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1. Introduction

Let G be a group with center Z and commutator subgroup C, and suppose
that G

___
Z

___
C. If H is a complete (nil H for all n > 0) nilpotent group

of class 2 that contains G and no proper complete subgroup of H contains G,
then we say that H is a completion of G. We prove (Theorem 3.2) that there
exists a completion of G if and only if {g G’ng C for some n > 01

_
Z.

If C is torsion free, then there exists a completion of K of G such that the
commutator subgroup of K is torsion free and the center of K is the abelian
completion of Z. Moreover, any other such completion of G is isomorphic to
K (Theorem 3.3). These results generalize the corresponding results of Baer
for abelian groups, and also Vinogradov’s result for torsion free G.
The author originally had a long transfinite proof of Theorem 2.1, and all

other results were restricted by the hypothesis that G contains no elements
of order 2. This hypothesis on G has been removed, and the author wishes
to thank Reinhold Baer for suggesting the elegant proof of Theorem 2.1.

Notation. N and A will always denote additive abelian groups with ele-
ments 0, a, b, and 0, , fl, /, respectively. F will denote the group of
all factor mappings of A A into N. Thus f e F if and only if f: A A - N
and for all c, A

f(a, O) f( O, ) O,
and

f(a, + ") + f(, ") f(a + , ") + f(a, ).

Each f e F determines a central extension G of N by A, where G A N
and, for all (a, a) and (/3, b) in G,

(a, a) -4- (, b) (a + , f(a,/3) -4- a -t- b).

The mappings of f, g F are equivalent if there exists t’A -- N such that for
all a, e A,

f(c, B) g(a, ) t(a + ) + t(a) + t().

In this case the mapping (a, a) e G(A, N, f) upon (a, a + t(a)) in
G(A, N, g) is an isomorphism.
G will always denote an additive group with commutator group C and center

Z, and we shall always assume that G Z

___
C. Suppose that N is a sub-

group of G between Z and C. Let A G/N, and let r be the natural homo-
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morphism of G onto A. Choose a mapping r of A into G such that r(0) 0
and r(a)r a for all a e A. For a, e define that

f(a,) -r(a + ) + r(a) + r().

Then f F, and the mapping of r(a) a upon (a, a), where a N, is an
isomorphism of G onto G(zX, N, f). We shall frequently make use of this
representation of G.

2. The relationship between bilinear mapping and the
commutator function

Let G Z

_
N

_
C, A G/N, and let F be the group of all factor

mappings of A A into N. If a, b e G, then the commutator function
[a, b] -a b + a + b is bilinear and skew-symmetric. Conversely, if
the commutator function of a group H is bilinear, then H is nilpotent and of
class2 (see[4], I,p. 100 for proofs ForA a + NandB b + Nin
G/N, define that g(A, B) [a, b]. Then since N

_
Z, g is a bilinear and

skew-symmetric mapping of A A into N. Let P (Q) bethe set of all sym-
metric (skew-symmetric) mappings in F. Clearly P and Q are subgroups of F.

LEMMA 2.1. If N contains no elements o order 2, then Q is the set of all
bilinear slcew-symmetric mappings of A A into N.

Proq(. It is easy to verify that each bilinear mapping of A A into N is a
factor mapping. Thus it suffices to show that each f in Q is also bilinear. Let
G(zX, N, f) be the central extension of N by A that is determined by f. Then

[(, 0), (, o)1 -((, 0) + (, 0)) + (, 0) + (, 0)

-(( + o, O) + (O,f(, a))) + (a + g, O) + (O,f(o,))

(0, -f(/, a) + f(a, )) (0, 2f(a, )).

Therefore 2f is bilinear, and hence

2f(,, + ) 2f(,, ) + 2f(, )

2(f(a, ) +. f(a, .)).

Thus, because N contains no elements of order 2,

f(, + ) f(, ) + f(, ,).

We note the equivalence of the following properties of N. (a) N 2N,
and N contains no elements of order 2. (b) The mapping a --. 2a is an auto-
morphism of N. Suppose that N satisfies (a). For f e F and a,/ e zX define
that

p(c, ) 1/2(f(o, ) + f(, o))

q(a, ) 1/2(f(a, ) f(, a) ).

It is easy to show that p and q belong to F. Clearly p is symmetric, q is
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skew-symmetric, and f p - q. Also this representation of f as the sum of a
symmetric and a skew-symmetric function is unique. Therefore F P @ Q.
All bilinear mappings of A A into N belong to F, and each such f is equiva-
lent to its skew-symmetric part ([3], Theorem 5.2).

THEOREM 2.1. If the mapping a -- 2a is an automorphism of N, then the
following are equivalent:

(i) N is a direct summand of every abelian extension of N by A.
(iX) Each central extension of N by A is determined by a bilinear skew-

symmetric factor mapping.

Proof. LetD lf eF:f(a, fl) -t(a + fl) - t(a) - t() for all
a, e A, where is a mapping of A into N}. Then F/D is the group of all non-
equivalent central extensions of N by A. Clearly (i) is equivalent to D P,
and by Lemma 2.1, (iX) is satisfied if and only if each coset in F/D has a
nonvoidintersectionwithQ. IfD P, thenF P Q D Q, and
hence Q is a set of representatives for F/D. Thus (i) implies (iX). Con-
versely if D P, then P contains a nonzero X F/D, and hence X n Q is
the null set. Therefore (iX) implies (i).
Note that if N contains no elements of order 2, and if f and g are skew-

symmetric mappings from the same coset in F/D, thenf g is both symmetric
and skew-symmetric,, and hence f g. Thus the bilinear skew-symmetric
factor mappings mentioned in (iX) are uniquely determined by the particular
central extensions of N by A. Hence if a -. 2a is an automorphism of N and
(i) is satisfied, then there exists a 1-1 correspondence between Q and the
set of all nonequivalent central extensions of N by A. If N is complete
(nN N for all n > 0), then it is a direct summand of every abelian exten-
sion. Thus if N is complete and contains no elements of order 2, then (i)
and (iX) are satisfied for any abelian group A.
Next suppose that A is a free abelian group, and let A be an abelian exten-

sion of N by A. There exists a homomorphism r of A onto A with kernel N.
Let S be a free set of generators of A, and for each a in S let r(a) be an ele-
ment in A such that r(a)r a. There exists an extension of r to a homo-
morphism of A into A. Thus A splits over N, and hence N is a direct sum-
mand of A. Therefore if A is free abelian, then (i) and (iX) are satisfied for
all abelian groups N such that a --. 2a is an automorphism of N.

In Lemma 3.4 it is shown that if N is complete and A is torsion free, then
(iX) is satisfied. Also if 25 A and (iX) is satisfied, then (i) is satisfied.
For let f A A -* N be a bilinear skew-symmetric factor mapping that
determines an abelian extension of N by A; thenf(a, ) f(, a) -f(a, ),
and hence 0 2f(a, ) f(2a, ) for all a and in N. Thus, since 25 A,
f(a,/) 0, and hence N is a direct summand of A.

3. Completions of nilpotent groups of class 2
Each abelian group A is contained in a complete abelian group, and each

such extension of A contains at least one complete subgroup M that is minimal



COMPLETIONS OF GROUPS OF CLASS 2 15

among those containing A. Between any two such minimal complete abelian
groups containing A there exists an isomorphism that induces the identity on
A (see [4], I for proofs). M is the abelian completion of A, and we shall denote
it by A*. As before let G be a central extension of N by A. A minimal com-
plete nilpotent group of class 2 that contains G will be called a completion of G.
Example I at the end of this paper shows that an abelian group may have a
non-abelian completion.

LEMMA 3.1. If S is a subgroup of G, then d(S) g e G:ng S for some
n > 0} is a subgroup of G that contains S. If G is complete, then so is d(S),
and if S is normal, then so is d( S). We shall call d( S) the d-hull of S in G.

Proof. Clearly d(S) is closed with respect to inverses. If a, b d(S), then
there exist positive integers m and n such that ma, nb S, and since the com-
mutator function is bilinear, mn[b, a] [nb, ma] S n C

_
S Z. By a

simple induction argument

u(a + b) ua - ub + (u(u 1)/2)[b, a]

for all positive integers u. In particular, for u 2mn,

2mn(a b) 2mna 2mnb - mn(2mn 1)[b, a]

2n(ma) + 2m(nb) + (2mn- 1)[nb, ma]

which belongs to S. Thus a z7 b d(S), and hence d(S) is a subgroup of G.
If G is complete, and ng s for g in G and s in d(S), then there exists m > 0

such that mng ms S. Thus g e d(S) nd it follows that d(S) is complete.
Suppose that S is normal and that s d(S) and g e G. There exists n > 0
suchthtns e S, and hencen(- g- s g) -g - ns- g S. Thus
-g s g d(S), and therefore d(S) is normal.

COROLLARY I. T g e G’ng O.for some n > OI is a normal subgroup of
G, called the torsion subgroup of G.

COROLLARY II. If H is a completion of G, then H is the d-hull of G in H.

COROLLARY III. If C is torsion free, then the d-hull d(A of any abelian
subgroup A of G is abelian, and if A Z, then d(A)

_
Z. In particular,

T

_
Z, and G/Z is torsion free.

Proof. If ma -t- nb= nb+ ma for a, b in G and positive integers m and n,
thena+ b b-- a. For mn[a, b] [ma, nb] O, and thus [a, b] O.
Ifng e Z for g eGandn > O, thenng -t- a a -t- ng for all a e G. Thus
g -t- a a -- g, and hence g Z. Therefore G/Z is torsion free, and the re-
mainder of this corollary is now obvious.

LEMMA 3.2. Let H be a complete nilpotent group of class 2. a The torsion
subgroup of H belongs to the center Z(H) of H. (b The commutator subgroup
C(H) of H is complete. (c) If G H, then the d-hull of C in G is contained
in Z, where C in the commutator subgroup of G and Z is the center of G.
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Proof. (a) is a special case of a theorem by (ernikov that the periodic
part of a complete ZA-group is contained in the center (see [4], II, p. 234 for
a proof). In particular, a finite nilpotent group of class 2 has a completion
if and only if it is abelian. If a, b e H, then for each n > 0 there exists an
a’ e H such that ha’ a. Thus n[a’, b] [na’, b] [a, b], and it follows that
C(H) is complete. Finally suppose that a e G H and that na C for some
n > O. C C(H)

_
Z(H), and C(H) is complete. Thusna ncfor

some c C(H), and hence n(a c) O. Therefore a c and c belong to
Z(H), and hence a Z(H) n G

___
Z. Thus the d-hull of C is contained in Z.

In Theorem 4.1 we show that Z(H) is also complete.
A mapping g of A / into N will be called a (*)-mapping if
(a) g is bilinear and skew-symmetric, and
(b) g(a, ) 0 for all a A.

Note that if N contains no elements of order 2, then (a) implies (b). If G is a
central extension of N by A GIN and N contains no elements of order 2,
then without loss of generality G G(A, N, f) H(A, N*, f), and N* con-
tains no elements of order 2. Thus by Theorem 2.1, H is determined by a
(*)-mapping g of A A into N*. If g can be extended to a (*)-mapping
k of A* A* into N*, then K(A*, N*, lc) is a complete nilpotent group of
class 2 that contains an isomorphic copy of G. This is the method that we
use to obtain a completion of G. But we do not wish to impose any restric-
tions on N,,and hence we cannot use Theorem 2.1.

LEMMA 3.3. Suppose that is torsion free, N N* is complete, and g is a
(*)-mapping of A A into N.

(a) There exists an extension of g to a (*)-mapping g* of A* 5" into N.
(b) If N is torsion free, then g* is unique.

Proof. (b) Suppose that h and/ are bilinear mappings of A* X A* into N
that induceg on A A. If a, A*, then there existsn > 0 such that
na, ne /, and hence n2h(a, ) h(na, n) g(na, n) lc(no, n)
nk(a, fl). Thus since N is torsion free, h(a, ) k(a, ).

(a) We may assume that A A*. Thus there exists a/i e A*,/i e A, such
thatp/ieAfor some primepandn/i eAforn 1, 2, ...,p 1. Let A
be the subgroup of A* that is generated by A and/i. It suffices to show that
g can be extended to a (*)-mapping of A A into N, for then an application
of Zorn’s lemma completes the proof. The elements a, , , in A have
unique representations

For each a e A define r(a) g(p/i, a). Then r is a homomorphism of A into
N, and r(p/i) g(p/i, p/t) 0. There exists an extension of r to a homo-
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morphism r* of A* into N such that r*(8) 0. For the mapping of a’ A’
upon r(a) is an extension of r to a homomorphism of A’ into N, and since N
is complete, this can be extended to a homomorphism of A* into N. For each
a e A*, define p(a) (1/p)a. Since A* is a rational vector space, p is an
automorphism of A*. Let r’ r*p. Then r’ is a homomorphism of A* into
N and pr’(a) pr*p(a) pr*((1/p)a) r*(a) for all a in A*. Now we
extend g to a mapping g’ of A’ X A’ into N by defining that for all a A and all
a’, ’ a’

g’(8, a) r’(a) -a’(a,
and

g’(a’, fl’) g’(a - mS, + nS) g(a, fl) + mg’(8, fl) -t- ng’(a, 8).

It follows that

g’ (’, a’) g’ (fl + n8, a - mS)

g(fl, a) + ng’(8, a) -t- mg’(, 8)

g(a, ) ng’(a, 8) mg’(8, )

--g’(a’,’),

a’ g’g’(’, ( + m, + m)

g(a, a) + rag’(8, a) -t- rag’(a, )

0 + mg’(, a) mg’(, a) O.

Thus it remains to be shown that g is bilinear. For fl, e A,

g’(, + ) r’( + ) r’() + r’() g’(, ) + g’(, ),

and for a, fit, ’ e 5’,

g’(.’, ’ + ’) g’(. + m, + + (n + r)).

Ifn+r < p, then

g’(a’, ’ + ’) g(a, + ) + mg’(, + ) + (n + r)gt(a, )

g(a, ) + mg’(, ) + rig’(a, ) + g(a, )

g’(.’, ’) + g’(’, ).

IfnWr pWq, thensince

g’(, p) r’(p) r*p(p) r*() 0
and

g(., p) -g(p, a) -r(.) -r*(a) -pr(a) pg’(a, ),
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we hve

g’(a’, ’ + 7’) g’(a -+- mS, fl -t- 5’ + p + q)

g(, + 7 + P) + mg’(, + + p) + qg’(a, 8)

g(a, + 7) + rag’(8, + 7) + mg’(8, pS) + g(a, pS)

+ qg’(a, )

g(a, + 7) + mg’(, + 7) + (P + q)g’(a, )

,(.,, ,) + e’(.’, ,).

By symmetry, g’(a’ + ’, 7’) g’(a’, 7’) + g’(fl’, 7’).

LEMMA 3.4. Suppose that G G( A, N, f), where A is torsion free and N is
complete. Let C* be a completion of C in N where 0 x C is the commutator sub-
group of G. Then there exists a (*)-mapng g of A x A into C* such that g is
equivalent to f, and 2g(a, ) f(a, ) f(, a) for all a, e 5.

Proof. For a, e A, let h(a, fl) f(a, ) f(, a). Since h is the com-
mutator mapping of A GIN into C, it follows that h is a (*)-mapping. By
Lemm 3.3 there exists an extension of h to a (*)-mapping h* of A* X A*
into C*. Define that g(a, ) 2h*(a/2, fl/2) for all a, in A. By a simple
computation it follows that g is a (*)-mapping of a x A into C*.

2h*(a/2, /2) 2h*(/2, a/2) 4h*(a/2, /2)

h*(, ) h(, )= f(, ) f(, )
for all a, fl A. Thus

f(a, fl) g(a, fl) f(a, ) 2h*(a/2, fl/2)

f(, a) 2h*(fl/2, a/2)

f(,-) g(, ).

Therefore f g is symmetric, and hence determines an abelian extension of
N by A. Since N is complete, it is a direct summand of any such extension.
Thusf(a, fl) g(a, fl) -t(a + fl) + t(a) +.t.() for somet’A N.
Therefore g is equivalent to f.
THEOREM 3.1. If G Z N C and A GIN is torsion free, then there

exists a completion K of G such that K is a central extension of N* by A* and
C(K) C*.

Proof. We may assume without loss of generality that

G (a, Y,/) g(a, N*, f).

Let C* be a completion of C in N*. By Lemma 3.4, there exists a (*)-
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mapping g of A A into C* such that g is equivalent to f. Thus there exists
a mapping of A into N such that for all a, in A,

f(a,/) g(a, ) t(a + ) - t(a) + t().
The mapping a of (a, a) e H upon (a, a -t- t(a) is an isomorphism of H onto
/-(A, N*, g). In particular, Ga 0 {(a, a -t- t(a))’a N and
By Lemma 3.3, there exists an extension of g to a (*)-mapping g* of 4"
into C*.

0

___
(4, N*, g)

_
K(A*, N*, g*).

If (a, a) e K, then it follows by induction that n(a, a) (na, na) for all
n > 0. Thus, since 4" and N*.are complete, K is a complete central extension
of N* by 4*.

Consider (a, a) and (, b) in G. [(a, a), (t, b)] (0, f(a, ) f(, a))
and [(a, a), (t, b)] [(a, a -- t(a)), (/, b-t- t(t))] (t, 2g(a, t)). By
Lemma 3.4, 2g(a, ) f(a, ) -f(, a), and hence it follows that

C C(K). Also if (a, a) and (fl, b) belong to K, then

[(a, a), (/, b)] (0, 2g*(a,/))

which belong too C*. ThusO C_ C(K)

_
C*, and by Lemma

3.2, C(K) is complete. Therefore C(K)= C*.
Finally suppose that Q is a complete subgroup of K that contains G.

0 N 0

_
Q. If (, a) Q and n is a positive integer, then there exists

a (,b) eQsuchthat (O,a) n(,b) (n,nb). Thusn/ O, andso
t . It follows that (t, b) e Q, and hence {a e N*’(O, a) e Q} is a complete
subgroup of N* that contains N. Therefore N*

_
Q. If (, b) e Q and

n is a positive integer, then there exists a (,, c) e Q such that

(, b) n(,, c) (n,, nc).

In particular, n, . Thus {/ e 4*" (, b) e Q for some b e N*} is a com-
plete subgroup of A* that contains 4, and hence it must equal A*. Since

N* Q, it follows that 4" 0 Q, and hence that Q K.

COROLLARY. If Z is its own d-hull in G, then there exists a completion K of
G that is a central extension of Z* by (G/Z)*, C(K) C*, and Z(K) Z*.

Proof. Since Z is its own d-hull, A G/Z is torsion free. If we let N Z
in the theorem, then we get a completion K of G such that K is a central
extension of Z* by 4" and C(K) C*. Now we must show that Z(K)
Z*. As in the proof of the theorem, ( /(5, Z*, g)

_
K(A*, Z*, g*),

where g and g* are (*)-mappings. If (a, a) Z(K), then g*(a, )
g*(, a) -g*(a, fl) for all t 4", and hence 0 2g*(a, ) g*(a, 2) for
all fle A*. But since 24* A*, g*(a, ) 0 for all e 4*. Now there exists
n > 0 such that na e 4, and hence 0 ng* (a, ) g*(ha, ) g(na, ) for
all fl e 4. But then f(na, ) t(na - ) - t(na) + t() f(, na) for
all fle 4, and hence (ha, O) is in the center of G(4, Z,f), and so na 0. Thus



220 ’AUL CONRAD

since fl G/Z is torsion free, a O, andhence (a,a) (0, a) e0 Z*.
Therefore Z(K)

_
0 Z*, and clearly Z(K)

_
0 Z*.

THEOREM 3.2. If G
__
Z C, then there exists a completion of G if and only

if the d-hull of C in G is contained in Z.

Proof. If Z N, where N is the d-hull of C in G, then GIN is torsion free,
and hence by Theorem 3.2 there exists a completion of G. The converse is
part (c) of Lemma 3.2.

THEOREM 3.3. If C is torsion free, then there exists a completion K of G such
that

(**) Z(K) Z* and C(K) is torsion free.

If H is any other such completion of G, then H ._ K.

Proof. By Corollary III of Lemma 3.1, Z is its own d-hull in G. Thus by
the Corollary to Theorem 3.1 there exists a completion of G that satisfies (**).
Suppose that H is a completion of G that satisfies (**). By Lemma 3.2,
C(H) is complete. If a, b H, then by Corollary II of Lemmu 3.1, there
exists an n 0 such that na, nb G. Thus n[a, b] [na, rib] C. It follows
that C(H) C*, and then by Corollary III of Lemma 3.1, H/Z(H) is torsion
free. IfzZandhH, then there exists ann > 0 such thatnhG, and
hence n[h, z] [nh, z] 0. Thus since C(H) is torsion free, h + z z + h.
It follows that Z(H) [a G Z, and hence

H G+Z(H)_, G _G
Z(H) Z(H) G Z(H) Z"

Thus G(A, Z,f)

_
H’(A, Z(H),f) H(A", Z(H), h), where A" H/Z(H),

A (G -t- Z(H))/Z(H), and h induces f. Also A A*; for
S(A*, Z(H), h)

_
G and it is complete, where A* is a completion of A in A.

Now suppose that H and K are two completions of G that satisfy (**).
Then

U’(A, Z(H), f) H(A*, Z(H), h)
G(A, Z, f)

g’(A, z(g), f)

_
K(A*, Z(K), k)

where h and / induce f. By Lemma 3.4 there exists a (*)-mapping ] of
A* A* into C(H) that is equivalent to h and a (*)-mapping ] of A* A*

into C(K) that is equivalent to k. Moreover, 2f(a, ) h(a, ) h(, a)
and 2/(a,/3) /(a,/3) l(/3, a) for all a, A*. For a, A* there exists
n 2m > 0suchthatma, m/eA. Thus

n2f(a, fl) 4f(ma, mfl) 2(h(ma, m) h(m, mR))

2(f(ma, m) f(m, mR)) 2(/(ma, m) k(m, mR))

4fc(ma, m) fc(a, ).
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Now suppose that there exists an isomorphism a of Z(H) onto Z(K) such
that C(H)a C(K) and ca c for all c e C. Then n2(f(a, )a)=
(n2f(a, ) )a nf(a, ) nfi(a, ) because nf(a, ) C. Thus since
C(K) is torsion free, ](a, )a /(a, fl) for all a, cA*. Define
that (a, a) (a, aa) for all (a, a) H. Then r is an isomorphism of H
onto K. Thus to complete the proof we need the following

LEMMA. Suppose that C and Z are abelian groups, C

_
Z, C is torsion free,

Z’ and Ztt are abelian completions of Z, and C and C are completions of C in Z
and Z respectively. Then there exists an isomorphism a of Z onto Z such
that C’a C’ and ca c for all c C.

Proof. Z’ C’ @ T’ @ D’ and Z C @ T @ Dt, where T’ and T
are the torsion groups of Z and Z’ respectively, because all these groups are
complete and C and C" are torsion free. Since Z and Zt are completions
of Z, they are isomorphic, and hence T --- T". Since C’ and C" are comple-
tions of C, there exists an isomorphism of C’ onto C" that induces the identity
on C. Thus it suffices to show that the rational vector spaces D and
have the same dimension. Let B be the basis for D’, and for each b e B
pick a positive integer n n(b) such that nb Z. Then nb x - y
where x e C’, y e T", and e Dt. Let / be the set of all such elements
Suppose (by way of contradiction) that cl, ..., ck are distinct dependent
elements of/. Then there exist integers hi, not all zero, such that ni c 0.
For each c there exist a b B and an integer mi > 0 such that mi b
x -t- y -t- c, where xi Ct’ andy T. n m b ni(x - y). Thus
since the y are of finite order and C’ C*, there exists an integer n > 0 such
that Ennimib E nn x e C. But sinceD’nC O, _, nn mi b =0,
contradiction. It follows that the rank of D _-< rank of D’, and by symmetry
the rank of D" -< rank of D’.

COROLLARY (Vinogradov). If G is torsion free, then there exists a unique
(to within an isomorphism that induces the identity on G) torsion free completion
of G.

Proof. It follows from the theorem that there exists a completion K of G
such that K is a central extension of Z* by (G/Z)*. But since Z* and (G/Z)*
are torsion free, K is torsion free. If H and K are torsion free completions of
G, then Z(H) and Z(K) are completions of Z, and C(H) and C(K) are
completions of C in Z(H) and Z(K). There exists a unique isomorphism
a of Z(H) onto Z(K) such that za z for all z Z. In particular, ca c
for all c e C. Thus C(H)a C(K) because C(H) (C(K)) is the unique
completion of C in Z(H) (Z(K)). Therefore the isomorphism of H onto
K (in the proof of the theorem) induces the identity on G.

Remarks. Our results include the classical case where G is abelian. For
in this case C is torsion free, and hence by Theorem 3.3 there exists a unique
abelian completion of G. We pose the following questions. Is the comple,
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tion in the Corollary of Theorem 3.1 unique? Can we impose further condi-
tions on the completion in Theorem 3.1 so that it is unique?

4. Structure of complete nilpotent groups of class 2
As usual G Z

_
C. The ioin of an ascending chain of subgroups of G

each of which has C for its center is a subgroup of G with center C. Thus
there exist maximal subgroups of G with center C.

LEMMA 4.1. Suppose that Z C S for some complete subgroup S of Z.
If G’ is a maximal subgroup of G with center C, then G G’ S, and con:
versely.

Proof. G’/C n Z/C C. Thus since Z/C is complete, there exists a sub-
group H of G such thatH G’ and G/C H/C Z/C. S is normal in G
because S

_
Z, and H is normal in G because H

___
C. H n S H n Z n S

C S 0, andH-t- S H q- C q- S H Z G. ThereforeG
H S. If a is in the center of H, thenaeZ C S, andhencea cq-s
withceCandseS. Thusa- c seHS 0, andhenceaeC. Thus
C is the center of H, and hence H G’.

Conversely, if G G" S, then since S is abelian, C

_
G’, and hence

C_Z(G’). ButZ Z(G’) S, andsoZ(G’) C. If K is a subgroup
of G that properly contains G’, then K S 0. Thus Z(K) properly con-
tains C, a contradiction. Therefore G" is a maximal subgroup of G with
center C.

THEOREM 4.1. Suppose that G is complete, and let G’ be a maximal subgroup
of G with center C. Then C and Z are complete, Z C S, G/Z is torsion
free, G G’ S, and G is complete. Moreover Gt/C is torsion free and
G’ --- G’(At, C, f), where A G’/C and f is a (*)-mapping of A’ X A’ into C
such that {2f(a, )", e At} generates C. G’ is torsion free if and only if C is
torsion free.

Proof. By Lemma 3.2, C is complete. Let D be the d-hull of C in G.
By Lemma 3.1, D is complete, and by Lemma 3.2, D

_
Z. Thus by Lemma

3.4 we may assume that G G(A, D, g), where A G/D and g is a (*)-map-
ping of A A into D. If (a, a) e Z, then g(, ) g(, a) -g(a, ), and
hence 0 2g(a, /) g(a, 2f) for all eA. But since A is com-
plete, g(a, ) 0 for all/ e A. Thus

Z {(, a) e G’g(, ) 0 for all e A}.

Ifn(,a) (n,na) eZfor (,a) eGandn> 0, then0 g(n,)
ng(a, ) g(a, n) for all e A, and hence g(a, ) 0 for all f e A. There-
fore (a, a) e Z, and it follows that G/Z is torsion free and that Z is complete.
Since Cis complete, Z C$ S, and by Lemma 4.1, G Gt@ S. In
particular, G is complete. If x e G’ and nx C for some n > 0, then since C
is complete, nx nc for someceC. Thusn(x c) O, and hence by
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Lemma 3.2, x c e C, and thus x e C. Therefore A G’/C is torsion free,
and the remainder of the theorem follows at once from Lemma 3.4.
Suppose that G is complete and torsion free. Then by the last theorem

Z and C are complete. Let N be any complete subgroup of Z that contains
C, and let 4 GIN. Then N and / are rational vector spaces. Thus if f
is the (*)-mapping of A A into N that determines G, then sf(a )
f(sa, ) f(a, s) for all rational numbers s. For nf((m/n)a,
f(n(m/n)o, ) f(m, ) mf(, ), and hence f((m/n), )
(m/n)f(a, ).
Next let

a xl a81 W"" xmasm and

be elements of 4, where al, ax, is

f(, ) xi yf(a ).
Thus f can be represented by a skew-symmetric matrix with entries f(ai, )
from N, and the dimension of this matrix is equal to the rank of A.
Now suppose that we are given complete torsion free abelian groups N and

A. Fix a basis for 4. Then by Theorem 2.1 and the above remarks there
exists a 1-1 correspondence between the set of all nonequivalent central
extensions of N by 4 and the set of all skew-symmetric matrices, over N with
dimension equal to the rank of A.

Finally suppose that G is complete and that C is torsion free. Then by
Theorem 4.1, G G ( S, where G is a torsion free complete subgroup of G
with center C and S is an abelian subgroup of G. Thus G is determined by
the rational vector spaces G’/C and C, and a skew-symmetric matrix M over
C with dimension equal to the rank of Gr/C. Since C is the center of G, it
follows that M has no zero rows. Thus we have a complete structure theorem
for G.
The most important property of ,a complete abelian group is that it is

direct summand of every containing abelian group. The following is a slight
generalization of this result.

If G is complete and contained in a group H such that for some abelian sUb-
group Q of H, H G - Q and [G, Q] O, then G is a direct summand of H.

For it follows that Z

_
Z(H), and by Theorem 4.1, Z is complete. Thus

Z(H) Z @ D for some subgroup D of Z(H). Clearly D G 0, and D
and G are normal subgroups of H. Each h in H has a representation
h g + q, wheregGandqQ, andq z d, wherezeZanddeDbe-
causeQ

_
Z(H). Thush g -z) deGD, andhenceH G@D.

It seems that a better result should be obtainable by using Theorem 2.1
and Theorem 4.1, but the author has been unsuccessful with this problem.
We conclude by giving the following two examples.
Example I. An abelian group with a non-abelian completion. Let I be the
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group of integers, A I I, and N I/[3] the group of integers modulo
3. For (al, a.) and (bl, b2) in A define

g((al a2) (b b)) (a, a) ( 0 l(b
--10]\b.]

[3] alb- a2bl+ [3].

It follows that g is a (*)-mapping of A A into N, and hence G(A, N, g) is
a central extension of 0 N by A. It is easy to show that

Z [(a, a) e G’a (3a, 3b) for some a, b e I},

and hence Z is not its own d-hull in G. By Lemma 3.3 there exists an exten-
sion of g to a (*)-mapping g* of A* A* into N*.

G(A, N, g)

_
H( A, g*, g)

_
K(A*, N*, g*),

K is a completion of G, and it is fairly easy to show that no proper complete
subgroup of K contains Z.
Example II. A group H such that H

_
Z(H)

_
C(H), Z(H)

_
T(H),

and the d-hull of C(H) in H is not contained in Z(H). Let H I I G,
where G is the group in the last example. For (x, x) and (y, y) in I I
define that

f x x y y 3(x y2- x y_).

Thenfis a (*)-mapping of (I I) (I I) into [3], and hence determines
a mapping into the subgroup [3] 0 0 of the center of G. Define that

x x. x x x) + yl y y y y)

(x -t- y, x. - y, x -t- Ya - 3(xl y. x y),

x - y, x + y -t- xa y x ya - [3]).

Then H is a group, 6(0, 0, 1, 0, 0) (0, 0, 6, 0, 0) e C(H) and (0, 0, 1, 0, 0)
Z(H). Also H is nilpotent and of class 2. Thus by Corollary I of Theorem
3.1 there does not exist a completion of H.
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