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1. Introduction

Let M be differentible mnifold of dimension n, nd X: M -+ E+
mpping of M into Euclidean spce E+ of dimension n -km for

ny m > 0. M, or rther M together with the mpping X, is clled n
immersed submnifold of E+ if the functional mtrix of X is of rnk n
everywhere. The submnifold M is sid to be imbedded, if X is one-one,
that is, if X(P) X(Q), P, Q e M, implies that P Q. In particular,
when m 1, n immersed (imbedded) submnifold M of the spce .n+m
is clled n immersed (imbedded) hypersurfce. Throughout this pper ll
mnifolds re supposed to be of class C, nd the dimension of mnifold
M is understood to be n.
Now let us consider n oriented immersed mnifold M. Then to each

point P e M there is unique linear spce N of dimension m normal to
X(M) t the point X(P). For ny unit normal vector e(P) t the point
X(P) in the spce N, we put

(1.1) I dX.dX, II de.dX, III,.= de.de,.,

where dX nd de,. re vector-valued linear differentiM forms on M, and the
dot denotes the sclr product of two vectors in the space E+. The eigen-
vlues kd, ]rn of II,. relative to I re cMled the principal curvatures of
the mnifold M ssocited with the unit normal vector e(P). If the Guss-
Kronecker curvature K k... k ssocited with the vector e,.(P) is
nonzero, the reciprocals 1/kr, 1/], clled the rdii of principal curva-
tures ssocited with the vector e(P), re the eigenvlues of II, relative to
IIL, which is lso positive definite due to the assumption K 0. In this
cse we introduce the a elementary symmetric function

(1.2) (:) P 1/k 1/k (1 _-< a _-< n).

If Mn iS hypersurfce, then t ech point X(P) of M there is only one unit
normal vector e, nd for P ssocited with it we shall simply write P.

Let Mn be closed oriented Riemnnin mnifold immersed in Euclidean
spce En+m. By normal frame Xen+...e+, on the mnifold M we
mean a point X of the mnifold M. nd n ordered set of mutually perpen-
diculr unit vectors en+, en+m normal to the manifold M. t the point
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X. Mn is called a star manifold, if there exist a point 0, called a pole, in
the manifold Ms and a class C field of normal frames Xe+l e+, over the
manifold M such that the Gauss-Kronecker curvature Kr of the manifold
Mn and the support function X. er with respect to the pole 0 are positive for
every vector e, n 1 -< r -< n m, at every point of the manifold M.
This normal frame Xe+l...e+m is called a fundamental normal frame of
the star manifold M at the point X. An n-dimensional star manifold with
boundary is an n-dimensional compact subset of an n-dimensional star mani-
fold. An n-dimensional convex hypersurface with boundary is an n-dimen-
sional compact subset of the boundary of a convex region in an (n - 1)-
dimensional Euclidean space E+I, or is equivalently an n-dimensional com-
pact subset of an n-dimensional imbedded hypersurface with positive Gauss-
Kronecker curvature everywhere. An n-dimensional convex hypercap is an
n-dimensional convex hypersurface with boundary such that in the space
En+l there is at least one fixed direction, along which every line either is a
tangent to the hypersurface or intersects the hypersurface at most at one
point. It is obvious that a convex hypercap can never be closed.

Since Christoffel [5] established in 1865 his well-known uniqueness or
rigidity theorem on closed convex surfaces in a space E3, various uniqueness
theorems of the same type on closed convex hypersurfaces have been obtained
by different authors with different methods. It is natural to ask whether we
can extend some of these uniqueness theorems on closed convex hypersurfaces
to general immersed manifolds with boundary. In recent years the present
and other authors have succeeded in deriving some new integral formulas, by
means of which most classical uniqueness theorems can easily be extended to
convex hypersurfaces with boundary satisfying a natural boundary condition.
For uniqueness theorems on general immersed manifolds with boundary,
due to the complication arising from the immersion, the only result we have so
far is the generalization [9] of Christoffel’s uniqueness theorem to two-dimen-
sional immersed manifolds with boundary. The main purpose of the present
paper is to further extend this uniqueness theorem to immersed manifolds of a
general dimension n > 2 with boundary, and to establish a uniqueness theo-
rem on convex hypercaps by proving the following theorems.

THEOREM I. Let M and M* be two star manifolds, with boundaries B_I
and *Bn_] respectively, in a Euclidean space En+, for any m > O. Suppose
that there exists an orientation-preserving diffeomorphism f of the manifold M
onto the manifold M* such that, at each pair of corresponding points, the mani-
folds M and M have a common fundamental normal frame e+ e,+ and
equal P,_ defined by equation (1.2) and associated with each common unit
normal vector e, r n 1, n - m. If the diffeomorphism f restricted
to the boundary B_ is a translation (strictly speaking, is induced by a transla-

The author is indebted to the referee for his comment which leads to the definition
of a star manifold in the present form.
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lation in the space En+m) carrying the boundary B,_I onto the boundary *
then the diffeomorphism f is a translation carrying the whole manifold M, onto
the whole manifold M*
THEOREM II. Let M, be a star manifold with a spherical boundary Bn_

such that at every point P._. P._ is constant for -t- v > O, >- O, v :> 0
and for each vector e, of a fundamental normal frame of the manifold M, Then
the manifold M, is a compact subset of an n-sphere.

TEOaM III. Let M, and M* be two oriented convex hypercaps with bound-
B,_ respectively. Suppose that there exists an orientation-aries B_ and *

preserving diffeomorphism f of the hypercap M, onto the hypercap M* such that
at each pair of corresponding points the hypercaps M, and M* have the same
outer normal vector and satisfy either

(1.3) P =< P*, P

_
P*,

or

(1.4) P1 >= P*, P =< P*,
where P, and P*, are defined by equation (1.2) for the hypercaps M, and M*
respectively. If the diffeomorphism f restricted to the boundary Bn_ is a transla-

B,_ then the diffeomorphismtion carrying the boundary B,_I onto the boundary *

f is a translation carrying the whole hypercap M, onto the whole hypercap M*.
COROLLiRY. Let M, be a convex hypercap with a spherical boundary B,_I.

If there is a constant c such that, at each point of the hypercap M, either

(1.5) P =< c <=
or

(1.6) Pi > c > P/
then the hypercap Mn is a compact subset of an n-dimensional hypersphere.

It should be noted that when n 2, the conditions (1.3) and (1.4) to-
gether are obviously weaker than the condition of Alexandroff [2], which can
be stated as follows: At each pair of corresponding points the hypercaps
and M satisfy the condition F(2P, P.) F(2P*, P*), where F( U, V), for
U > 0, U _>- 4V > 0, is a continuous function monotonely increasing in
both variables U and V. Furthermore, Grotemeyer [8] obtained Theorem
III for n 2 in terms of the condition of Alexandroff, but actually only used
the conditions (1.3) and (1.4) together in his proof.

2. Immersed submanifolds in Euclidean space
Suppose a Euclidean space E+m is oriented. By a frame Xo...en+,

in the space E,+m we mean a point X and an ordered set of mutually perpen-
dicular unit vectors e, e,+ with an orientation coherent with that of



UNIQUENESS THEOREMS ON RIEMNNIN NINIFOIDS 529

the space E+m so that the determinant el,"" en+ is equal to +1.
To avoid confusion we shall use the following ranges of indices throughout
this paper"

1 =< ,, -< n, n+ 1 -< r,s,t =< nWm,
(2.1)

1 -< i,j,]c <__ n+m.
Then we have

(2.2) e.ej -,
where ij are the Kronecker deltas. Let F(n, m) be the space of all frames in
the space En+, so that dim F(n, m) 1/2(n+m)(n+m+ 1). In
F(n, m) we introduce the linear differential forms o, . by the equations

(2.3) dX _, e de )" e
where

(2.4) o. + ’ 0.

Since d(dX) 0 and d(de) 0, from equations (2.3) we have

(2.5) do’ 0. ^ o, do h ,
where h denotes the exterior product.
As explained in 1, by an immersed submanifold in the space E.+ we

mean an abstract manifold M. and a mapping X: M E+ such that the
induced mapping X. on the tangent space is univalent everhere. a-
lytically, the mapping can be defined by a vector-valued function X(P),
P e M. Our assumption implies that the derential dX(P) of X(P),
which is a linear differential form on M. with value in E+, has as values a
linear combination of n, but not less than n, vectors t, t.. Since X,
is univalent, we can identify the tangent space of M at the point P with the
vector space spanned by t, t. A linear combination of the vectors
t, t is called a tangent vector, and a vector perpendicular to them is
called a normal vector. The immersion of M in E+ gives rise to a bundle
B, whose bundle space is the subset of M F(n, m) consisting of

(P, X(P)o e+ en+m) e M X F(n, m)

such that e, e are tangent vectors and e+, e+ are normal vec-
tors at the point X(P).

Consider the inclusion mapping and the projection p"

(2.6) B M. X F(n,m) P F(n,m).

By putting

(2.7) (pC) 0, o (pC)*Oiy
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from equations (2.4) and (2.5) we have

(2.8) ; + ; 0,

(2.9)

From the definition of the bundle B it follows that r 0 and that , are
linearly independent. Thus the first equation of (2.9) gives

from which we have

(2.1o) E Aro o Argo Aro,
If det (A,o) 0 for some r, by introducing the matrix (X,o) inverse to

the matrix (A,) we have

(2.11)

By means of equations (2.2), (2.3), (2.7), (2.10), and (2.11), equations
(1.1) can be written as

III ,
(2.12)

Suppose

(2.13) det (it, + X,, y) Eo<_,y<_n () Pr,(Xr)y",
where y is a parameter. Then P(hr) is a polynomial of degree
for a fixed r, and it is easily seen that P,(kr) is equal to the invariant
defined by equation (1.2).
Through a point in a Euclidean space En+m let A1,’", An+m_ be

n + m 1 differentiable vector functions of n variables x, x, and
let J be any vector. Then the scalar product of the vector J and the
vector product Ai X X An+m_ of the vectors A,..., An+,_ is given
by

(2.14) J. (A X X A,+,_) -1)+’-] J, A An+m_ I,
from which it follows that

(2.15) e X X Or X X e,+ (--1)’++e,
where the circumflex over er indicates that the vector e is to be deleted. In a
previous paper of the author [10] we hve combined the vector product of
vectors and the exterior product of differentials to define the vector

A (R) @ A_ (R) dA @ @ dAn+,,_

(2.16) (A1 X X A_ X A., X X An+m_,,,+,,_)dx"
A A dx"’+’-,
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where i 1,..., nm- 1 and A., OA/Ox. It is obvious that
the vector (2.16) is independent of the order of the vectors dA,...,
dA+,,_.l. Let dA be the area element of an immersed submanifold Mn in
the space En+m. Then by means of the combined operation (R) we obtain

(2.17)
dX (R) (R) dX (R) e+l (R) (R) $r (R) (R) e,+,,,

(-1)++! edA,

(2.18)
der (R) (R) der (R) en+ (R) (R) r (R) (R)

(--1)+’+n! e K dA.

From equations (2.3), (2.7), (2.15), (2.17), and (2.18)it follows that

dA o A A (.On,

(2.20) KdA o A A .
3. Integral formulas for a pair of immersed

manifolds with boundary

Let M be a compact differentiable manifold of dimension n with boundary,
and let M and M* be immersed manifolds with boundaries Bn-1 and *
given by X’M - E+ and X*’M --> E,/,,, respectively. Then 2 can
be applied to the manifolds M, and for the corresponding quantities and
equations for the manifold M* we shall use the same symbols and numbers
with a star respectively.
Suppose that there is a diffeomorphism f of the manifold M onto the mani-

fold M* such that at each pair of corresponding points the manifolds M
and M* have parallel tangent spaces. Without loss of generality we may
assume that

(3.1) e* e (i 1, ,n 4- m).

From equations (2.3), (2.7), (2.3)*, (2.7)*, and (3.1) it follows that

(3.2) *Ora 03ra.

Now for the pair of immersed manifolds M and M* we introduce the fol-
lowing differential forms"

(3.3)
Ba,n-2-. Z__,r=n+l 1

IX, X*, e+l, , e,+,, de, dX, ,dX ,dX*, dX*

n--2--a
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(3.5)

(3.6)

Cr,n-l- ( 1

X, e,+l, Or, e+,der, dX, ,dX, dX*, ,dX*

,.,-i-, (-i

X*,e+l, r, e+,der,dX, ,dX, dX*, ,dX*

n--1--/

where0-< a =< n-2and0 =</_ n- 1. By means of equation (2.14)
and the operation (R) we obtain

C,,.__ ( i)"+-X.E, C.*,._,_ (-- I)"+"-’X*. E,
(3.7)

Dro.n_,_o ( 1 n+r-ler’ E,
where

E en+ (R) @ r @ (R) en+m ( der
(R) dX (R) @ dX (R) dX* @ (R) dX*.

n-i-
From the definition of the operation (R) and the last equation of (3.7) it
follows immediately that

(3.8) ( 1 +r-lE Dr,_l_ er.

Thus the substitution of equation (3.8) in the first two equations of (3.7) gives
$(3.9) Cr.--m hr D,.,n__ Cr*,__ hrDr,-l-

where we have placed

(3.10) hr X’er, h* X*’er.

By using equations (3.3), (3.4), (3.5), and (3.9), applying the ordinary
rules for differentiation of determinants, and noticing the pairwise cancella-
tion of terms, we can easily obtain

(3.11)

dBa,n_S--. 2n+m Cr,a+lr,n+l Cra,n-l-a ,n--2--a)

En+m
=.+ (h D.,.__, hD,.+,.__.)

(0 =<a=<n-2).

Integrating both sides of equation (3.11) over the manifold M and applying
Stokes’s theorem to the left side, we can arrive at the integral formulas
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(3.12) B.,n__. (h D.,__. h* D,.+,__.)
r.n+l

(0_ a_n--2).

To apply the formulas (3.12) we introduce the derential forms of order n

(3.13) n., (-1)+

e, en+, er-, er+, ", e+, de, ..., de, dX, ..., dX, dX*, dX* ,
n ( + ) .

(0 a, n).

In virtue of equations (2.3), (2.7), (2.8), (2.11), (2.14), (2.15), (2.20),
(2.3)*, (2.7)*, (2.11)*, (3.2), and (3.13) we can easily obtain, for two param-
eters y and y*,

0 a!!(n-a-)!
y y D.

(-1) (+)(-) s,,...,.(y, + y ,, +
(3.14) ""’""’"

1)(+)(-)n (y + y* + ) A h (y + y , +
1)(’+)(-)n det (yX.a + y h.a + 8.a)K dA,

where s....., is +1 or -1 according as a, a form an even or odd
permutation of 1,... n, and is zero otherwise. Now suppose

(3.15) det (yX. + y*h., + .) o.+ a. . (n a fl)

so that P. is a homogeneous polynomial of degrees a and fl in h and
h. (p, a 1,..., n) respectively. In particular, from equation (2.13)
it follows that P.0 P.(h). Comparison of equation (3.14) with equa-
tion (3.15) yields immediately

(3.16) D. 1)(+)(-)n! P.K dA (0 a, n).

Substituting equation (3.16) in equation (3.12) we therefore obtain

fBn_ Ua,n-2-a

(a.17) (_ 1)(+,-, (hP.,__. h* P,.+,__.)K dA,

(o _<_

_
n- 2).

If the diffeomorphism f of the manifold M onto the manifold M* restricted
to the boundary Bn_l is a translation carrying the boundary B_I onto the
boundary B._I, then on the boundary Bn-1, dX*= dX, and therefore
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B0,n-2 Bn_.0. From the two equations of (3.17), for which a 0,
n 2 respectively, we can easily obtain the integral formula

(3.18)

n--bin

2 , hr (Pro,,-i Pr,-.,)Kr dA
r--nl

[h(P,_- P,-,o) h(P,_,- P0,_)]K dA.
rn+l

Addition of equation (3.18) to the one obtained by interchanging the roles of
the two manifolds M and M* in equation (3.18) thus gives

n.-bm

(3.19) ’.
rn-kl

[hr(Pro,,- Pr.-2,) + h*(Pr,n-.o- Pr,_2)]Kr dA O.

Let Fr(ul, u), r n 1,..., n m, be m functions in n posi-
tive variables u, u. We shall say that each function Fr is of type
n 1, if the following two conditions for each r are satisfied"

(i) F(Pro, ..., Pro)---Fr(Prol,’", Po) implies that Pr.-, _>-
Po,-, and therefore, by interchanging the two manifolds Mn and M*
that P,n-- >= P.-.o

(ii) Fr(Prlo,"’, Prno) Fr(Pr0..’", Pr0) and Pr.-,l Pr0,n.-I
(or Prl,-. Pr,-.o) if and only if h, hr, for a, 1,.-- n.

THEOREM 3.1. Let M, and M* be two star manifolds, with boundaries.B,-I and B_ respectively, in a Euclidean space En+m for any m > O, and let
F(u, Un), r n + 1,..., n + m, be m functions of type n-- 1
in n positive variables u, u. Suppose that there exists an orientation-
preserving diffeomorphism f of the manifold Mn onto the manifold M* such
that, at each pair of corresponding points, the manifolds M and M*, have a
common fundamental normal frame e+ e+, and the functions
Fr(Po,... P,o) and Fr(Pr01, Pr0) have the same value for each r.

If the diffeomorphism f restricted to the boundary Bn_I is a translation.
carrying the boundary B_ onto the boundary B_I, then the diffeomorphism
f is a translation carrying the whole manifold M onto the whole manifold M*

Proof. Applying a translation in the space En+m if necessary, without loss
of generality we may assume the poles in the star manifolds M and M*
to be coincident, so that hr 0 and h,* > 0 for r n q- 1, n q-m
over the whole manifolds Mn and M* Thus, due to the first property of the
functions Fr and the assumption that Kr 0, each term of the integrand of
equation (3.19) is nonpositive, and equation (3.19) holds when and oDly when

(3.20)
Pro,n-I Pr,n-2,1 Pr,n-l,O Prl,n-2

(r n -J- 1,..., n q- m).
By the second property of the functions F we therefore obtain

(3.21) ,n).
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Substitution of equation (3.21) in equations (2.11) and (2.11)* gives imme-
diately

* (a 1, n).(3.22) w, o,

From equations (3.22), (2.3), (2.7), (2.3)*, and (2.7) * it follows that dX*
dX over the whole manifold Mn, and hence the proof of the theorem is com-
plete.

In particular, if the second manifold M* in Theorem 3.1 is a compact sub-
set of an n-sphere, then Theorem 3.1 becomes

THEOREM 3.2. Let Mn be a star manifold with a spherical boundary Bn_l
in a Euclidean space E,,+, for any m > O. If there are m functions

Fr(ul,’" Un), r n-4- 1,..., n + m,

in n positive variables ul, u, with the following two properties for each
vector er of a fundamental normal frame at every point of the manifold M

(i) F(P, ""n’-2 Prn) F(a, ..., a constant implies that
Pr,n-2 > a

(ii) F(Prx P) F(a, an) and Pr,n-2 an-2 imply that
hr, a, for a, 1,..., n,

then the manifold Mn is a compact subset of an n-sphere of radius a.

For m 1, the integral formulas (3.12), (3.17), (3.18) and Theorems I,
II, 3.1, 3.2 were obtained by Chern [3].

4. Proofs of Theorems and II

Proof of Theorem I. Theorem I follows from Theorem 3.1 immediately
if we can show that the m functions F Pr.n- r n 1, n m,
are of type n 1. To this end we need the following inequality of Grd-
ing [7]"

Let Pr.n_(hri), h(n--1)) be the completely polarized form of the poly-
nomial Pr,n-l(r) defined by equation (2.13), so that

Pr,n-(Xr, Xr) Pr,n-(Xr), Pr,n-(Xr, Xr, r*) Pr,n-2,.

n--1 n--2

(I)Thenfor positive definite symmetric matrices (,/, ..., ,,, )the follow-
ing inequality is valid"

1) (n--) p /(n--1) 1/(n--l)(4.1) Pr,n-l(hr X > Pr,n_l(xi)) 1/(n-1)
r,n--l,Ar

where the equality holds when and only when the n i matrices are pairwise
proportional.

Suppose now P.,-.0 Po.n--, which can be written as Pr.,-l(hr)=
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P,._(h*).
(4.1) it follows tha

P,_, P,_(,, ..., )t, k*
(4.2) n 2

=> Pr,n-(hr) (n-2)l(n-1)Pt,n-(k) 1/(n-1)

Since (hr.) and (r.8) are positive definite, from the inequality

which is the first condition for the functions P.,n-1 to be of type n 1.
interchanging the two manifolds Mn and M* we have

By

(4.3) P,I.,_ >- P.,_(k,).

The equality holds in (4.2) nd (4.3) when nd only when pk, for
a, 1, n. On the other hnd, s in the proof of Theorem 3.1, by
using equations (4.2), (4.3), and (3.19) it is easily seen that the equality
holds in (4.2) and (4.3). Since P,_(k) P,_(X), p 1, and there-
fore the second condition for the functions P,_ to be of type n 1 is satis-
fied.

Proof of Theorem II. By putting. X ., . a. (a, 1,...,n),

from inequality (4.1) we obtain

(4.4) l-’r,n--2

where the equality holds when and only when ,,.a b.a for a, 1, n.
Let a > 0 be defined by

(4.5) " a’(n-2)+r(n-1)

so that

(4.6) a(/) ((n--2) -t- n--l)D--#/
Zr,n--2

From inequality (4.4) and equation (4.6) it follows that

(4.7) Pr,n-2 p(n-2)l(n-) a(n-2)((#lr)(n-2)/(n--1)+l)D--(/)(n-2)/(n-1)r,n--1 Zr,n--2

which implies P,-2 >= a-, where the equality holds when and only when
it holds in (4.4). Thus, if Pr,- a-2, then. b. for a,/ 1, n,
and therefore b a in consequence of equation (4.5). Hence Theorem II
follows from Theorem 3.2 by taking F(PrI P.n) P,_ P,_

5. Integral formulas for convex hypercaps
Let M be a compact differentiable manifold of dimension n with boundary;

and let M, be a convex hypercap with boundary B_, so that M is an im-
bedded manifold given by X:M -- E,+ with positive Gauss-Kronecker
curvature K+ everywhere. Then 2 with m i can be applied.

In the space E+I, let be a fixed direction along which every line either
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is a tangent to the hypercap M or intersects the hypercap M at most at
one point, so that by the definition of a convex hypercap we have

(5.1) r -= ’en/l 0.

For the hypercap M we introduce the following differential forms"

A, , X, de+, de,+, dX, dXl (0 <- a

_
n 1),

n-l-a
(5.2)

(0 < =<
n-f

As in 3, by using exterior differentiation and Stokes’s theorem we obtain

(5.3) f D,+ f A, (0 a n- 1).
M Bn_l

Now let M be another convex hypercap given by the imbedding
X*" M En+, and suppose that there is a deomorphism f of the hyper-
cap M onto the hypercap M such that at each pair of corresponding points
the hypercaps M and M have the same unit normal vector e+. For this
pair of hypercaps M and M we introduce the following derential forms"

A, , X, de+, de+, dX, dX, dX*, dX: ,
A*, , X*, de+ ..., de+ dX, ..., dX, dX*, dX* [,

n 1 (a + )
B, X, X*, de+ ..., de,+ dX, ..., dX, dX*, ..., dX* ,

(5.4)
C X, de+, ..., de+, dX, ..., dX, dX*, dX*{,

n ( + )
X*, de+, de+l, dX, dX, dX*, d

n ( + )

n ( + )
whereO a, fl n-- landO p,a n. Asin 3, it is easily seen that

(.) hD. .C h*D. (0 . n).
where we have placed

h* X*(5.6) h X. e+, .e+.
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Exterior differentiation gives

Da,f+l
(5.7)

dA D+, dA *

dB C,+ Ca+, (1/r)(hD,+ h*D+,), if r 0.

Integrating both sides of each of equations (5.7) over the hypercap M and
applying Stokes’s theorem to the left side we have

n--1 n--1
(5.8)

O.
n--1 VMn

Essentially the same argument as that used in deriving equation (3.16) shows
that

(5.9) D. (--1)nn! rP.Kn+dA (0 <= a, fl <= n),

where P.a are defined, in terms of two parameters y and y*, by

*X*det (y},+,.a + Y +,. + -)
(5.10) .+ yay.p..

o_ <=n a! ! (n a )

We shall also write P.0 P.(M+) and P0. P.(+). Substituting
equations (5.9) in equations (5.8) we thus arrive at the integral formulas

whereO <_- a, fl -<_ n- 1.

ifr #0,

(Ao- Ao + Ao* A*o)

(--1)nn! fn r(P=o + Po- 2Pn)Kn+, dA.

From the assumption of Theorem III that the given diffeomorphism f re-

(6.1)

6. Proof of Theorem III
From equations (5.11) we cn esily deduce different integral formulas,

but for proving Theorem III we need only the following one:
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stricted to the boundary B_I is a translation carrying the boundary Bn_ onto
the boundary B_I, it follows that over the boundary B_I, dX* dX, and
therefore A0 A01 + A0 A10 0. Thus the integral formula (6.1) is
reduced to

f_ r(Po + Pos 2Pl)Kn+ dA(6.2) 0.

On the other hand, in a recent paper [4] we have established the

LEMMA. If # (t,) and t* (t*,) are two positive definite symmetric
matrices of order n such that for a fixed % 2 <- / <__ n,

(6.3) Pv-i(#) =< Pv-(*), Pv(p) => Pv(*),

then

(6.4) Or(#, *) Pv(#) + Pv(*) 2Pv_,l(#, p*) =< 0,

where the equality implies that Pv() Pv(*).

At each pair of corresponding points of the hypercaps Mn and M* under
the diffeomorphism f, we take the common unit outer normal vector to be
the vector en+ so that the matrices (X+,,o) and (X+I,,o) are positive
definite everywhere, and the conditions (1.3) or (1.4) are equivalent to the
conditions (6.3) with 2. Since Q.(, t*) is symmetric with respect to
the matrices t and *, the above lemma gives

* X+) =< 0,(6.5) P2(}n+) + P2(n+) 2P(h+, *
,

where the equality implies that P.(},+.) P2(h+). From the inequalities
(5.1), (6.5), and the assumption that Kn+ O, it follows immediately that
the integrand of equation (6.2) is nonpositive, and equation (6.2) holds
when and only when the equality holds in (6.5). Thus

P(k+) P.(},*+),
and hence Theorem III follows from the uniqueness theorem of Alexandroff-
Fenchel-Jessen for convex hypersurfaces with boundary.
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