GENERALIZATIONS OF A THEOREM OF N. BLACKBURN ON p-GROUPS

BY
Charles R. Hobby

Let G be a finite p-group, and let $G=G_{1} \supset G_{2} \supset \cdots$ be the descending central series of G. N. Blackburn [1] has shown that if G_{2} can be generated by two elements, then G_{2} is a metacyclic group of class at most two. We generalize this theorem in two ways. We first show (Theorem 1) that Blackburn's theorem holds if " G_{2} " is replaced by $\Psi(G)$ where $\Psi(G)$ is any one of a large class of characteristic subgroups of G. Secondly, we show (Theorem 2) that if G_{n} can be generated by n elements then the Frattini subgroup of G_{n} coincides with the subgroup generated by the $p^{\text {th }}$ powers of elements of G_{n}. If p is odd, this result for $n=2$ is equivalent to Blackburn's theorem. An application of Theorem 2 to the problem of bounding the length of the derived series of a p-group is given in Remark 2.

All groups considered are finite p-groups. We use the following notation: $P(G)$ is the subgroup generated by the $p^{\text {th }}$ powers of elements of $G ; \Phi(G)$ is the Frattini subgroup of G; $G^{(k)}$ is the $k^{\text {th }}$ derived group of G; $G=G_{1} \supseteq G_{2} \supseteq \cdots$ is the descending central series of $G ; 1 \subseteq Z_{1} \subseteq Z_{2} \subseteq \cdots$ is the ascending central series of $G ;|G|$ is the order of $G ;(h, k)=h^{-1} k^{-1} h k$; (H, K) is the subgroup generated by the set of all (h, k) for $h \in H$ and $k \in K$. The group G is said to be metacyclic if G contains a cyclic normal subgroup N such that G / N is cyclic.

We denote by Ψ a rule which assigns a unique subgroup $\Psi(G)$ to every p-group G. We consider only those rules for which
(1) $\Psi(G)$ is a characteristic subgroup of G,
(2) $\Psi(G) \subseteq \Phi(G)$, and
(3) $\Psi(G / N)=\Psi(G) / N$ whenever $N \subseteq \Psi(G)$ and N is normal in G. For example, one could let $\Psi(G)=G_{n}$ for any $n \geqq 2$.

We shall need two lemmas.
Lemma 1. If $|N| \leqq p^{n}$ and N is normal in G, then $N \subseteq Z_{n}$.
Proof. This result is well known for $n=1$, and the general case follows by an easy induction.

The next lemma follows from the fact that the automorphism group of a cyclic group is abelian.

Lemma 2. Every cyclic normal subgroup of G is centralized by $G^{(1)}$.
Theorem 1. If $\Psi(G)$ can be generated by two elements, then $\Psi(G)$ is meta-

Received May 11, 1960.
cyclic and $\left(G^{(1)}, \Psi(G)^{(1)}\right)=\langle 1\rangle$. In particular, $\Psi(G)$ has class at most 2 if $\Psi(G) \subseteq G^{(1)}$.

Remark 1. If $\Psi(G)$ is not contained in $G^{(1)}$, then the class of $\Psi(G)$ is not bounded. For example, if $p \neq 2$ let G be the group generated by x, y with defining relations

$$
x^{p^{2 k}}=y^{p^{2 k+1}}=1, \quad(y, x)=y^{p}
$$

If $p=2$, let $G=\langle x, y\rangle$ with defining relations

$$
x^{23 k-1}=y^{2^{3 k+1}}=1, \quad(y, x)=y^{2}
$$

If we let $\Psi(G)$ be $\Phi(G)$, then $\Psi(G)$ is generated by x^{p} and y^{p}, yet $\Psi(G)$ has class k.

Proof of Theorem 1. ${ }^{1} \quad$ We need only show that $\Psi(G)$ is metacyclic, for then $\Psi(G)^{(1)}$ is a cyclic normal subgroup of G, and the theorem follows from Lemma 2.

Let $\Psi=\Psi(G)$. Then Ψ is metacyclic if and only if $\Psi / \Phi\left(\Psi_{2}\right) \Psi_{3}$ is metacyclic [2, Theorem 2.3]. Thus we may assume $\Phi\left(\Psi_{2}\right) \Psi_{3}=\langle 1\rangle$, and hence $\Psi^{(1)}$ has order p and is contained in the center of G. If Ψ is not metacyclic, and if $p \neq 2$, then $\left[2\right.$, Theorem 2.6] we have $P(\Psi) \nsubseteq \Psi^{(1)}$. Therefore, if $\bar{G}=G / P(\Psi), \Psi(\bar{G})$ is a non-abelian group of order p^{3}. This is impossible [3, Remark 1], so Ψ is metacyclic if $p \neq 2$.

We suppose henceforth that $p=2, \Psi$ is not metacyclic, and G is a group of minimal order for which the theorem is false. Let $\Psi=\left\langle a_{1}, b_{1}\right\rangle$ and $c=\left(a_{1}, b_{1}\right)$. Then $\Psi^{(1)}=\langle c\rangle$ is a group of order 2 in the center of G. It is easy to see that the group H generated by the fourth powers of elements of Ψ is normal in G and has trivial intersection with $\Psi^{(1)}$. It follows from the minimality of G that $H=\langle 1\rangle$. Thus $a_{1}^{4}=b_{1}^{4}=1$. Also,

$$
\Phi(\Psi)=\left\langle a_{1}^{2}\right\rangle \times\left\langle b_{1}^{2}\right\rangle \times\langle c\rangle=Z_{1}(\Psi)
$$

Let \bar{a} be a nontrivial element of the center of $G / Z_{1}(\Psi)$ which is contained in $\Psi\left(G / Z_{1}(\Psi)\right)=\Psi(G) / Z_{1}(\Psi)$, and let a be a coset representative of \bar{a}. Then $(g, a) \in Z_{1}(\Psi)$ for every $g \in G$. Also, since $Z_{1}(\Psi)$ has exponent $2,\left(g, a^{2}\right)=1$. Thus $a^{2} \in Z_{1}(G)$, and it follows from the minimality of G that $a^{2}=1$.

It is clear that we can pick $b \in \Psi(G)$ such that $\Psi(G)=\langle a, b\rangle$, where $(a, b)=c$ and $a^{2}=b^{4}=1$. Then $Z_{1}(\Psi)=\left\langle b^{2}\right\rangle \times\langle c\rangle$, and $(G,\langle a\rangle) \subseteq Z_{1}(\Psi)$. It follows that if $g \in G$ then

$$
a^{g}=a b^{2 s} c^{t}, \quad \text { and } \quad b^{g}=a^{u} b^{1+2 v} c^{w}
$$

for appropriate integers s, t, u, v, w. A computation shows that

$$
\begin{equation*}
a^{g^{2}}=a c^{u s}, \quad \text { and } \quad b^{g^{2}} \equiv b^{1+2 u s} \bmod \langle c\rangle \tag{I}
\end{equation*}
$$

[^0]In a 2-group $P(G)=\Phi(G)$, so there exist elements $x_{1}, \cdots, x_{n} \in G$ such that $b=x_{1}^{2} x_{2}^{2} \cdots x_{n}^{2} . \quad$ By (I),

$$
a^{x_{i}^{2}}=a c^{\alpha_{i}}, \quad b^{x_{i}^{2}} \equiv b^{1+2 \alpha_{i}} \quad \bmod \langle c\rangle
$$

for some α_{i}. Hence

$$
a^{b}=a c^{\alpha_{1}+\cdots+\alpha_{n}}, \quad b^{b} \equiv b^{1+2\left(\alpha_{1}+\cdots+\alpha_{n}\right)} \quad \bmod \langle c\rangle .
$$

It follows that $a^{b}=a$, a contradiction.
Theorem 2. If G_{n} can be generated by n elements, then $P\left(G_{n}\right)=\Phi\left(G_{n}\right)$.
Proof. It suffices to show that $P\left(G_{n}\right) \supseteq G_{n}^{(1)}$; hence we assume $P\left(G_{n}\right)=\langle 1\rangle$ and show that $G_{n}^{(1)}=\langle 1\rangle$. Also, we need only consider the case where $G_{n}^{(1)}$ has order p. But then G_{n} is normal in G and has order at most p^{n+1}; hence there exists a subgroup N of G_{n} such that $G_{n}: N=p$ and N is normal in G, where $|N| \leqq p^{n}$. It follows from Lemma 1 that $N \subseteq Z_{n}$. Thus N is contained in the center of G_{n}, and we see that G_{n} is abelian. This completes the proof.

Remark 2. It is known [2, Theorem 2.6] that, for odd primes p, a p-group H with two generators is metacyclic if and only if $P(H)=\Phi(H)$. It follows from Theorem 2 for $n=2$ and p odd that G_{2} is metacyclic, and consequently (Lemma 2) is of class 2. Thus Theorem 2 is a natural generalization of Blackburn's result.

If p is odd, it follows from $P\left(G_{n}\right)=\Phi\left(G_{n}\right)$ that $G_{n}^{(k)}=\langle 1\rangle$ if G_{n} has exponent $p^{k}[4$, Theorem 3]. This result, together with Theorem 2, gives a bound on the derived length of G in terms of n and the exponent of G_{n} whenever G_{n} can be generated by n elements.

References

1. N. Blackburn, On prime-power groups in which the derived group has two generators, Proc. Cambridge Philos. Soc., vol. 53 (1957), pp. 19-27.
2. ——, On prime-power groups with two generators, Proc. Cambridge Philos. Soc., vol. 54 (1958), pp. 327-337.
3. C. Hobsy, The Frattini subgroup of a p-group, Pacific J. Math., vol. 10 (1960), pp. 209-212.
4. ——, A characteristic subgroup of a p-group, Pacific J. Math., vol. 10 (1960), pp. 853-858.

California Institute of Technology Pasadena, California

[^0]: ${ }^{1}$ I am indebted to the referee for simplifying this proof.

