SOLVABLE FACTORIZABLE GROUPS II

ВY

W. R. Scott

Let G = HK where H and K are subgroups of G. A number of authors have given sufficient conditions on H and K that G be solvable. In case Hand K are both Abelian, Itô [1] showed that $G^{(2)} = 1$, i.e., that G is solvable in two steps. It will be proved here that if H is finite Abelian and K finite Hamiltonian, then $G^{(4)} = 1$ (see Corollary 1).

Most of the papers on the subject limit themselves to the case where H and K are both finite. An easy theorem (Theorem 2) permits one to allow either H or K, but not both, to be infinite in a great many of these theorems. In the present case, if H is Abelian and K Hamiltonian, with one of them finite, then $G^{(6)} = 1$. Actually generalizations of the results quoted above are proved here.

Let G be a group with identity element 1. Let $G^{(1)}$ denote the commutator subgroup of G, and let $G^{(n+1)} = G^{(n)(1)}$ for all natural numbers n. Let $H \subset G$ mean that H is a subgroup of G and $H \triangleleft G$ mean that H is a normal subgroup of G. Let Z(G) denote the center of G. If $a, b \in G$, let $[a, b] = aba^{-1}b^{-1}$ and $a^b = bab^{-1}$. If $H \subset G$ and $K \subset G$, then [H, K] means the subgroup generated by all commutators [h, k] with $h \in H$ and $k \in K$. Let o(G) denote the order of G. Let $a \sim b$ mean that a is conjugate to b.

LEMMA. If $a_1, \dots, a_m, b_1, \dots, b_n \in G$, then $[a_1 \dots a_m, b_1 \dots b_n]$ is in the subgroup normally generated by the set $\{[a_i, b_j] \mid 1 \leq i \leq m, 1 \leq j \leq n\}$.

Proof. If $a, b, c \in G$, then

(1) $[a, bc] = [a, b][a, c]^{b}, [ab, c] = [b, c]^{a}[a, c].$

The lemma follows easily by induction.

THEOREM 1. If G = HK is a finite group, H an Abelian subgroup, $o(K^{(1)}) = p$, a prime, and $K^{(1)} \subset Z(K)$, then $G^{(4)} = 1$.

Proof. By a theorem of Itô [2], $[H, K] \triangleleft G$. Hence $L = [H, K]K^{(1)}$ is a normal subgroup of G. Let u generate $K^{(1)}$. Let M be the subgroup normally generated by u, and N the subgroup normally generated by the set $\{[a, u] \mid a \in H\}$. All conjugates of u are obtained by conjugating u by elements of H since $K^{(1)} \subset Z(K)$ and G = HK. But if $h \in H$, then $u^h = [h, u]u \in L$. Hence $L \supset M \supset N$.

We shall show that (i) $G^{(1)} \subset L$, (ii) $G^{(2)} \subset M$, (iii) $G^{(3)} \subset N$, and (iv) $G^{(4)} = 1$.

(i) Every commutator is of the form [ax, by] with $a, b \in H$ and $x, y \in K$. Hence by the lemma, $G^{(1)} \subset L$.

Received December 3, 1959

(ii) Temporarily, let $r, s \in [H, K]$. Then, in order to prove that $[ru^i, su^j] \in M$, it suffices to show that $[r, s] \in M$ since $[r, u] \in N$ by (1) and the fact that $u \in K^{(1)} \subset Z(K)$.

Let a, b ϵ H, x, y ϵ K. There exist c, d, c' ϵ H and z, w, z' ϵ K such that $x^{b} = zc$, $a^{y} = dw$, $(x^{y})^{b} = z'c'$. By (1)

$$\begin{split} &[a, x]^{b} = [a^{b}, x^{b}] = [a, zc] = [a, z]; \\ &[a, x]^{y} = [a^{y}, x^{y}] = [dw, x^{y}] = [w, x^{y}]^{d}[d, x^{y}]; \\ &[a, x]^{by} = ([a, x]^{y})^{b} = [w, x^{y}]^{bd}[d, x^{y}]^{b} = [w, x^{y}]^{bd}[d, z']; \\ &[a, x]^{yb} = [a, z]^{y} = [dw, z^{y}] = [w, z^{y}]^{d}[d, z^{y}]. \end{split}$$

Then

(2)
$$[[a, x], [y^{-1}, b^{-1}]] \sim [a, x]^{by} ([a, x]^{yb})^{-1}$$
$$= [w, x^y]^{bd} [d, z'] [d, z^y]^{-1} ([w, z^y]^d)^{-1}$$

Since $[w, x^y] \in K^{(1)}$ and $[w, z^y] \in K^{(1)}$, to prove that $[[a, x], [y^{-1}, b^{-1}]] \in M$, it suffices to show that $[d, z'][d, z^y]^{-1} \in M$.

Now $x^y = u^r x$ for some integer r. Hence $z'c' = (x^y)^b = (u^r x)^b = (u^r)^b zc$, and $z' = (u^r)^b zc''$ where $c'' \in H$. By (1)

$$[d, z'][d, z^y]^{-1} \equiv [d, z][d, z^y]^{-1} \pmod{M}.$$

If $z^{y} = z$, then the right member of the last congruence is 1; if $z^{y} \neq z$, then for some integer s, the right member equals

$$[d, z][d, zu^{s}]^{-1} = [d, z]([d, u^{s}]^{z})^{-1}[d, z]^{-1} \epsilon M.$$

Therefore, if $a, b \in H$ and $x, y \in K$, then $[[a, x], [y, b]] \in M$. Now $[b, y] = [y, b]^{-1}$. Also

$$[v, w^{-1}] = w^{-1}[w, v]w = (w^{-1}[v, w]w)^{-1},$$

so that if $[v, w] \in M$, also $[v, w^{-1}] \in M$. Therefore, if $a, b \in H$, $x, y \in K$, then $[[a, x], [b, y]] \in M$.

Hence, by the lemma, $G^{(2)} \subset M$.

(iii) Recalling the definition of N and using the lemma on $[aua^{-1}, bub^{-1}]$, we get $G^{(3)} \subset N$.

(iv) Let $a, c \in H, x \in K$. Then xa = by for some $b \in H, y \in K$. Thus by (1),

;

$$[a, u]^{x} = [xa, u][x, u]^{-1} = [by, u] = [b, u]$$
$$[a, u]^{c} = [ca, u][c, u]^{-1} = [ca, u][c, u]^{r}$$

for some natural number r, since G is finite. Hence N is the set of all products of elements of the form [a, u], or alternatively of the form [u, a], $a \in H$.

Now apply (2) with $x = y^{-1} = u$, $u^b = zc = z'c'$, $a^{u^{-1}} = dw$. We may take z = z', c = c'. Then we get

$$[[a, u], [u, b^{-1}]] \sim [d, z][d, z]^{-1}([w, z]^d)^{-1} \sim [w, z]^{-1} = 1 \text{ or } u^d$$

for some integer r. If $[[a, u], [u, b^{-1}]] = 1$ for all $a, b \in H$, then by the lemma, $G^{(4)} = 1$. If there are $a, b \in H$ such that $[[a, u], [u, b^{-1}]] = u'$ with (r, p) = 1, then $u \in G^{(1)}$. If, inductively, $u \in G^{(n)}$, then since [a, u] and $[u, b^{-1}] \in G^{(n)}$ by normality of $G^{(n)}$, $[[a, u], [u, b^{-1}]] \in G^{(n+1)}$, so that $u \in G^{(n+1)}$. But that implies that $u \in G^{(n)}$ for all n, so that G is not solvable.

If q is a prime different from $p, x \in K, y \in K, o(y) = q^i$, and $[x, y] \neq 1$, then $xyx^{-1} = yu^s$ where (s, p) = 1. Hence

$$\mathbf{l} = (xyx^{-1})^{q^{i}} = (yu^{s})^{q^{i}} = y^{q^{i}}u^{sq^{i}} = u^{sq^{i}},$$

a contradiction. Hence $y \in Z(K)$. It follows that any Sylow q-subgroup K_q of K is central in K, if $q \neq p$. Therefore any Sylow p-subgroup $K_p \triangleleft K$. Hence K is nilpotent. By a theorem of Itô [2], G is solvable, a contradiction.

Therefore $\hat{G}^{(4)} = 1$.

COROLLARY 1. If G = HK where H is finite Abelian and K is finite Hamiltonian, then $G^{(4)} = 1$.

Proof. Since K is Hamiltonian, $o(K^{(1)}) = 2$.

DEFINITION. A class C of groups is *hereditary* if it is closed under the taking of subgroups and homomorphic images.

THEOREM 2. Let C be a hereditary class of solvable groups, D a hereditary class of finite groups, such that if L = UV, $U \in C$, $V \in D$, and U finite, then L is solvable. If G = HK with $H \in C$, $K \in D$, then G is solvable.

Proof. The index [G:H] is finite. Hence there is an $N \subset H$ such that $N \triangleleft G$ and G/N is finite. Then G/N = (H/N)(KN/N). Now $H/N \notin C$ and is finite; $KN/N \cong K/(K \sqcap N) \notin D$ and is finite. Hence G/N is solvable. Since $N \notin C$, N is solvable. Therefore G is solvable.

Theorem 2 has many corollaries. Just one example will be given here.

COROLLARY 2. Let G = HK with H nilpotent, K Abelian or Hamiltonian, and H or K finite. Then G is solvable.

Proof. The class C of nilpotent groups is hereditary, as is the class D of Abelian or Hamiltonian groups, and either class remains hereditary if the adjective "finite" is added. The corollary now follows from Theorem 2 and Scott [3, Theorem 1].

THEOREM 3. Let C and D be as in Theorem 2. Suppose further, that there are natural numbers, m, n, such that if $H \in C$ then $H^{(m)} = 1$, and if L = UV with $U \in C$, $V \in D$ and U finite, then $L^{(n)} = 1$. If G = HK with $H \in C$, $K \in D$, then $G^{(m+n)} = 1$.

Proof. Let $N \triangleleft G$, $N \subset H$, and let G/N be finite. Then

$$G/N = (H/N)(KN/N);$$

hence $(G/N)^{(n)} = 1$. Since $N \in C, N^{(m)} = 1$. Hence $G^{(m+n)} = 1$.

COROLLARY 3. If G = HK, H Abelian, $o(K^{(1)}) = p$, a prime, $K^{(1)} \subset Z(K)$, and K finite, then $G^{(5)} = 1$.

Proof. Let C be the class of Abelian groups, and D the class of finite groups which are either Abelian or satisfy the hypotheses that K satisfies. Then C is hereditary with m = 1. Again D is hereditary. By Theorem 1, n = 4. Hence by Theorem 3, $G^{(5)} = 1$.

COROLLARY 4. If G = HK with H Abelian and K finite Hamiltonian, then $G^{(5)} = 1$.

COROLLARY 5. If G = HK with H finite Abelian, $o(K^{(1)})$ prime, and $K^{(1)} \subset Z(K)$, then $G^{(6)} = 1$.

Proof. The proof is similar to the proof of Corollary 3.

COROLLARY 6. If G = HK with H finite Abelian and K Hamiltonian, then $G^{(6)} = 1$.

BIBLIOGRAPHY

- NOBORU ITÔ, Über das Produkt von zwei abelschen Gruppen, Math. Zeitschrift, vol. 62 (1955), pp. 400-401.
- *Remarks on factorizable groups*, Acta Sci. Math. Szeged, vol. 14 (1951), pp. 83-84.
- 3. W. R. SCOTT, Solvable factorizable groups, Illinois J. Math., vol. 1 (1957), pp. 389-394.

UNIVERSITY OF KANSAS LAWRENCE, KANSAS