SOLVABLE FACTORIZABLE GROUPS II

BY

W. R. Scott

Let $G=H K$ where H and K are subgroups of G. A number of authors have given sufficient conditions on H and K that G be solvable. In case H and K are both Abelian, Itô [1] showed that $G^{(2)}=1$, i.e., that G is solvable in two steps. It will be proved here that if H is finite Abelian and K finite Hamiltonian, then $G^{(4)}=1$ (see Corollary 1).

Most of the papers on the subject limit themselves to the case where H and K are both finite. An easy theorem (Theorem 2) permits one to allow either H or K, but not both, to be infinite in a great many of these theorems. In the present case, if H is Abelian and K Hamiltonian, with one of them finite, then $G^{(6)}=1$. Actually generalizations of the results quoted above are proved here.

Let G be a group with identity element 1. Let $G^{(1)}$ denote the commutator subgroup of G, and let $G^{(n+1)}=G^{(n)(1)}$ for all natural numbers n. Let $H \subset G$ mean that H is a subgroup of G and $H \triangleleft G$ mean that H is a normal subgroup of G. Let $Z(G)$ denote the center of G. If $a, b \in G$, let $[a, b]=a b a^{-1} b^{-1}$ and $a^{b}=b a b^{-1}$. If $H \subset G$ and $K \subset G$, then $[H, K]$ means the subgroup generated by all commutators $[h, k]$ with $h \in H$ and $k \in K$. Let $o(G)$ denote the order of G. Let $a \sim b$ mean that a is conjugate to b.

Lemma. If $a_{1}, \cdots, a_{m}, b_{1}, \cdots, b_{n} \in G$, then $\left[a_{1} \cdots a_{m}, b_{1} \cdots b_{n}\right]$ is in the subgroup normally generated by the set $\left\{\left[a_{i}, b_{j}\right] \mid 1 \leqq i \leqq m, 1 \leqq j \leqq n\right\}$.

Proof. If $a, b, c \in G$, then

$$
\begin{equation*}
[a, b c]=[a, b][a, c]^{b}, \quad[a b, c]=[b, c]^{a}[a, c] \tag{1}
\end{equation*}
$$

The lemma follows easily by induction.
Theorem 1. If $G=H K$ is a finite group, H an Abelian subgroup, $o\left(K^{(1)}\right)=p$, a prime, and $K^{(1)} \subset Z(K)$, then $G^{(4)}=1$.

Proof. By a theorem of Itô [2], $[H, K] \triangleleft G$. Hence $L=[H, K] K^{(1)}$ is a normal subgroup of G. Let u generate $K^{(1)}$. Let M be the subgroup normally generated by u, and N the subgroup normally generated by the set $\{[a, u] \mid a \in H\}$. All conjugates of u are obtained by conjugating u by elements of H since $K^{(1)} \subset Z(K)$ and $G=H K$. But if $h \in H$, then $u^{h}=[h, u] u \in L$. Hence $L \supset M \supset N$.

We shall show that (i) $G^{(1)} \subset L$, (ii) $G^{(2)} \subset M$, (iii) $G^{(3)} \subset N$, and (iv) $G^{(4)}=1$.
(i) Every commutator is of the form [ax, by] with $a, b \in H$ and $x, y \in K$. Hence by the lemma, $G^{(1)} \subset L$.
(ii) Temporarily, let $r, s \in[H, K]$. Then, in order to prove that $\left[r u^{i}, s u^{j}\right] \in M$, it suffices to show that $[r, s] \in M$ since $[r, u] \in N$ by (1) and the fact that $u \in K^{(1)} \subset Z(K)$.

Let $a, b \in H, x, y \in K$. There exist $c, d, c^{\prime} \in H$ and $z, w, z^{\prime} \in K$ such that $x^{b}=z c, a^{y}=d w,\left(x^{y} .\right)^{b}=z^{\prime} c^{\prime} . \quad$ By (1)

$$
\begin{aligned}
& {[a, x]^{b}=\left[a^{b}, x^{b}\right]=[a, z c]=[a, z] ;} \\
& {[a, x]^{y}=\left[a^{y}, x^{y}\right]=\left[d w, x^{y}\right]=\left[w, x^{y}\right]^{d}\left[d, x^{y}\right] ;} \\
& {[a, x]^{b y}=\left([a, x]^{y}\right)^{b}=\left[w, x^{y}\right]^{b d}\left[d, x^{y}\right]^{b}=\left[w, x^{y}\right]^{b d}\left[d, z^{\prime}\right] ;} \\
& {[a, x]^{y b}=[a, z]^{y}=\left[d w, z^{y}\right]=\left[w, z^{y}\right]^{d}\left[d, z^{y}\right] .}
\end{aligned}
$$

Then

$$
\begin{align*}
{\left[[a, x],\left[y^{-1}, b^{-1}\right]\right] \sim[a, x]^{b y} } & \left([a, x]^{y b}\right)^{-1} \tag{2}\\
& =\left[w, x^{y}\right]^{b d}\left[d, z^{\prime}\right]\left[d, z^{y}\right]^{-1}\left(\left[w, z^{y}\right]^{d}\right)^{-1}
\end{align*}
$$

Since $\left[w, x^{y}\right] \in K^{(1)}$ and $\left[w, z^{y}\right] \in K^{(1)}$, to prove that $\left[[a, x],\left[y^{-1}, b^{-1}\right]\right] \in M$, it suffices to show that $\left[d, z^{\prime}\right]\left[d, z^{y}\right]^{-1} \in M$.

Now $x^{y}=u^{r} x$ for some integer r. Hence $z^{\prime} c^{\prime}=\left(x^{y}\right)^{b}=\left(u^{r} x\right)^{b}=\left(u^{r}\right)^{b} z c$, and $z^{\prime}=\left(u^{r}\right)^{b} z c^{\prime \prime}$ where $c^{\prime \prime} \in H$. By (1)

$$
\left[d, z^{\prime}\right]\left[d, z^{y}\right]^{-1} \equiv[d, z]\left[d, z^{y}\right]^{-1} \quad(\bmod M)
$$

If $z^{y}=z$, then the right member of the last congruence is 1 ; if $z^{y} \neq z$, then for some integer s, the right member equals

$$
[d, z]\left[d, z u^{s}\right]^{-1}=[d, z]\left(\left[d, u^{s}\right]^{z}\right)^{-1}[d, z]^{-1} \in M
$$

Therefore, if $a, b \in H$ and $x, y \in K$, then $[[a, x],[y, b]] \in M$. Now $[b, y]=$ $[y, b]^{-1}$. Also

$$
\left[v, w^{-1}\right]=w^{-1}[w, v] w=\left(w^{-1}[v, w] w\right)^{-1}
$$

so that if $[v, w] \in M$, also $\left[v, w^{-1}\right] \in M$. Therefore, if $a, b \in H, x, y \in K$, then $[[a, x],[b, y]] \in M$.

Hence, by the lemma, $G^{(2)} \subset M$.
(iii) Recalling the definition of N and using the lemma on $\left[a u a^{-1}, b u b^{-1}\right]$, we get $G^{(3)} \subset N$.
(iv) Let $a, c \in H, x \in K$. Then $x a=b y$ for some $b \in H, y \in K$. Thus by (1),

$$
\begin{aligned}
& {[a, u]^{x}=[x a, u][x, u]^{-1}=[b y, u]=[b, u] ;} \\
& {[a, u]^{c}=[c a, u][c, u]^{-1}=[c a, u][c, u]^{r}}
\end{aligned}
$$

for some natural number r, since G is finite. Hence N is the set of all products of elements of the form $[a, u]$, or alternatively of the form $[u, a], a \in H$.

Now apply (2) with $x=y^{-1}=u, u^{b}=z c=z^{\prime} c^{\prime}, a^{u^{-1}}=d w$. We may take $z=z^{\prime}, c=c^{\prime}$. Then we get

$$
\left[[a, u],\left[u, b^{-1}\right]\right] \sim[d, z][d, z]^{-1}\left([w, z]^{d}\right)^{-1} \sim[w, z]^{-1}=1 \text { or } u^{r}
$$

for some integer r. If $\left[[a, u],\left[u, b^{-1}\right]\right]=1$ for all $a, b \in H$, then by the lemma, $G^{(4)}=1$. If there are $a, b \in H$ such that $\left[[a, u],\left[u, b^{-1}\right]\right]=u^{r}$ with $(r, p)=1$, then $u \in G^{(1)}$. If, inductively, $u \in G^{(n)}$, then since $[a, u]$ and $\left[u, b^{-1}\right] \epsilon G^{(n)}$ by normality of $G^{(n)},\left[[a, u],\left[u, b^{-1}\right]\right] \in G^{(n+1)}$, so that $u \in G^{(n+1)}$. But that implies that $u \in G^{(n)}$ for all n, so that G is not solvable.

If q is a prime different from $p, x \in K, y \in K, o(y)=q^{i}$, and $[x, y] \neq 1$, then $x y x^{-1}=y u^{s}$ where $(s, p)=1$. Hence

$$
1=\left(x y x^{-1}\right)^{q^{i}}=\left(y u^{s}\right)^{q^{i}}=y^{q^{i}} u^{s q^{i}}=u^{s q^{i}}
$$

a contradiction. Hence $y \in Z(K)$. It follows that any Sylow q-subgroup K_{q} of K is central in K, if $q \neq p$. Therefore any Sylow p-subgroup $K_{p} \triangleleft K$. Hence K is nilpotent. By a theorem of Itô [2], G is solvable, a contradiction.

Therefore $G^{(4)}=1$.
Corollary 1. If $G=H K$ where H is finite Abelian and K is finite Hamiltonian, then $G^{(4)}=1$.

Proof. Since K is Hamiltonian, $o\left(K^{(1)}\right)=2$.
Definition. A class C of groups is hereditary if it is closed under the taking of subgroups and homomorphic images.

Theorem 2. Let C be a hereditary class of solvable groups, D a hereditary class of finite groups, such that if $L=U V, U \in C, V \in D$, and U finite, then L is solvable. If $G=H K$ with $H \in C, K \in D$, then G is solvable.

Proof. The index $[G: H]$ is finite. Hence there is an $N \subset H$ such that $N \triangleleft G$ and G / N is finite. Then $G / N=(H / N)(K N / N)$. Now $H / N \in C$ and is finite; $K N / N \cong K /(K \cap N) \in D$ and is finite. Hence G / N is solvable. Since $N \epsilon C, N$ is solvable. Therefore G is solvable.

Theorem 2 has many corollaries. Just one example will be given here.
Corollary 2. Let $G=H K$ with H nilpotent, K Abelian or Hamiltonian, and H or K finite. Then G is solvable.

Proof. The class C of nilpotent groups is hereditary, as is the class D of Abelian or Hamiltonian groups, and either class remains hereditary if the adjective "finite" is added. The corollary now follows from Theorem 2 and Scott [3, Theorem 1].

Theorem 3. Let C and D be as in Theorem 2. Suppose further, that there are natural numbers, m, n, such that if $H \in C$ then $H^{(m)}=1$, and if $L=U V$ with $U \in C, V \in D$ and U finite, then $L^{(n)}=1$. If $G=H K$ with $H \in C, K \in D$, then $G^{(m+n)}=1$.

Proof. Let $N \triangleleft G, N \subset H$, and let G / N be finite. Then

$$
G / N=(H / N)(K N / N)
$$

hence $(G / N)^{(n)}=1$. Since $N \in C, N^{(m)}=1$. Hence $G^{(m+n)}=1$.

Corollary 3. If $G=H K, H$ Abelian, $o\left(K^{(1)}\right)=p$, a prime, $K^{(1)} \subset Z(K)$, and K finite, then $G^{(5)}=1$.

Proof. Let C be the class of Abelian groups, and D the class of finite groups which are either Abelian or satisfy the hypotheses that K satisfies. Then C is hereditary with $m=1$. Again D is hereditary. By Theorem 1, $n=4$. Hence by Theorem $3, G^{(5)}=1$.

Corollary 4. If $G=H K$ with H Abelian and K finite Hamiltonian, then $G^{(5)}=1$.

Corollary 5. If $G=H K$ with H finite Abelian, $o\left(K^{(1)}\right)$ prime, and $K^{(1)} \subset Z(K)$, then $G^{(6)}=1$.

Proof. The proof is similar to the proof of Corollary 3.
Corollary 6. If $G=H K$ with H finite Abelian and K Hamiltonian, then $G^{(6)}=1$.

Bibliography

1. Noboru Itô, Über das Produkt von zwei abelschen Gruppen, Math. Zeitschrift, vol. 62 (1955), pp. 400-401.
2. ——, Remarks on factorizable groups, Acta Sci. Math. Szeged, vol. 14 (1951), pp. 83-84.
3. W. R. Scott, Solvable factorizable groups, Illinois J. Math., vol. 1 (1957), pp. 389-394.

Lawrence, Kansas

