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WITH BOUNDARY!

BY
CrUuaN-CHIH Hsiuna

1. Introduction

Let M, be a differentiable manifold of dimension n, and X: M, — Eum
a mapping of M, into a Euclidean space E,i, of dimension n + m for
any m > 0. M, , or rather M, together with the mapping X, is called an
immersed submanifold of E,.» if the functional matrix of X is of rank n
everywhere. The submanifold M, is said to be imbedded, if X is one-one,
that is, if X(P) = X(Q), P, Q ¢ M, , implies that P = Q. In particular,
when m = 1, an immersed (imbedded) submanifold M, of the space E,in
is called an immersed (imbedded) hypersurface. Throughout this paper all
manifolds are supposed to be of class C°, and the dimension of a manifold
M, is understood to be n.

Now let us consider an oriented immersed manifold M, . Then to each
point P e M, there is a unique linear space N of dimension m normal to
X(M,) at the point X(P). For any unit normal vector e,(P) at the point
X (P) in the space N, we put

(1.1) I =dX-dX, II, =de-dX, III, = de,de,,

where dX and de, are vector-valued linear differential forms on M, , and the
dot denotes the scalar product of two vectors in the space E,i» . The eigen-
values k1, «+ -, kw of I, relative to I are called the principal curvatures of
the manifold M., associated with the unit normal vector ¢,(P). If the Gauss-
Kronecker curvature K, = k. --+ k., associated with the vector e.(P) is
nonzero, the reciprocals 1/k. , -+, 1/km , called the radii of principal curva-
tures associated with the vector e,(P), are the eigenvalues of II, relative to
III,, which is also positive definite due to the assumption K, % 0. In this
case we introduce the ot elementary symmetric function

(1.2) (2) Pra = 2o 1/kpy + - 1/kiya (1 £a=n).

If M, is a hypersurface, then at each point X (P) of M, there is only one unit
normal vector e,, and for P,, associated with it we shall simply write P, .

Let M, be a closed oriented Riemannian manifold immersed in a Euclidean
space E,.m. By a normal frame Xeny1 -+ €nm on the manifold M, we
mean a point X of the manifold M, and an ordered set of mutually perpen-
dicular unit vectors e,+1, *** , €ntyn normal to the manifold M, at the point
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X. M, is called a star manifold,” if there exist a point O, called a pole, in
the manifold M, and a class C” field of normal frames Xe,41 « - + €nym over the
manifold M, such that the Gauss-Kronecker curvature K, of the manifold
M, and the support function X -e, with respect to the pole O are positive for
every vector ¢,, n + 1 < r £ n + m, at every point of the manifold M, .
This normal frame Xe,i1 ** « €nqm is called a fundamental normal frame of
the star manifold M, at the point X. An n-dimensional star manifold with
boundary is an n-dimensional compact subset of an n-dimensional star mani-
fold. An n-dimensional convex hypersurface with boundary is an n-dimen-
sional compact subset of the boundary of a convex region in an (n + 1)-
dimensional Euclidean space E,1 , or is equivalently an n-dimensional com-
pact subset of an n-dimensional imbedded hypersurface with positive Gauss-
Kronecker curvature everywhere. An n-dimensional convex hypercap is an
n-dimensional convex hypersurface with boundary such that in the space
E, ;1 there is at least one fixed direction, along which every line either is a
tangent to the hypersurface or intersects the hypersurface at most at one
point. It is obvious that a convex hypercap can never be closed.

Since Christoffel [5] established in 1865 his well-known uniqueness or
rigidity theorem on closed convex surfaces in a space Ej, various uniqueness
theorems of the same type on closed convex hypersurfaces have been obtained
by different authors with different methods. It is natural to ask whether we
can extend some of these uniqueness theorems on closed convex hypersurfaces
to general immersed manifolds with boundary. In recent years the present
and other authors have succeeded in deriving some new integral formulas, by
means of which most classical uniqueness theorems can easily be extended to
convex hypersurfaces with boundary satisfying a natural boundary condition.
For uniqueness theorems on general immersed manifolds with boundary,
due to the complication arising from the immersion, the only result we have so
far is the generalization [9] of Christoffel’s uniqueness theorem to two-dimen-
sional immersed manifolds with boundary. The main purpose of the present
paper is to further extend this uniqueness theorem to immersed manifolds of a
general dimension n > 2 with boundary, and to establish a uniqueness theo-
rem on convex hypercaps by proving the following theorems.

TaroreM 1. Let M, and My be two star manifolds, with boundaries Bn_y
and By respectively, in o Buclidean space Enim for any m > 0. Suppose
that there exists an orientation-preserving diffeomorphism f of the manifold M,
onto the manifold My such that, at each pair of corresponding points, the mani-
folds M, and M% have a common fundamental normal frame €nys -+ €nim ond
equal P, , 1 defined by equation (1.2) and associated with each common unit
normal vector e, ,» =n + 1, -+, n + m. If the diffeomorphism f restricted
to the boundary B,—y is a translation (strictly speaking, is tnduced by a transla-

2 The author is indebted to the referee for his comment which leads to the definition
of a star manifold in the present form.
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lation in the space Enim) carrying the boundary B..i onto the boundary Bi_.,
then the diffeomorphism f is a translation carrying the whole manifold M, onto
the whole mandfold My .

TuroreM II. Let M, be a star manifold with o spherical boundary Bn.—;
such that at every point Py, Py .1 s constant for u + » > 0, u 2 0, » > 0
and for each vector e, of a fundamental normal frame of the manifold M, . Then
the manifold M, vs a compact subset of an n-sphere.

TurorEM III. Let M, and My be two oriented convex hypercaps with bound-
aries B,y and Bh_y respectively. Suppose that there exists an orientation-
preserving diffeomorphism f of the hypercap M, onto the hypercap M  such that
at each pair of corresponding points the hypercaps M, and My have the same
outer normal vector and satisfy either

(1.3) P, < PY, P,z Pj,
or
(1.4) P, =z PY, P, £ P},

where Po and P’ are defined by equation (1.2) for the hypercaps M, and My
respectively. If the diffeomorphism f restricted to the boundary B._; is a transla-
tion carrying the boundary B,_1 onto the boundary B}y, then the diffeomorphism
f is a translation carrying the whole hypercap M., onto the whole hypercap M .

CoroLLARY. Let M, be a convex hypercap with a spherical boundary B, .
If there is a constant ¢ such that, at each point of the hypercap M, , either

(1.5) Py ¢ Py?
or
(1.6) P,zcz P,

then the hypercap M, is a compact subset of an n-dimensional hypersphere.

It should be noted that when n = 2, the conditions (1.3) and (1.4) to-
gether are obviously weaker than the condition of Alexandroff [2], which can
be stated as follows: At each pair of corresponding points the hypercaps M,
and M7 satisfy the condition F(2P; , P;) = F(2P%, P¥), where F(U, V), for
U>0,U"=4V >0, is a continuous function monotonely increasing in
both variables U and V. Furthermore, Grotemeyer [8] obtained Theorem
ITI for n = 2 in terms of the condition of Alexandroff, but actually only used
the conditions (1.3) and (1.4) together in his proof.

2. Immersed submanifolds in Euclidean space

Suppose a Euclidean space E,.. is oriented. By a frame Xe; - - €1ym
in the space E,.» we mean a point X and an ordered set of mutually perpen-
dicular unit vectors e;, * -+ , €,rn With an orientation coherent with that of
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the space Enin so that the determinant ey, -+, €nim | is equal to +1.
To avoid confusion we shall use the following ranges of indices throughout
this paper:
(2.1) l1=o,8,v=m, n+1=rst=n+m,

’ 14,5,k <n+m
Then we have
(2.2) ei-ej = 0ij,

where §;; are the Kronecker deltas. Let F(n, m) be the space of all frames in
the space E,in, so that dim F(n, m) = 3(n +m)(n +m + 1). In
F(n, m) we introduce the linear differential forms w; , w; ; by the equations

(2.3) dX = X iwie:, des = D wije;,

where

(2.4) wij + wji = 0.

Since d(dX) = 0 and d(de;) = 0, from equations (2.3) we have
(2.5) dwi = D 057 A wii, dwi; = Do A whi,

where A denotes the exterior produect.

As explained in §1, by an immersed submanifold in the space E,in we
mean an abstract manifold M, and a mapping X: M, — E,.. such that the
induced mapping X« on the tangent space is univalent everywhere. Ana-
lytically, the mapping can be defined by a vector-valued function X(P),
P eM,. Our assumption implies that the differential dX(P) of X(P),
which is a linear differential form on M, with value in E,.., , has as values a
linear combination of n, but not less than n, vectors &, -+, £,. Since X«
is univalent, we can identify the tangent space of M, at the point P with the
vector space spanned by ¢, ---, t,. A linear combination of the vectors
tr, -+, t, is called a tangent vector, and a vector perpendicular to them is
called a normal vector. The immersion of M, in K, gives rise to a bundle
B, whose bundle space is the subset of M, X F(n, m) consisting of

(P,X(P)@l"‘€n+1"'6n+m) eMnXF(n,m)

such that ¢; , - - - , e, are tangent vectors and e,41, * - - , €ntm are normal vec-
tors at the point X (P).
Consider the inclusion mapping ¢ and the projection p:

(2.6) B %, M, X F(n,m) P, F(n,m).
By putting
2.7) wi = (pd)*wi,  wij = (pd)*wij,



530 CHUAN-CHIH HSIUNG

from equations (2.4) and (2.5) we have
(2.8) wij + wji = 0,
(29) dw; = Z]‘ w;j N wjs, dwrij = Zk wix N wgj .

From the definition of the bundle B it follows that w, = 0 and that w, are
linearly independent. Thus the first equation of (2.9) gives

Za Wa N wer = 0,
from which we have

(2.10) War — Zﬁ Aruﬂ wg , Araﬂ = Arﬁa .

If det (A,es) 5 O for some 7, by introducing the matrix (M..s) inverse to
the matrix — (A,) we have

(2.11) We = Zﬂ Arag ©r8 .

By means of equations (2.2), (2.3), (2.7), (2.10), and (2.11), equations
(1.1) can be written as

I=2ww, III,=);wy,

(2.12) ,

IIr = + Za Wrg Wg = — Za,ﬂ AN!B Wa W = + Za,ﬁ )\”‘B Wra W -
Suppose
(213) det (6aﬂ + )\raﬁ y) = ZO§7§n (:) Pr'y()‘r)y‘y7

where y is a parameter. Then P,,()\.) is a polynomial of degree v in \.qs
for a fixed r, and it is easily seen that P,,()\,) is equal to the invariant P,
defined by equation (1.2).

Through a point in a KEuclidean space Euin let Ar, -+, Autm be

n + m — 1 differentiable vector functions of n variables @', -+, 2", and
let J be any vector. Then the scalar product of the vector J and the
vector product A; X +++ X Aupm of the vectors Ay, +++, Antm i given
by

(2.14) J-(A1 X -+ X Anpmar) = (=1)"" 7N T, A1, oo, Apgma |,
from which it follows that
(2.15) e X o X b X o X lngm = (—1)"" e, |

where the circumflex over e, indicates that the vector e, is to be deleted. Ina
previous paper of the author [10] we have combined the vector product of
vectors and the exterior product of differentials to define the vector

Al ® - ® Ai—l ® dAz ® - ® dAn-+m~1
(216) = (A1 X +++ X Aia X Aijay X o+ X Animtianymy) A2
A A dx“n+m—l’
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where ¢ =1,---, n+m — 1 and A; . = 04,/0z*. It is obvious that
the vector (2.16) is independent of the order of the vectors d4,, ---,
dAuim1. Let dA be the area element of an immersed submanifold M, in
the space E,.,. Then by means of the combined operation ® we obtain

X®"‘®dX®en+]®"'®ér®"'®en+m
~—.
(2.17) M

= (=1)"""nle dA,
der@ e ®der ®en+1® M ®ér® e ®en+m

\—ﬁ/—_—/
(2.18) -

= (=1)"""nle K, dA.
From equations (2.3), (2.7), (2.15), (2.17), and (2.18) it follows that
(2.19) dA =@ A -+ A wn,
(2.20) K.dA = wsa A -+ N 0.

3. Integral formulas for a pair of immersed
manifolds with boundary

Let M be a compact differentiable manifold of dimension n with boundary,
and let M, and M be immersed manifolds with boundaries B,_; and Bi_,
given by X:M — E,yn and X*:M — E,.,, respectively. Then §2 can
be applied to the manifolds M, , and for the corresponding quantities and
equations for the manifold M we shall use the same symbols and numbers
with a star respectively.

Suppose that there is a diffeomorphism f of the manifold M, onto the mani-
fold M’ such that at each pair of corresponding points the manifolds M,
and M have parallel tangent spaces. Without loss of generality we may
assume that

(3.1) ef = e (i=1,-,n+m).
From equations (2.3), (2.7), (2.3)%* (2.7)*, and (8.1) it follows that
(3.2) Ory = Wra .

Now for the pair of immersed manifolds M, and M, we introduce the fol-
lowing differential forms:

Ba,'n—Z—a = :'L::Ln-i-l ( - 1)7‘-‘1

(33) 'IX7X*)en+17""é7‘"" ’en-lfm)derde7 )dX,dX*y e ;dX*,)

~

a n—2—a
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Orﬁm—l-ﬁ = ( - 1)m+r

(34) ) ,X>en+1’ sy, e )en-Pm’der’LlX)"' )dX"%X*’ :dXik,’

B n—1-—p8

Clnas = (=1)™"
(3.5) : ,X*}en+1’ i ybry ot lnym, der,dX, oo dX, dXF, - adX*,)

—

B n—1-—8

Dignys = (—1)"™"

(36) | ent1, €, 01, lnim, de; ’\dX’ o+, dX,dX*, - ’del;
~—

4

B n—1-—3

where 0 S a =n—2and 0 £ 8 = n — 1. By means of equation (2.14)
and the operation ® we obtain

Crpnass = (—=1)""'X-E, Clouus = (—=1)"""X*E,

Digpnyp = (—1) n+r_1er -E,

(3.7)

where
E=€u® - ®6® ® epn ® de,
®le® ®dX®d:Y*® e ® dX*
B n—1-—8

From the definition of the operation ® and the last equation of (3.7) it
follows immediately that

(3.8) (=)™ 'E = Dygnrper.

Thus the substitution of equation (3.8) in the first two equations of (3.7) gives
(3.9) Cn18=h D3, Clsn18 = hiDwgrss,

where we have placed

(3.10) he = X-e,, hY = X*ee,.

By using equations (3.3), (3.4), (3.5), and (3.9), applying the ordinary
rules for differentiation of determinants, and noticing the pairwise cancella-
tion of terms, we can easily obtain

dBa,n——2-nz = :L::;n-t-l (Cra.n-—l——a - C’rk.a+1,n—2—-a)
(3.1]_) = ?::;n+1 (hr Dra,n—-l—-a - h:‘Dr,a+],n—2~a)

O=a=n-—2).

Integrating both sides of equation (3.11) over the manifold M, and applying
Stokes’s theorem to the left side, we can arrive at the integral formulas
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n+m

12) |, Bersa= [, 3 (Dupse =W Dirs)
0=as=n-—2).
To apply the formulas (3.12) we introduce the differential forms of order n
(8.13)  Dyog = (=)™
°fer,en+1, e et €1, ',6n+m,di, .. "de”‘iX’ .. "d)f"fx*’ .o dX* ',
n — (a+B) a Ef
(0= q,8=n)

In virtue of equations (2.3), (2.7), (2.8), (2.11), (2.14), (2.15), (2.20),
(2.3)%, (2.7)*, (2.11)*, (3.2), and (3.13) we can easily obtain, for two param-
eters y and y*,

n!
o<afpzn !Bl (n — a — B)

= (—1)(n+1)(m—1) E 8“1"‘“n(ywa1 + y*w’:l + wral)
(3.14) 1Sa  ansn .
Ao A (yw“” + y*w“n + wran)
= (""1)(n+1)(m—1)n! (yor + y*w’lk + wa) Ao A (Yoo + y*w: + &)
= (=)™ p1 det (Yhras + Y*Nras + 848) K, dA,

where €q4;...q, 18 +1 or —1 according as a1, + -+, a, form an even or odd
permutation of 1, ---, n, and is zero otherwise. Now suppose

! yay*ﬂDraﬂ

n!
ozatpzn !Bl (n — «

(3.15) det (y)\raﬂ -+ y*)\:‘aﬂ -+ 5«5) = — B)l yay*ﬁPraﬂ;

so that P,.s is a homogeneous polynomial of degrees o and 8 in A, and
Mo (p, 0 =1, -+, n) respectively. In particular, from equation (2.13)
it follows that P, = Pro(N,). Comparison of equation (3.14) with equa-
tion (3.15) yields immediately

(3.16) Dis = (=1)"P" D1 P K. dA (0= a,8 = n).
Substituting equation (3.16) in equation (3.12) we therefore obtain

Ba,n—-?—-a
Bp_1 nepm
(3-17) — (_1)(n+l)(m—-1)n!f Z (hrPra,n-l—a _ h’: Pr,a+l,n—2—a)Kr dA,
My r=n+1

0=asn—2).

If the diffeomorphism f of the manifold M, onto the manifold M x restricted
to the boundary B,-; is a translation carrying the boundary B, ; onto the
boundary Bi . , then on the boundary B,_;, dX* = dX, and therefore
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Bon-s2 = Bpso. From the two equations of (3.17), for which « = 0,
n — 2 respectively, we can easily obtain the integral formula

n+4m
2 Z hr(PrO,n—-l - r,n—2,l)Kr dA
My r=n+1
(3.18) o
= fM Z+1 [hf(Prl.n—Z - Pr.n—l,O) - hr(Pr,n—2,1 - Pro,n—l)]Kr dA.

Addition of equation (3.18) to the one obtained by interchanging the roles of
the two manifolds M, and My in equation (3.18) thus gives

n+m
319) | 2 UlPans = Prosa) + hi(Praso = Pun-2)IK, d4 = 0.
Let Folug, --+, Un), r =n+1,---, n + m, be m functions in n posi-
tive variables u;, ++-, u,. We shall say that each function F, is of type
n — 1, if the following two conditions for each r are satisfied:
(1) Fr(Prm y "0ty Pmo) = Fr(PrOI y Tty PrOn) 1mp11es that Pr,n—2,1 g

Pio.n1, and therefore, by interchanging the two manifolds M, and M . ,
that’ Prl,n—Z ; Pr,n—l,O )

(11> Fr(PrIO y Ty PmO) = Fr(Prt)l’ Tty PrOn) and Pr,n—2,1 = PrO,n-—l
(or Pyn—2 = P, u,) if and only if )\’:ap = Mg fore,g=1,.--,n.

TueoreM 3.1. Let M, and My be two star manifolds, with boundaries
B._1 and By respectively, in a Euclidean space B, m for any m > 0, and let
Fo(tp, ++, %), r=mn-+1,--+, n+m, be m functions of type n — 1
i n positive variables uy, -+, Un . Suppose that there exists an omentatzon-
preserving diffeomorphism f of the manifold M, onto the manifold M such
that, at each pair of corresponding points, the mamfolds M, and My have a
common  fundamenial mnormal frame en11 - €nim, and the functions
F.(Puo, -y Pmo) and F.(Puy, -+, Pun) have the same value for each r.
If the diffeomorphism f restricted to the boundary B..1 is a translation
carrying the boundary B, onto the boundary Bn_l, then the dzﬁeomorphzsm
f is a translation carrying the whole manifold M, onto the whole manifold My

Proof. Applying a translation in the space E, .., if necessary, without loss
of generality we may assume the poles in the star manifolds M, and M .
to be coincident, so that A, > 0 and hE>0forr=n+1-,n+m
over the whole manifolds M, and My . Thus, due to the first property of the
functions F, and the assumption that K, > 0, each term of the integrand of
equation (3.19) is nonpositive, and equation (3.19) holds when and only when

Prl),n—l = Pr,n—2,1 l} Pr,n-—l,o = Prl.n—2

(3.20)
(r=n+1,:-,n+4 m).

By the second property of the functions F, we therefore obtain
(3.21) )\’:aﬁ = Araf (a’ B=1-- 7”)-
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Substitution of equation (3.21) in equations (2.11) and (2.11)* gives imme-
diately

(3.22) wa = Wa (e =1, ,n).

From equations (3.22), (2.3), (2.7), (2.3)*, and (2.7)* it follows that dX* =
dX over the whole manifold M, , and hence the proof of the theorem is com-
plete.

In particular, if the second manifold M » in Theorem 3.1 is a compact sub-
set of an n-sphere, then Theorem 3.1 becomes

TaEoREM 3.2. Let M, be a star manifold with a spherical boundary B,
n a Euclidean space Eyin for any m > 0. If there are m funciions

Fr(uly”'yun)) r=n++1---,n+m,

n n positive variables uy, « -+ , U, with the following two properties for each
vector e, of a fundamental normal frame at every point of the manifold M, :
(i) F.(Pu,-++, Pwn) = F.a, -+, a") = constant implies that
Pr,n—2 g an_2,
(ii) F(Pn, -+, Pm) = Fu(a, -+ ,a") and Pr._o = o™ imply that
Mg = @dog for o, B =1,-+-, n,
then the manzfold M, is a compact subset of an n-sphere of radius a.

For m = 1, the integral formulas (3.12), (3.17), (3.18) and Theorems I,
11, 3.1, 3.2 were obtained by Chern [3].

4. Proofs of Theorems | and I

Proof of Theorem I. Theorem I follows from Theorem 3.1 immediately
if we can show that the m functions F, = Py, r=n+1,:---,n + m,
are of type n — 1. To this end we need the following inequality of Géard-
ing [7]:

Let P,oa(NY, -+, A" ) be the completely polarized form of the poly-
nomial P, ,_;()\.) defined by equation (2.13), so that

Pr,n—l()\r, Y )\r) = Pr,n—-l()\r); Pr,n—l()\r, Tty xr; )\:‘) = Pr,n——Z,l .
N ——
n—1 n—2

Then for positive definite symmetric matrices (\'us), - -+, (Aing™) the follow-
ing inequality is valid:

(41)  Praa(N, - ) N"Y) 2 Praa W)YV e Py ()Y,

where the equality holds when and only when the n — 1 matrices are pairwise
proportional.
Suppose now P, .10 = P, which can be written as P, ._1(\,) =
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Prna(AY). Since (Arag) and (Mies) are positive definite, from the inequality
(4.1) it follows that

Pr,n—2,1 = Pr,n—l()‘r y "%y }\r 3 >\:'k)
R —
4.2) n—2
é Pr,n—l()\r)(n_2)/(n_l)Pr,n—1()\:'k)l/(n_l) = Pr,n-l()\:‘),

which is the first condition for the functions P,,,_; to be of type n — 1. By
interchanging the two manifolds M, and M we have

(4.3) Prl,n—-2 = Pr.n—l()\r)o

The equality holds in (4.2) and (4.3) when and only when )\:‘ap = pA\rap for
a, 8 =1,---,n On the other hand, as in the proof of Theorem 3.1, by
using equations (4.2), (4.3), and (3.19) it is easily seen that the equality
holds in (4.2) and (4.3). Since P, ,—1(\,) = P,,n_l()\f), p = 1, and there-
fore the second condition for the functions P, . to be of type n — 1 is satis-
fied.

Proof of Theorem II. By putting

= = MEY = Mas,  Map) =g (B =1,---,n),
from inequality (4.1) we obtain
(4.4) P = P,
where the equality holds when and only when \.os = bdagforea,8 =1, ---, n.
Let a > 0 be defined by
(4.5) Pt Pl = gD
so that
(4.6) Py = qUPDtnDpouls

From inequality (4.4) and equation (4.6) it follows that
(4.7) Pr,n-—-2 > P(n-—ﬁ)/(n—l) (n——2)((uIV)(n—2)/(n—-l)+1)Pr—'$‘ll_/;)(n—2)/(n-l)’

= Lrn—-1 =aQ

which implies P,,._ = a™ %, where the equality holds when and only when
it holdsin (4.4). Thus, if Pyn—s = a" 7, then A\yag = béagfora, g =1, -+« ,m,
and therefore b = a in consequence of equation (4.5). Hence Theorem II
follows from Theorem 3.2 by taking F.(Pu, -+ , Prn) = Prn 2 Proaa.

5. Integral formulas for convex hypercaps

Let M be a compact differentiable manifold of dimension 7 with boundary;
and let M, be a convex hypercap with boundary B,_;, so that M, is an im-
bedded manifold given by X:M — E,,; with positive Gauss-Kronecker
curvature K,y everywhere. Then §2 with m = 1 can be applied.

In the space E,41, let £ be a fixed direction along which every line either
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is a tangent to the hypercap M, or intersects the hypercap M, at most at
one point, so that by the definition of a convex hypercap we have

(51) T = f'6n+1 z 0.
For the hypercap M., we introduce the following differential forms:
Ao = |t X, densa, -+, denp, dX, -+, dX| (0= aSn-—1),
n—1—a«a a
(5.2)
Dy = |§ dewss, -+, dewss, dX, - -+, dX | 0 =8 =n).
n—p B
As in §3, by using exterior differentiation and Stokes’s theorem we obtain
(503) Da+1 = Aa (0 Sas=n-— 1)°
My Bp_1

Now let My be another convex hypercap given by the imbedding
X*: M — E,.1, and suppose that there is a diffeomorphism f of the hyper-
cap M, onto the hypercap M such that at each pair of corresponding points
the hypercaps M, and M » have the same unit normal vector eny1. For this
pair of hypercaps M, and M, we introduce the following differential forms:

Aaﬂ = |£7Xaden+17 "'7de’n+17dX’ “'7dX7dX*?"'7dX*|’
n—1—(a+8) a B
A,:ﬁ = ,E’X*)den+1, "',d€n+1;dX, '”’dX:dX*:""dX*I’
n—1—(a+8) a 8
Bag = | X, X* deayr, -, denss, dX, « -+, dX, dX*, .-+, dX*|,
n—1—(a+48) o B
(5.4)
Co = IX,d6n+1, coodenys, dX, -'-,dX,dX*,---,dX*I,
“ AN S« N—
n—(p+ o) p o
Cro = | X*, dens, +++, dewss, dX, - -+, dX, dX*, -+, dX*|,
n — (p+ o) p a
Dlw = Igyden+1, "':deﬂ+laan ”"dX’dX*’.“’dX*,’
~ 2~ > —— —
n— (p+ o) p o
where 0 < o, 8 <n — 1and 0 £ p,c =< n. Asin §3, it is easily seen that
(5.5) 7Cp = hDpy,  7Chy = F*D,e (0 < p,0 1),

where we have placed
(5.6) h = X-e,,+1 ’ h* = X*'6n+1 .
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Exterior differentiation gives
dAop = Dairp, dAus = Dapi,
dBos = Capri — Casip = (1/7)(hDapsr — h*Datag), if 7 5 0.

Integrating both sides of each of equations (5.7) over the hypercap M, and
applying Stokes’s theorem to the left side we have

*
AaB = f Da,ﬂ+17
My

(5.7)

Aaﬁ = f Da+1,ﬁ,
M,

Bp—1 By1

(58)
Bus = [ (1/)(iDupis — W*Dasrs), if 7 = 0.
1 My

Bn—

Essentially the same argument as that used in deriving equation (3.16) shows
that

(5.9) Dy = (—=1)"n! tPos K11 dA 0=£a8=n),
where P, are defined, in terms of two parameters y and y*, by

det. (y>\n+l,a/3 + y*)\:+1,aﬁ + 60:3)
(5.10) n! a  xB
= Pos.
ogo;ﬁgnalﬁl(n-—a—ﬁ)lyy 8
We shall also write Pag = Pa(Aay1) and Pos = Pa(An). Substituting
equations (5.9) in equations (5.8) we thus arrive at the integral formulas

Ags = (—1)"n!f TPat1,6 Knr d4,
My

Bp_1

(5.11) A% = (=1)"n! fM 7Psss Ko dA,

Bp—1

B“B = (—1)"77,‘ [M (I/T) (hPa,ﬁ.H - h*Pa+1,a)Kn+1 dA,

Bp_1
if 0,

where 0 = o, 8 = n — 1.

6. Proof of Theorem Il

From equations (5.11) we can easily deduce different integral formulas,
but for proving Theorem IIT we need only the following one:

L (A — A + Ay — A;ko)
(6.1) n—1
— (=1)"n! fM (P + Py — 2P)Kny1 dA.

From the assumption of Theorem IIT that the given diffeomorphism f re-
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stricted to the boundary B, is a translation carrying the boundary B, onto
the boundary Bi_; , it follows that over the boundary B,_; , dX* = dX, and
therefore A;p — Ao + Aoy — Ay = 0. Thus the integral formula (6.1) is
reduced to

(6.2) fM (P + Poy — 2P1)Kops dA = 0,

On the other hand, in a recent paper [4] we have established the

LemMa. If p = (pas) and u* = (uag) are two positive definite symmetric
matrices of order n such that for a fixed v,2 < v < n,

(6.3) Pya(u) = Pya(u*),  Py(u) = Py(u*),
then
(6.4) Qy(py w*) = Py(u) + Py(u*) — 2Py ya(p, *) £ 0,

where the equality implies that P,(u) = P,(u*).

At each pair of corresponding points of the hypercaps M, and M3 under
the diffeomorphism f, we take the common unit outer normal vector to be
the vector e,i:; so that the matrices (Aui1,«5) and ()\:H,ag) are positive
definite everywhere, and the conditions (1.3) or (1.4) are equivalent to the
conditions (6.3) with v = 2. Since Q:(u, u*) is symmetric with respect to
the matrices u and p*, the above lemma gives

(6.5) Py(Mit) + Pa(Ania) — 2Pu(Anga, Ang1) < 0,

where the equality implies that Po(Aj1) = Pa(Ar41). From the inequalities
(5.1), (6.5), and the assumption that K,.; > 0, it follows immediately that
the integrand of equation (6.2) is nonpositive, and equation (6.2) holds
when and only when the equality holds in (6.5). Thus

Py(Aai1) = Pa(Nnn),

and hence Theorem III follows from the uniqueness theorem of Alexandroff-
Fenchel-Jessen for convex hypersurfaces with boundary.’
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