together with their applications to Toeplitz forms in a sub-
sequent paper. The explicit expression for 1 _p in Theorem 4 turns out to
be (c/(c + 1)) "-1.
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