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1. Introduction

In a recent paper [1] under the same title the authors have studied the
transformation groups (G, X) in which X is the n-sphere S with the usual
differentiable structure, and G is a compact connected Lie group acting dif-
ferentiably on X with principal orbits of dimension n-3 and with a stationary
point a. It is proved that if a is an isolated singular orbit, then n 4, G is
effectively a circle group, and the orbit space X/G is a simply connected 3-
manifold. If a is a singular orbit but not isolated, then the orbit space X/G
is a simply connected 3-manifold with boundary such that the boundary is
topologically a 2-sphere and that an orbit is singular or principal according
as it is on the boundary or not. As a continuation of our previous study, we
shall prove the following.

THEOaEM A. Let G be a compact connected Lie group acting differentiably on
the n-sphere with the usual differentiable structure. If principal orbits are
(n-3)-dimensional, and if there is a stationary point, then there, exists a second
stationary point.

In fact as a consequence of our method of proof we obtain the following
sharper result.

THeOreM B. Under the hypothesis of Theorem A, the set of stationary points
of G is a sphere of dimension zero, one, two, or three. In case it is a 2-sphere
it is all of B, and principal orbits are (n-3)-spheres.

In case n 3, G acts trivially on the 3-sphere so that Theorems A and B
become obvious.

In case n 4, principal orbits are l-dimensional and then are circles.
Therefore G is effectively a circle group, and hence the existence of a second
stationary point is assured [1]; also Theorem B follows.

Excluding these two rather simple cases, we shall assume n > 4. Through-
out this paper, X denotes the n-sphere S with the usual differentiable strut-
ture, and G denotes a compact connected Lie group acting differentiably on X
with principal orbits of dimension n-3 and with a stationary point a.

As usual, we let X* X/G be the orbit space, and p the natural proieetion
of X onto X*. For every x e X, we let G be the isotropy subgroup of G at
x and G* the identity component of G. Let U be the union of all principal
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orbits and B the union of all singular orbits. Then U and B arc invariant
and disjoined, and hence U* p(U) and B* p(B) are disjoined. Since
n > 4, X U u B (that means, there is no exceptional orbit of dimension
n-3), B* is topologically a 2-sphere, and X* is a simply connected 3-manifold
with B* as its boundary [2].

2. Singular orbits
Let G(y) be a singular orbit, and consider G and G* as functions of B

into the space of compact subsets of G. If Gx is continuous at y, we call
G(y) a regular singular orbit. If G is not continuous at y but G* is, we call
G(y) an exceptional singular orbit. If G* is not continuous at y, weeall G(y)
a singular singular orbit. Intuitively speaking all nearby singular orbits of a
regular singular orbit are of the same type, all nearby singular orbits of an
exceptional singular orbit are of the same dimension but not of the same type,
and all nearby singular orbits of a singular singular orbit are not of the same
dimension.

Let, B be the union of all regular singular orbits, B the union of all ex-
ceptional singular orbits, and B, the union of all singular singular orbits.
Then

B B,.uBuB,

B* B* B*and Br, B, B, are invariant and mutually disioint. Denote by
the respective mages of B, B, B, under p. We shall see later that B s
empty (Lemma 1) and that B ether zs empty or consists of a finzte number of
arcs joining two stationary points (Lemmas 1 and 7). Vunous types of B
may be seen from the following examples.

Let R denote the euclidean /c-space, and let S= Ru be the one-
point-compactification of R. Then the rotation group SO(]c) hs a natural
action on S leving fixed. Since the unitury 2-space muy be regurded
as R, the unitary group U(2) has a natural action on S R4o leaving

fixed.
(1) Let G SO() act on X S+: such thut whenever geG, xeR,

and x R, g(x, x) (gx, x), where is an integer >__ 2. Then all singu-
lar orbits are stationary points so that B* is empty.

(2) (due to Bredon) Let G S0(3) act on X S such that whenever
geG, xeR, and xeR, g(x,x) (gx,gx). Then B* consists of two
stationary points.

(3) (due to Bredon) Let G U(2). Then the center C of G is circle
group, and G/C my be identified with S0(3). Let G act on X S such
that whenever g G, XI R4, and x2 R3, g(xl, x2) (gxi, (gC)x2). Then
B,* is an arc with two stationary points as its end points.

(4) Let G SO(() X SO(v) act on X S+’+1 such that whenever
gl SO((), 92 e SO(v), xl R, x R’, and x3eR, (gl, g2)(x, x., x3)
(gl Xl, gz x, x,), where ( and are integers >- 2. Then B,* consists of two
arcs with two stationary points as their common end points.
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(5) Let G SO() X SO(v) X SO() act on X S+’+ such that
whenever g SO(), g2 e SO(v), g SO(), x_ e R, x R’, and xaeR:,
(g, g2 ,.ga)(x, x2, x) (g x, g x2, ga xa), where , , are integers 2.
Then B: consists of three arcs with two stationary points as their common
end points.

3. Lemmas on B*
LEMMA 1. B is empty.
(ii) Every y* e B* has a compact neighborhood" C* which may be re-

garded as a crcular ds of center y such that there are a finite number of radii
y z ...,y z such that,, a’ y z u uy z if O) and
that for every i , k, all the orbits on y z y are g the samecPe.In case that y* and z are of the same type, 2, and all the orbits B
y z u y z are of the same type.

Proof. Let y* B* and let y p-l(y.). Let K be a closed cell which is a
slice at y and on which G acts orthogonally, and let S be the boundary of K.
Then G(K)/G K/G is topologically a cone of vertex y* over G(S)/G
S/G, and for every x* G(S)/G, all the orbits on the line segment y’x*
except y* are of the same type.

Denote by r the dimension of G(y). Then S is an (n-r-1)-sphere and
(G, S) is a transformation group with principal orbits of dinsion n-r-3.
Since B* is topologically a 2-sphere [2], B* G(S)/G is not empty, and every
G-orbit in B n S is of dimension < n-r-3. Using an argument similar to
one in [4], we can easily show that S/G is a closed 2-cell and there is no ex-

$

ceptional G-orbt. Since there is no exceptional G-orbit of dimension n-3
$ $

[2] every G-orbit in K is actually a G-orbt. Hence for any z K, G G
implies G G, and consequently y* B. Ths proves that B is empty.

It is clear that B* G(S)/G is the boundary of the closed 2-cell G(S)/G
S/G. Since G(K)/G is topologically a cone of vertex y* over G(S)/G
such that for every x* e G(S)/G, all the orbits on the line segment y’x* except
y* are of the same type, we may regard C* B* G(K)/G as a circular disk
of center y* such that for every z* B* G(S)/G, all the orbits on the radius
y’z* except y* are of the same type.
Suppose that all the orbits on B* a G(S)/G are of the same type. Then
B y* y* y*a G(K)/G and is equal to if and only if is of lower dimension
than orbits in B* G( S) /G.
Suppose that not all the orbits on B* G(S)/G are of the same type.

Then B a G(S)/G is not empty but finite. Let B a G(S)/G
{z_ -;., z}.. ThenB C is equal to the union of the radii y z y z.

and z are of the same type, then p-(z) S is a stationary point of
G, but not all the G-orbits on B a S are stationary points. By the main
theorem of [4], B a G(S)/G consists of two elements, namely z and z

an p-(z) n S is also a stationary point of G. Hence all the orbits on
B, C* y z u y z are of the same type.
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As direct consequences of Lemma 1, we have

LEMMA 2. B* is a finite subpolyhedron of B* of dimension <= 1.

LEMMA 3. If a Bs, then B8 is empty, B Br consists of all the stationary
points of G, and all principal orbits are (n- 3)-spheres.

From now on we shall assume that

LEMMA 4. There is no simple closed curve in B* not containing a p(a)

Proof. Suppose that there isQ. simple closed curve in B* not containing
a*. Then there is a component of B* B* B* whose closure Q-- does
not contain a*. It is clear that all the orbits in Q* are of the same type.
Denote by the dimension of orbits in Q*. Then there is a (tq-2)-cycle
z mod 2 in p-l(-) which is not bounding in B. (Notice that z is the funda-
mental cycle mod 2 of (p-l(-), p-(Q* Q*) ).) Hence there is an
(n- t- 3)-cycle z’ mod 2 in U X B linked with z.

Since the 3-manifold U* has trivial homotopy groups [1], it is contractible
so that the transformation group (G, U) has a cross-section M on which G
is constant. M is homeomorphic to U* and then is also contractible. There-
fore for any a e M there is a map h:M )< [0, 1] -- M such that whenever
x e M, h(x, O) x and h(x, 1) a. Hence the map/:U X [0,1]Ude-
fined by

f(gx, t) gh(x, t), g G, x M, and e [0, 1],

deforms U into the orbit G(a). Using this deformation if necessary, we may
assume that z’ is in G(a).

Since G acts differentiably on X and leaves a fixed, there is an invariant
compact neighborhood Y of a which is a closed n-cell contained in
X- p-(--). Let aeY. Then z’ is in Y and is bounding in

Y c Z p-(-),
contrary to our assumption that z’ links with z. This proves Lemma 4.

Let Y be a closed n-cell which is a compact neighborhood of a and on
which G acts orthogonally, and let Z be the boundary of Y. Let Y* p(Y),
Z* p(Z), and A* B*- (Y*- Z*). Since a’eBb*, it follows from
Lemm 1 that B* n Y* my be regarded as a circular disk of center a* and
boundary B* n Z* A* Z*.

LEMMA 5. p-Z(A,) has trivial homology groups rood 2.

Proof. Suppose that there is a nonbounding k-cycle z mod 2 in p-Z(A.),
where z is reduced if k 0. Then z is linked with an (n-lc- 1 )-cycle z’ mod 2
in Z p-(A*). Denote by [z’[ the support of z’. Then P(IZ’l) is a
compact subset of X* A*. Hence there is a triangulation K of X* such
that (i) no 3-simplex of K hs ll of its vertices in B*, (ii) B* u Z* is the poly-
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hedron of some subcomplex of K, and (iii) the star Q* of A* in the barycentric
subdivision K’ of K does not meet P(IZ’l). Let P* be the star of B* in K’.
It is not hard to see that B* n Q* is a closed 2-cell containing A* in its in-
terior and that (P*, Q*) is topologically a cylinder over (B*, B* n Q*).

Let E* be the closure of X* P*. Since P* is topologically a cylinder
with B* and P* n E* as its bases, P* n E* is a deformation retract of P* B*
so that E* is a deformation retract of U*. It follows from the contractibility
of U* that E* is contractible, and hence p-l(E,) is topologically the product
of E* and a principal orbit.

Let F* be the closure of P* Q*. Then E* F* is topologically a closed
2-cell. Since both E* and E* F* are contractible, E* a F* is a deformation
retract of E*, so that p-l(E, F*) is a deformation retract of p-l(E,).
Hence p-1(F,) is a deformation retract of p-l(E, u F*).

Since z’ is in p-l(E* t F*), we may as well assume that z’ is in p-(F*).
But p-(F*) c Y c X p-l(A*) and z’ is bounding in Y. It follows that
z’ is bounding in X p-l(A,), contrary to our assumption that z links with z.

LEMMA 6. B* c, A* contains no simple closed curve and is connected.

Proof. The nonexistence of a simple closed curve in B* n A* is a conse-
quence of Lemma 4. By this result and Lemma 2 we may have a connected
subpolyhedron T* of A* such that dim T* -< 1 and that T* contains B* n A*
but does not contain any simple closed curve.

a’b* T*If B* n A* is not connected, there is an arc in which intersects B*
only at its end points a* and b*. The fundamental cycle z mod 2 of
(p-(a*b*), p-(a*t b*)) is clearly a nonbounding cycle of p-(T*). Since
p-(T*) is a deformation retract of p-(A*), z is not bounding in p-(A*),
contrary to Lemma 5.

LEMMA 7. There is a stationary point in p-Z(B* A*) such that A* may
be regarded as a circular disk of center * ( such that for every z* e A* z*,
all the orbits on the radius fl*z* except *

P
* *are of the same type. Hence Be A

is a finite union of radii of A*.
Proof. We first claim that B* n A* is not empty. Suppose that B* a A*

is empty. If so, then all the orbits in A* are of the same type. It follows
from the contractibility of A* that p-l(A,) is topologically the product of
A* and an orbit in A*. By Lemma 5, every orbit in A* has trivial homology
groups mod 2 and then is a stationary point. Hence, by Lemma 3 with an
interior point of.p-l(A*) in place of a, *Be is empty, contrary to our assump-
tion that a* e B*.

Since B* A* is a connected subpolyhedron of A* of dimension -< 1 and
it contains no simple closed curve (Lemmas 2 and 6), p (Be A*) is a de-
formation retract of p-l(A*). It follows from Lemma 5 that p- (Be a A
has trivial homology groups mod 2.

If all the orbits on Be n A are of the same type, then p-(B* A*) is
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topologically the product of B* n A and an orbit on B, n A Hence every
orbit on B* n A* has trivial homology groups mod 2 and thus is a stationary
point. Since B,* n A* is not empty, it follows from Lemmas 1 and 6 that
B* A*n is either a single stationary point contained in the interior of the
closed 2-cell A* or an arc intersecting the boundary of A* only at its end
points. Let/ be an interior point of p-l(B*, n A*). Then the conclusion of
Lemma 7 follows.

If not all the orbits on B,* n A* are of the same type, then there is some
p- */ e (B, n A such that p(B) is in the interior of A* and that nearby

singular singular orbits of G(B) are of higher dimension than G(B). Since
p-(B n A has trivial homology groups rood 2, on each component of
(B, n A ,*, all the orbits are of the same type. It follows from Lemm8
1 that B,* n A is a finite union of arcs such that each of the arcs has t* and
one point on the boundary of A* as its end points and that any two of the
arcs intersect only at t*.
Now it is clear that G(B) is deformation retract of p-(B* n A*) and

then has trivial homology groups rood 2. Hence G(B) is a stationary
point.

4. Remarks
(1) Theorem A is an immediate consequence of Lemma 7.
(2) In the proof of Lemma 7 we have incidently proved Theorem B.
(3) If X* is a closed 3-cell, we can easily prove lhat G acts linearly on X.
(4) Although Lemma 5 proves only that p-(A*) has trivial homology

groups rood 2, we can see from Lemma 7 that p-(A*) is actually contractible.
(5) As mentioned earlier, our proofs also give

COnOLLARY. Under the hypothesis of Theorem A, B* is either empty or con-
sists of a pair of stationary points and a finite set of arcs joining them.
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