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1. Let K be an algebraic number field, and let R be a subring of K con-
tMning 1 and having quotient field K. Of primary interest will be the cases

(i) R=K,
(ii) R Mg. int./K}, the ring of all algebraic integers in K.
(iii) R valuation ring of a discrete valuation of K.

Given a finite group G, we denote by RG its group ring over R. By an RG-
module we shall mean a left RG-module which as R-module is finitely gener-
ated and torsion-free, and upon which the identity element of G acts as
identity operator. Each RG-module M is contained in a uniquely deter-
mined smallest KG-module

K (R)M,

hereafter denoted by KM. For a pair M, N of RG-modules, we write

MN
to denote the fct that M N as RG-modules. The notation

MN
shall mean that KM

_
KN as KG-modules.

Now let K’ be an algebraic number field containing K, aad let R be a sub-
ring of K’ which contains 1 and has quotient field K’. Suppose further that
R’ is a finitely generated R-module such that

R’aK=R.

Each RG-module M then determines an R’G-module denoted by R’M, given
by

R’M R’ (R) M.

If M, N are a pair of RG-modules, we write M , N if R’M
_

R’N as R’G-
modules. Surely

MN M,N.

The reverse implication is false, as we shall see. We propose to investigate
more closely the connection between R- and R’-equivalence.
As a first step we may quote without proof a well-known result [9, page 70]

which is a consequence of the Krull-Schmidt theorem for KG-modules.
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THEOREM 1. Let M, N be KG-modules, and let K be an extension field of K.
Then

M K, N MK N.

Remark. This result is valid for any pair of fields K c K’, even for those
of nonzero characteristic.

COROLLARY. If M, N are RG-modules, then

M R, N M N.

9.. An RG-module M is called irreducible if it contains no nonzero sub-
module of smaller R-rank. As is known [10], M is irreducible if and only if
KM is irreducible as KG-module. Call M absolutely irreducible if for every
field K’ K, the module K’M is irreducible as K’G-module. Repeated
use will be made of the following result [9, page 52]:

M is absolutely irreducible and only if every KG-endomorphism of KM is

iven by a scalar multiplication
x ---. ax, x e KM,

for some a e K.

As a first result, we prove

THEOREM 2. Let R be a principal ideal ring, and let M, N be a pair of
absolutely irreducible RG-modules. Then

Proof. The preceding corollary shows that M N. After replacing N
by some new RG-module which is RG-isomorphic to N, we may in fact assume
that M N.
The isomorphism R’M

_
RN can be extended to an isomorphism

K’M . K’N. As a consequence of the absolute irreducibility of M, and the
fact that K’M K’N, this latter isomorphism must be given by a scalar
multiplication. Consequently there exists a scalar a e K’ such that

(1) R’N . R’M.

Since R is a principal ideal ring, we may find an R-basis
of M, and nonzero elements al, ak e R, such that

(2)

(3)

Then

(4)

M Rml ( ( Rmk,

N Ram @ @ Rak mk.

R’M= Z R’m,, R’N Z R’a,m, Z
Let u(R’) be the group of units of R’, and u(R) that of R. Then (4)
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implies the existence of 1, k u(R’) such that

Therefore

and so

Therefore
b a/a e u(R’) n K u(R).

N ., Ram a, Rbm a M,
which shows that N, M are R-equivalent, Q.E.D.
We next give an example to show that the result stated in Theorem 2 need

not hold when R is not a principal ideal ring. Set

o alg. int. {K}, o’ alg. int. {K’/,

where o is not a principal ideal ring. It is possible to choose K so that for
each ideal a in o, the induced ideal ota in o’ is principal (see [4]). Now let M
be any absolutely irreducible oG-module, a any nonprincipal ideal in o, and
set N aM. Then M, N cannot be o-equivalent, since by the above re-
marks the isomorphism M --- N would imply that N aM for some a e K.
On the other hand,

D’N D’aM c’’M

for some a’ e K’, and so M, N are o’-equivalent.
If M, N are oG-modules, we say that M, N are in the same genus

(notation: M v N) if RM -- RN for each valuation ring R of a discrete
valuation of K (see [5, 6]).

COROLLARY. Let M, N be absolutely irreducible oG-modules. Then

M,o,N MvN.

Proof. Let R be a valuation ring of a discrete valuation @ of K, and let
@’ be an extension of @ to K’, with valuation ring R. Then R is u principal
ideal ring, and so

M--, N =, M, N M-N
by Theorem 2, Q.E.D.
Maranda [5] showed that a pair of absolutely irreducible oG-modules M, N

are in the same genus if and only if M . aN for some o-ideal a in K. But
then otM o’aN, so M, N are o’-equivalent if and only if o’a is principal
ideal in K’. Thus, the converse of the above corollary holds if and only if
every ideal in o induces a principal ideal in o’.

3. Throughout this section let R be the valuation ring of a discrete valua-
tion of K, with unique mximal ideal P, and residue class field/ RIP.
Let be an extension of to K’, with valuation ring R’, maximal ideal P,
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residue class field/’ R’/P’. We shall give some sucient conditions for the
validity of the implication"

(5) MR,N =, M-RN,
where M, N denote RG-modules.

THEOREM 3. If the group order G" I is a unit in R, then (5) is valid.

Proof. Use Theorem 1, together with the result [5] that if (G’I) is a unit
in R, then

M-.N if and only if MKN.
THEOREM 4. If ’ , then (5) holds.

Proof. Since R, R’ are principal ideal rings, we may use matrix terminology.
Let M, N be R-representations of G such that M, N. Set

C {X over R’M(g)X XN(g), g e G},

C’ {X over R"M(g)X XN(g), g G}.

Since C is a finitely generated torsion-free R-module, we may choose an R-
basis {X1, Xn} of C. It is easily verified that this is also an R’-basis
of C’.
The hypothesis M, N is equivalent to the statement that there exist

elements al, a e R’ such that

, X + + a X
is unimodulr over R’, that is, hs entries in R’ nd stisfies

a X + + a, Xn u(R’) (the group of units of R’).

Since/’ /, we my choose a, a e R such that

a= a (modP’), 1 <= i <- n.
In that cse,

aX_ + + aX C,

and is unimodular over R. Therefore M N, Q.E.D.
In particular, suppose that K’ is an Eisenstein extension of K relative to the

valuation , that is, suppose that K’ K(a) where

Irr (a,K) xm+ blxm-l+ + b
with b, b e P, b p2 (see [3]).
to K’, and/’ =/, so that (5) is true.

Let us call a matrix of the form

In this case is uniquely extendable
We shall apply this later on.

1



a translation; by such a notation, we mean to imply that the elements below
the main diagonal are all zero. If M, N are R-representations of G, we write
M N to indicate that M, N can be intertwined by a translation matrix.
On the other hand, suppose that

il

(6) M N

Mk M

are a pair of R-representations of G in which the {Mi} are distinct (that is,
not K-equivalent) and absolutely irreducible. If M, N can be intertwined
by a matrix X over R of the form

aiI

(7) x
akI

in which ai u(R), the group of units of R, then we shall say that M, N are
i-intertwinable. Call M, N everywhere intertwinable if for each i, 1 __< i _-< k,
M, N are i-intertwinable. Clearly if M, N are i-intertwinable, and if

then also Mr, N’ are i-intertwinable.

LEMMA. Let M, N be given by (6), and suppose the {M} distinct and abso-
lutely irreducible. Suppose that M, N are everywhere intertwinable, and further
that they are intertwined by a matrix X given by (7) for which

aieu(R)(8) ai a,. u(R), a,.+l

Then

(9) M
Mr+l

Proof. Use induction on r.
r _>- 1, and write

M

Mr+l

M_ M_

The result is trivial when r 0, so assume

A N= N
M"

We use M to denote the transpose of M; thus, M’ is just another representation in
this context.
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where

M!

Then also

Mr+l

M

r!

ir+l
it

M

(submatrices of M),

(submatrices of N).

are everywhere intertwinable, and furthermore are intertwined by

a2I
:

akI

a submatrix of X. It follows from the induction hypothesis that by trans-
forming M, N by suitable translation matrices, we can make A A 0.
The new M, N will still be everywhere intertwinable, and also intertwinable
by a new X for which (8) still holds.

Let us write

Then

whence M’T TN’!. Since M’, N" have no common irreducible constituent,
we conclude that T 0.

It now follows that

(10) [M /_r+l l [M1 Ar-l-1 ]
Mr+J

are R-representations intertwined by



(11) [ai I T,+i 1
ar+l I]"

This implies that

and hence (since a,+i e u(R)),

(12) A,+I bA+l + M1 U- UM,+, b a’+l al u(R),

for some U over R. On the other hand, the hypothesis that M, N are 1-inter-
twinable guarantees the existence of a matrix of the form (11) which inter-
twines the representations given in (10), but for which the element playing
the role of a is a unit in R. Therefore we also have

(13) A,+i ch,+l + M V- VM,+i

for some c e R and some V over R. Combining (12) and (13), we obtain

(1 bc) A,+l Mi W- WM,+i

for some W over R. Since (1 bc) e u(R), we conclude that

A+ MI Y-
for some Y over R. Hence by a translation transformation of M, we can
make A,+I 0. From (13) it follows that we can also make A,+ 0 by a
translation transformation of N. For this new M, N we must have T,+ 0.
But now we observe that

M,+J M+J
are representations intertwined by

Tr+2 l
The above type of argument shows that we can make i,+ A,+. 0, and
therefore also T+2 must be 0. By continuing this process, we establish the
validity of (9), Q.E.D.
We may now prove one of the main results of this paper.

THEOIEM 5. Let M, N be RG-modules which are R’-equivalent, and suppose
that the irreducible constituents of KM (which coincide with those of KN) are
distinct from one another and are absolutely irreducible. Then also M, N are
R-equivalent.

Proof. Again use matrix terminology, and proceed by induction on the
number/ of irreducible constituents of KM. The result for/c 1 follows
from Theorem 2; suppose it known up to ] 1, and let KM have k distinct
absolutely irreducible constituents. There will be no confusion from our
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using M to denote both the module and the R-representation it affords. The
R-representations of G afforded by the RG-modules M, N may be taken to be
of the form

(14)

M Nk

where the {M} and {N} are absolutely irreducible, and where

(15) M--KN, MrKMr, j i, 1 =< i =< k.

Since M, N are R’-equivalent, they are intertwined by a matrix X’ uni-
modular over R’. From (15) we find readily (see [6]) that X’ has the form

(16) X’ ..
zl

and necessarily each X is also unimodular over R’. But we have then

(17) MZ X N,, 1 <= i <= ,
so that M, N are R’-equivalent for each i. By the induction hypothesis it
follows that for each i, 1 -< i -< k, M and N are R-equivalent. Consequently
for each i there exists a matrix Y unimodular over R which intertwines M
and N. Setting Y diag (Y1, Yk), we deduce that

N "-’R YNY- "" (say).

M

Replacing N by YNY-1, we may henceforth assume that N1 M1,
N M, that is, that M, N are given by (6).
From the R’-equivalence of M, N it follows that they are intertwined by a

unimodular matrix X’ over R’, given by (16). Since now M N, andM
is absolutely irreducible, (17) implies that each X’ is a scalar matrix, so that
we may write

I0I

O/k 1

(18) X’ , u(R’).

Let us now set
51 1, n (K"K).

This really follows from [10].
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Then we may write

we note that

where

(19)

Let us fixi, 1 __< i__< k.
a(1) a) is a unit in R.

X(v)

aV)I

X() over R;

Then al e u(R’), and so by (19) at least one of
Since each X() intertwines M and iV, and since

a() ih we may conclude that M, N areoccurs in the diagonal block of X()

i-intertwinable. This shows then that if M, N given by (6) are R’-equivalent,
they must be everywhere intertwinable.

Since M, N are l-intertwinable, there exists an X (over R) given by (7)
which intertwines M and N, and for which al eu(R). If also a2,...,

ak e u(R), then X is unimodular over R, and so M, N are R-equivalent. For
the remainder of the proof we may therefore suppose that not all of a2, ak

are units in R. Let us write

al aq u(R), aq+ a. c u(R), a+ a, e u(R) ....
Partition X accordingly, say

Y X Xq+
g

X-- .. Y .. Y .. ,....
Yt X Xr

Correspondingly partition M, N, say

(20) M= . *
N= fa. *

where

By repeated use of the lemma, we may transform M, N by translations so
as to make successively

(21) A12 A12 0, A2; A23 0, At-l,t At-l,t O.
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Such transformations do not affect the diagonal blocks of X, nor the R’-equiva-
lence of M, N. We may therefore assume for the remainder of the proof that
(21) holds. But iu that case we see from (20) that

M4J’ N _]

are R-representations of G, and again we may apply the lemma to conclude
that M, N may be further transformed by translation matrices so as to make
A14 AI 0, and so on. Continuing in this way, we find that

M M’ N N’

where tj 2:ij 0 whenever the diagonal entries of X associated with
are units, those with r nonunits, or vice versa. But we may then find
permutation matrix F such that

FM,F-I=[M* 0 ]M**

M*

where

We now have

N*

(22) M
FLM,

and so (since M R, N),

FN,F-=[N* 0 ]N@$

J [ ]0 N* 0
M** N -R N**

M* ’ N*

Since M*, M** have no common irreducible constituents, this latter equiva-
lence implies that

M* M** N**R N* raR

We may (at last) use the induction hypothesis to conclude from this that
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This, together with (22), implies that M, N are R-equivalent.
theorem is proved.

Thus the

4. We shall apply the preceding result to the case of p-groups.

THEOREM 6. Let G be a p-group, where p is an odd prime. Let R be the ring
of p-integral elements of the rational field Q. Suppose that K’ is an algebraic
number field, and R’ any valuation ring of K’ such that R’ R. Then for any
pair of irreducible RG-modules M, N we have

(23) M’.R,N M,-RN.

Proof. Set (G:I) p, m > 1, and let be a primitive (pro) th root of
1 over Q. Let M, N be R’-equivalent irreducible RG-modules. As a first
step, let us set K1 K’(’), and let R1 be a valuation ring of K such that
R1 R’. Then since

M-,N = M-IN,

we may now restrict our attention to K1, R1 instead of K’, R’.
Next we note that

f(x) Irr (’, Q) x-I-’ - x-’- - + x- -t- 1,

and that f(x 1) is an Eisenstein polynomial at the prime p. Ifwe set
Ko Q(), it follows that K0 contains a uniquely determined valuation ring
R0 such that R0 R, and further that the residue class fields corresponding to
R0, R coincide. We may therefore conclude from Theorem 4 that

(24) M ",o N M- N.

The proof will be complete as soon as we establish

(25) M -R N =, M ’0 N.

This is a consequence of Theorem 5, however, as we now proceed to demon-
strate. The modules R0 M, R0 N are (in general) no longer irreducible.
Since K0 is an absolute splitting field for G (see [1]), the irreducible constit-
uents of K0 M and K0 N are all absolutely irreducible. The multiplicity
with which any absolutely irreducible constituent of K0 M occurs is precisely
the Schur index of that constituent relative to the rational field (see [7]).
On the other hand, for p-groups (p odd) it is known [2, 8] that this Schur
index is 1. Hence the irreducible constituents of R0 M and R0 N are distinct
and absolutely irreducible. We may therefore apply Theorem 5, and obtain

R M ... R N Ro M ... Ro N,
so that (25) is proved, Q.E.D.
The referee has kindly pointed out that the preceding theorem is also valid

for the more general case in which R is a valuation ring of an algebraic number
field K such that R lies over the ring of p-integral elements of the rational
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field. Indeed, the above proof requires only a minor modification for the
more general case.

5. We conclude by listing a number of open questions.
A. If R R’ are valuation rings, does (5) hold without any restrictive

hypotheses?
B. Using the notation of Section 2, under what conditions does 0’M v o’N

imply M v N, where M and N are oG-modules?
C. If o is a principal ideal ring, does ’-equivalence imply o-equivalence?
It may be of interest to mention yet one more special case in which addi-

tional information may be obtained. Suppose that M and N are projective
RG-modules, where R is the valuation ring of a discrete valuation of K.
(For example, M and N might be direct summands of RG.) Then it is
known that M ’R N if and only if M -K N. Using Theorem 1 and its
corollary, we conclude that (5) holds in this case.
In particular, if M and N are projective oG-modules, then ’M v o’N surely

implies that M and N are K’-equivalent, and hence by the above discussion
that M v N.
Added in proof. In a recently completed paper [11], Zassenhaus and the

author have shown that (5) holds without any restrictive hypotheses, assuming
still that R and R’ are valuation rings as in Section 3. This settles questions
A and B, but C is still open.
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