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The Glois groups of class field tower form chain of finite groups
--(n). "()- denotesG, G, such that G is abelian and Gn G,+/,+,, where u+

the n derived group of G+. The class field tower and the chain of groups
(n).terminate fter n steps if c+ (1). We shll consider the case where 11

G are p-groups. It is known [5] that the chain terminates if G is cyclic, or
if p 2 nd G has type (2, 2). Olg Tussky (see Magnus [4]) posed the
problem of determining whether such chain of p-groups must always termi-
nate. N. It5 [3] gve negative nswer to this question by constructing an
infinite chain of p-groups stisfying the bove conditions with G of type
(p, p, p) nd p 2. The question of the existence or nonexistence of infinite
chains with G generated by two elements or with p 2 remained open.
The min result of this pper is the following theorem.

THEOREM 1. Suppose p 2, and let G be a noncyclic abelian p-group.
Then there exists an infinite chain of p-groups G G such that

.( n).-’(’)- and t+ (1>.G G, G G,+/(+,

A weaker result is obtained if p 2.

THEOiEM 2. Suppose G is an abelian 2-group which contains a subgroup
having one of the types (22, 23), (22, 22, 2), (22, 2, 2, 2), or (2, 2, 2, 2, 2). Then
there exists an infinite chain of 2-groups G1, G,... such that GI " G,
Gn = Gn+i/ nJrl and +i (1).

As we noted above, the chain G, G2, terminates if G1 is cyclic, or if
p 2 andG has type (2, 2). The remaining cases not covered by Theorem 2
are undecided. The proof of Theorem 2 is similar to that of Theorem 1 and
will not be given here. Full details can be found in the author’s thesis [2].
A second question posed by Olga Taussky [6] can be stated as follows. Can

a bound on the derived length of a p-group H be determined from the type of
H/H(1)? Such a bound exists if H/H(1) is cyclic or of type (2, 2). W. Magnus
[4] showed that there is no bound if H/H() has type (3, 3, 3). A complete
answer to this question for p 2, and a partial answer for p 2, is given
by the next theorem.

THEOiEM 3. Suppose H is a p-group and G H/H(1). The derived length
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of H cannot be determined from the type of G if G satisfies the hypothesis of either
Theorem 1 or Theorem 2.

Theorem 3 follows immediately from the observation (see the proof of
Lemma 1) that G1 G,JG(1) in the chains of Theorems 1 and 2. Thus there
is an infinite chain G1, G, with Gn/G) H/Hm for every n, and
G(nn-l) # (1).
Our first lemma reduces the proof of Theorem 1 o the case where G has

type (p, p). We then give an explicit construction of the required chain
G, G, with G of type (p, p). This construction proceeds as follows.
We first introduce an infinite matrix group which we denote by A1. The de-
rived series of factor groups of A are studied in detail. Then, for each n,
we let G be a certain finite factor group of A. It follows from our discus-
sion of A that the chain G, G, has the required properties.
The following notation will be used: (x, y) xy x-y-; (X, Y) is the group

generated by the set of all (x, y) for x X and y Y; (x, y,..., z) is the
group generated by x, y, z; H() is the n derived group of the group H;
R is the ring consisting of all expressions u q- vx/p for u, v integers and p a
fixed odd prime; P is the ideal of R generated by x/p; I and 0 are, respec-
tively, the 2 X 2 identity and zero matrices.

LEMMA 1. Suppose G, G, is an infinite chain of p-groups suzh that
G is abelian of type (p, p) G,, G,+/ ,+1, and t,+ {1}. Let K be a non-
cyclic abelian p-group. Then there exists an infinite chain of p-groups

-"(’)- and x+ (1).K K= such that KI _. K, K, _. K,+/,,+

Proof. Write K as K S X T where S has two independent generators,
say S (u, v). We will construct an infinite chain of p-groups &, S=,

(n).-()- and + (1}. The lemma will thensuch that & S, Sn Sn+I/,+,,
follow if we let K S T.

(n) (1) /[(n e //_(1)Observe that Gn/G() (Gn+/G,+I)/(,+/,+) +/,+; thus
G,/G) ._ el for every n. It follows from the Burnside Basis Theorem [7,
page 111] that G, can be generated by two elements. Let G (a, b}, and,
recurively, let an+, b,+ be coset representatives in Gn+ of the images of

-(n).a,, b, under the isomorphism G, Gn+l/(Jn+. Then Gn (an, bn) for
every n. Let S be the subgroup of Gn X S which is generated by ua, and
vb,. Then S(t) G(t) for every -> 1, and hence + (1). The mapping

.(n). b, <-+ bn+ n+ clearly induces an isomorphismU U Y <’--> Y an an+l n+
"S( ,).between S and S,+/ ,+. This completes the proof.

The group A
Let A be the group generated by the two matrices

a (lo 1p) and b (p 01).
Denote by As the set of all x e A1 such that x Is has elements in P (i.e.,
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x I2 0.(P)). It is clear that A is a subgroup of A1, and that
A1 D A2 D .... It follows from the next lemma that A is even normal
in A1.2
LEMMA 2. (A, A) A +.

Proof. LetxeAndyeA. Then

x- I 0e (P’) nd y I 0 (P).
Also,

xyx y I xy yx x-y-[(x- [)(y- I) (y- I)(x- I)]x-y-.
Therefore - -xyx y I O:(P’+). Thatis, (x,y) eAn+.
LEMMA 3. If x, y e A and if x y O P’), then xy

Proof. It follows from x y 0 (P) that xy-1 I O (P’); hence
xy A
We will need the following relations on commutators of elements of A.

I (_ m" (1 + mnp+t+ + mnp+t+ mnp.+t+p
a bnp m2pSW2t+l p mnpS+t+l ].

pq +q+
(II) (a (a b") a-e’+ modulo Ae+e+ea+4.

(III) (b, (a, b) b+++ modulo Ae+e+e+4.
The first of these reltions cn be verified by direct computation. The next
two follow from computation of the commutators on the left nd an pplica-
tion of Lemm 3.

LEMMA 4. Every element of At has the form

(l /x
where x, y, u, v are integers.

Proof. The generators of A1 have this form, and it is clearly preserved
under multiplication.
We wish to determine the derived series of certain factor groupsA/A, of A1.

As a first step, we determine the structure of An/An+I for arbitrary n.

LEMMA 5. (1) [Ak+" A2k+2] p and A+I (A+ a’, b"} if O.
mpk--(2) [A A+] p and A ((a b), A:+) if 1, and m is any

integer prime to p.

The author wishes to thank Professor Hans Zassenhaus for calling his attention
to the group A1 and for suggesting the present short proof of Lemma 2.
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Proof of (1). Observe that a and b* are in A+. Also,

abt, (1-t-stp+tpV/p sPI/P)
belongs to A+ if, and only if, both of s and are divisible by p. The result
will follow if we show that A+ (A:+, a b}. Suppose x e A+ where

w l+z

Then u and z a,re divisible by p+ since they are integers (Lemma 4) divisible
by pp. Write v spp and w tpp, where s and are integers.
It follows from Lemma 3 that a’bx- e A+.

Proof of (2). Suppose x e A where

w 1+

Then and v are ingegers multiplied by p (Lemma 4) hence ghey belong
P+. By hypoghesis, and z are in P. hus =mp and z p for
some ingegers m and e. Observe ghag z, as an elemen of A, musg have
degerminang 1. Ig follows ghag m + 0 (p). herefore, by (I) and

mk-1Lemma g, (a b)z A+z his shows ghag A is generated by A+t
and elemengs of ghe form (a , b). We see from (I) and Lemma
here are precisely p such elemengs which are disgineg modulo A+. There-
fore A/A+ is eyelie of order p. his eompleges ghe proof.
The nexg lemma is raher geehnieal. I will be used in ghe proof of Lemma 7.

L 6. Le N be a ormal brop of A. If NA+ A for ome
ed ome r 1, hee NA+ A for ever m r.

Proof. We proceed by induegion on m (where we need only consider
m 2), and suppose gha NA+_ A. The lemma will follow if we show
hag NA+ A+_, for ghen NA+ N.NA+ NA+_ A.

Observe ghag NA+_ A+_ since NA+= A and m N 2. Sup-
pose + m 2 2. Then, by Lemma g, c (a-, b) belongs
NA+_ hence c zg for some z e N, g e A+_. Since N is normal in

A and (A, A+_t) A+, we have (, zg) (, z) modulo A+ where
(, z) e N. Similarly, (b, zg) (b, z) modulo A+ where (b,
now follows from (II), (III), and Lemma ,
hence A+_t

If + m 2 2 + 1, hen a e A+_. Therefore a zg for some
z e N, e A+_. Then (zg, b) (z, b) modulo A+, where (z, b)
By Lemma g, A+_t A+ {A+, (z, b)}; hence A+_t NA+.
This eompleges ghe proof.



LEMMA 7. Let g(m) m 2[m/2] -t- 1, where [m/2] denotes the greatest
integer in m/2. Then AI)A Ag(,,) if

_
g(m).

Proof. If m 2], then, by Lemma 4, A./A.,+I is cyclic. Therefore
A(m1) (Au, A+I) A2u+ Aa(). Observe that (a-, b), a and
b belong to A. It follows from (II) and (III) that A contains elements
congruent to a- and b modulo A+ A+. Thus, by mma 5,

A+ since 2. Therefore, by Lemma 6, A)A A() for2mT2 P
every g(m).

pk
Ifm 2k + 1, thenA) (A,A) A A(). Also. a and

b belong to A, so (a, b) eA). We see from (I) that (a b s con-
p2k (1)gruent to (a b) modulo A+a. Thus, by mma 5, A A+a A+2.

It follows from mma 6 that A()A
_
A+2 A() for every

_
g(m).

This completes the proof.
t g(m) m 2[m/2] 1, and define a new function f on the positive

integers by
f(1) 2 g(1), f(n) g(f(n- 1)) if n > 1.

Then the next lemma is just a restatement of mma 7.

LEM 8. If f(n), then (A1/A) () Af(,)/A.

We can now prove Theorem 1.
Proof of Theorem 1. t G, A/Af(,) for n 1, 2,.... Then, by

Lemma 5, G A/A2 is a noncyclic group of order p2, and consequently
()G is abelian of type (p, p). By mma 8, + Af(,)/A(,+); hence

-(n)_G,+I/,+ (A1/Af(,+I))/(Af(,)/Af(,+I)) : A/Af(,) G,. Also,

+ Af(n)/Af(,+)

since f(n) < f(n + 1). Theorem 1 now follows from mma 1.

Remark 1. We state without proof two further propeies of the p-groups
A/An. These properties are easy consequences of (I), (II), (III) and
Lemmas 5 and 6.

1. The lower central series of A1/A, i A/A, A2/A, Aa/A, ....
2. The upper central series of A/A, is A,_/A,, An_2/A,, A,_/A,, ....
Remark 2. P. Hall [1, Theorem 2.57] showed that if p 2 and if G is a

p-group of minimal order for which G(") (1}, then ]G (the order of G)
satisfies

(2

The upper bound of this inequality was reded by N. It5 [3] to p’’. An
additional refinement can be obtained from the group A. To do this, pick a
subgroup H of A such that A]()+ H A]() and [A]()’H] p. Then
H is normal in A. If G A/H, then G(’) A]()/H (1). It follows

p2n+1-from mma 5 and the definition of f(n) that G has order Therefore
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the upper bound in Hall’s inequality can be reduced to p.+I_1. It is interest-
ing to note that this is precisely the upper bound found by Hall in the special
case p 2.
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