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BY
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Let f denote a real-valued function on euclidean N-space such that the
gradient grad f in the sense of Schwartz distribution theory is a vector-valued
measure [21, p. 37]. In distribution theory functions differing in zero Lebesgue
N-measure are equivalent. We intend to show that, at least in two important
cases, there is a function f equivalent to f which is determined more precisely
than f and is in a natural sense nicer. The function f is defined as the limit
in a suitable sense of a sequence of "elementary" functions. It turns out
that ] is determined up to Hausdorff (N 1 )-measure 0.

In Part I this is done when grad f is itself a function, which is the same as
to say that f is equivalent to a function locally absolutely continuous in
G. C. Evans’s sense. Part II concerns the more difficult case when f is an inte-
ger-valued function, dual to a current c of dimension N such that both c and
its boundary bc have finite mass. In Part III we apply these results to the
study of sets with finite perimeter in the sense of Caccioppoli and De Giorgi.
In the special case when the boundary of a set E is a compact (N 1)-
manifold X such that X occupies zero Lebesgue N-measure, the perimeter
of E is shown to agree with the integralgeometric (N 1)-area of the in-
clusion map i.

PART I

1. Introduction

We adopt the following notation throughout: x (x1, xN) is a generic
point of euclidean N-space RN (N _>- 2). For ] -< N let mk denote Hausdorff
k-dimensional measure in RN (= Lebesgue measure for k N). We use
fr E, cl E for the frontier, closure of a set E, respectively. For s > 0, [E]8
will denote the s-neighborhood of E. We write spt f for the support of f.
) is Schwartz’s space of all infinitely differentiable functions f(x) with com-
pact support. Let BV stand for the space of all locally summable functions

f such that, for each i 1, ..-, N, the ih distribution theory partial de-
rivative of f is a measure ti. The notation is justified by the result proved
independently by Krickeberg [17] and Federer [Bull. Amer. Math. Soc.,
vol. 60 (1954), Abstract no. 407, p. 339] that f BV if and only if f is locally
of bounded variation in the sense of Cesari and Tonelli. We write grad f
for the vector-valued measure (1, N). The total variation measure
of a real- or vector-valued measure t will be denoted by t I; see, for ex-
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ample, Whitney [22, Chapter 11]. For f e BV and E any Borel set, we write

LI(f, E) fE fl dmN I(f, E) lgradfl (E),

finite or + . For E RN we write merely L(f), I(f).
Let AC denote the set of all f BV such that grad f is a function (i.e.,

grad f is m-absolutely continuous). Calkin and Morrey showed [4, Lemma
3.2, Theorem 6.3] that for f AC there exists ] equivalent to f such that ] is
locally absolutely continuous in Evans’s sense relative to every choice ot
coordinates in RN, and

I(f, E) j Grad ][ dmr, all E,1

where Grad f is the ordinary gradient of f. They obtained f as follows.
Consider a suitable approximate identity (n and let fn f * 4n, n 1, 2, --.,
where denotes convolution. Then every fn is continuously differentiable,
and lim I(f, f, K) 0 for any compact K. Let

(2) ](x) limn--, fn(X)
for all x such that the limit exists and is finite.

If the partial derivatives of f are functions locally of class L for p > 1,
then more is known. For p 2, the case which arises in Newtonian po-
tential theory, ] can be determined up to a set of zero outer capacity of order
2; see [2], [8], or [15]. Fuglede showed [15, Chapter III] that for any p > 1,
] can be determined up to a set E on which the M. Riesz potential of order p
of a nonnegative function of class Lp can be + . Such a set E has a ca-
pacitary dimension N p; for p > N, ] is continuous. These results are
best possible. For p 1, there are partial results in terms of Riesz potentials;
see [15] and references cited there.

In 5 we show that the limit (2) exists in ,-measure where /is a new set
function introduced in 4. According to the theory of functional completion
of Aronszajn and Smith [2], applied to the space ) in the/-norm, this result
is best possible. The exceptional sets in the perfect functional completion
are precisely the /-null sets. Using an inequality recently proved by Gustin
[16], it is then shown that the ,-null sets are precisely the m_-null sets
(Theorem 4.3).

2. Preliminary lemmas

In this section we collect some lemmas, mostly well known, about functions
f eBV.

Regularization [21, p. 21]. For n 1, 2,.-. choose e D such that
n >- 0, Ll(n) 1, and spt Cn C (n--neighborhood of 0). Write fn for
the convolution"

(1) f(x) f.,(x) JRff(Y)(x y) dmN(y), n 1,2, ....
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From standard reasoning and the formula

(2) grad fn (grad f) Cn f * (Grad

one obtains

2.1.
()
(b)
(c)
(d)

[21, p. 16]

For any locally summable f,
fn is infinitely differentiable, n 1, 2,
sptfnc [sptf]l/n, n 1,2,...
if f x >- a for all x [E]I/, then f X >= a for all x E;
if f is uniformly continuous in [E]/n for some n, then f,, tends to f uni-

formly on E;
(e) forK compact, limnL(fn f, K) 0; and iffeAC,

limn I(fn f, K) 0;
(f) iffeBV, then I(f,,, E) <= I(f, [E]/,), n 1, 2, ....
Part (f) follows from (2) and the principle that regularization does not

increase mass.

2.2. Let fn be any sequence in BV such that f,,(x) tends to a finite limit
f(x) mv-almost everywhere and I(fn, K) is bounded for every compact set K.
Then f e BV, and there is a subsequence of n such that grad f,, tends to grad f
weakly,

(3) limn L(f f, K) O, any compact K,

(4) I (f) -< lim inf I(f).

Proof. From 2.1 it is enough to consider the case when f is infinitely
differentiable. Let K0 be any N-cube in RN. Choose constants c such that

f (f 0, n 1, 2, ....On) dmv

By an elementary lemma [7b, Lemma I], Ll(f,, Cn, Ko) is bounded, to-
gether with I(fn C,, Ko) I(f, Ko). There exist a subsequence of n
and f0 such that

limn L(f, Cn fo, go) O, lim [fn(X) Cn] fo(X),

m-almost everywhere in K0, by a compactness criterion [21, p. 44]. Since
fn(X) tends to f(x) m-almost everywhere in K0, we find that c tends to a
finite limit c and f f0 + c. Diagonalizing, we take the subsequence in-
dependent of K0. Then (3) is immediate; and the remaining assertions
are then well known consequences of weak convergence.

2.3. For f e BV, I (I f I) <= I (f), with equality if f AC.

For f AC this was proved in [8, p. 316]; and the general case follows by
regularization of f and (4).
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3. More background material

Suppose that fE BV is the characteristic function of a set E. Following
De Giorgi [7] we call perimeter of E the quantity

P(E) I(fE).

According to [7a, Theorem VII, if E has finite perimeter, then either E or
R E has finite mn-measure. The following notion of exterior normal is
due to Federer [lla, p. 48]. Let E be m-measurable. Then E has the unit
vector n(x) as exterior normal at x if, letting

S(x, r) [y:[ y x < r],

S+(x, r) [y e S(x, r) (y x).n(x) >= 0],

S_(x, r) [y e S(x, r) (y x) .n(x) <- 0],
we have

lim
mN{S_(x, r) n E} 1, lim mn{S+(x, r) n E} O.

r-)O- mNiS_(x, r) r-o+ m{S+(x, r)}

The following is a refinement by Federer [lld] of one of De Giorgi’s main
theorems [7b, Theorem III]:

3.1 THEOREM [Tb][lld]. Let E have finite perimeter P(E). Let B denote
the set of x for which n(x) exists. Then

(1) P(E) m_l(B);

(2) the Gauss-Green theorem holds.

Let us call, with De Giorgi, B the reduced boundary of E. Since B c fr E
we have from (1)

(3) P(E) -< m_l(fr E).

We also need the following formulas for I(f), used in elementary cases by
De Giorgi. Formula (4) is a special case of a co-area formula’ for Lipschitz
mappings from subsets of Rk into R! (1 _-< k) due independently to Federer
[lle, Theorem 3.1] and Young [23b, Theorem 4], while (5) was proved by
Rishel and the author [13].

3.2 THEOREM [lle][23b]. Let f satisfy a Lipschitz condition. For real z,
let Bz [x:f(x) z]. Then

(4) I(f) f: m_(B) dz.

3.3 THEOREM [13]. For any f e BV and real z, let E [x:f(x) > z]. Then

(5) I(f) f P(E) dz.
J_
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3.4 LEMMA.
that limn I(f f) O.

Proof of 3.4.

Then

By 3.3 and 2.3

Let f BV, f, BV be integrable, integer-valued functions such
Then lim L(A f) 0.

Fori-- 0,1,2,..., n-- 1, 2,...,let

En [x:lf,(x) -f(x)[ > i].

L(fn f) ’..o n 1,2, ....

Since m(E) is finite, we have by [7a, Theorem VI]

m(E,) <__ [P(E)]N/-I;
and the conclusion of 3.4 follows.

4. The set function

In this section we replace if) by the slightly larger class of all with com-
pact support satisfying a Lipschitz condition. Then lle if e.
For any compact set K, let

+(K) [qe: >->- 0 and (x) >= 1, allxeK].

In the present setting I() is a reasonable measurement of the size of e ff)l.
To get a corresponding measurement for compact sets, we define

/(K) inf+()I(), K compact.

Our first step is to get a pair of useful alternative formulas for 3’(K).

4.1 LEMMA. For any compact set K,

(1) /(K) infx=amN_(fr G), G open and bounded.

Proof. Let (K) denote the right side of (1). For > 0 arbitrary,
choose G open and bounded such that K G and

m_(fr G) <-(K) q- .
Consider regularizations f of the characteristic function fe. By 2.1,
fn )+(K) for large n and I(fn) <= I(fa) P(G). Then by using 3, (3),

/(K) I(:n) m_l(fr G).

Since e > 0 is arbitrary, , -< /1.

To prove the reverse inequality, given e choose f e )+(K) so that I(f) <=
(K) . By using 3.2,

fI(f) m_l(B,) dz m_l(Bz) dz.

’7=0 P(E,,) /(If-- f I) I(A--f), n 1, 2,...
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Let G [x:f(x) > z0] where 0 < z0 < 1 and

m_l(fr G) <= m-l(Bzo) <= I(f).

Then G is open, bounded, K G, and

n(K) =< mc_(fr G) < /(K) -I- ,
from which , =< /.

An inspection of the proof reveals that we have also established

(2) /(K) infK: P(G), G open and bounded.

4.2 COROLLARY. For any compact set K,

(3) -(K) ,(fr g).

For, if G is open and fr K G, then G o K is open, and fr (G o K) fr G.
The definition of /is extended to arbitrary sets E by

(4) /(E) infEcuK -- (Ki), Ki compact.

It is immediate that is monotone and countably subadditive. From (1),- is right continuous on compact sets; i.e., for every K compact and > 0
there exist G open, K c G, such that K’ c G implies ,(K’) < (K) + .
This implies that , is outer regular; i.e., ,(E) inf /(G), E c G, G open.
One can easily show (see Choquet [6a, p. 202]) that

,(K o K) - ,(K n K.) -_< (K) - ,(K), K, K. compact.

An inequality of this type holds for classical capacity of various orders and
has a prominent place in Choquet’s general theory of capacities [6a]. If
one knew that (G) sup (K), K G, for G open, it would then follow
from Choquet’s results on capacitability [6a, 30] that for any analytic set E
with (E) finite and any e > 0 there exist K and G with K E G and
/(G) /(K) < v. The author believes that this is true but has not proved
it.

In the terminology of Aronszajn and Smith [2], is a capacity generated by
the functional space normed by I. By 2.3 the norm I has the strong
majorization property [2, p. 153]. Hence has a perfect functional com-
pletion, and the class of exceptional sets for it is the class of all --null sets.
For this class one has the remarkably simple characterization:

4.3 THEOaEM., "(E) 0 if and only if m_(E) O.

Proof. It follows from the definition of Hausdorff (N 1)-measure m_l
that there is a constant a, depending only on the dimension N, such that for
every set E and > 0 there exist open N-cubes q, q, of diameter v
such that

(5) = m_(fr q) < am_(E) + , E [Ji=1 qi
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(The constant factor a appears first because, although m_l(fr q) is a constant
factor times (diam q)-l, the constant is not the one appearing in the defini-
tion of m_l, and second because we cover with cubes rather than arbitrary
sets.) From (5) we have

(6) ,(E) <= amv_(E), all E.

In particular, mv_(E) 0 implies 7(E) 0. The converse rests on the
following inequality, posed as a question by the author and proved by W.
Gustin [16]. A shorter variant of Gustin’s proof appears in [llf].

4.4 BOXING INEQUALITY [16]. Any compact setK c Rv with m_(fr K) > 0
can be covered by a finite number of N-cubes q qn such that

--1 m_l(fr q) =< zm_(fr K),

where ( is a constant depending only on the dimension N.

Gustin assumed that K is itself a finite union of cubes. The general case
reduces to this one by covering fr K with cubes q, qr such that

m_(fr qi) _-< a’m_(fr K),
where a’ is any constant larger than a. Now suppose 7(E) 0. Then by
(4), (1), and 4.4, given e > 0 there exist cubes ql, q, such that

i m_l(fr q) < , E c U, qi.

This implies that m_i(E) O, by definition of m_.

5. Functions AC, made precise

In this section we encounter little additional difficulty in treating functions
f defined in an open set G, rather than all of R, for which grad f is a function.
This class is called A

5.1 DEFINITION. A function f is termed precise if there exists a sequence
of functions fn defined in G such that

(i) fn is continuously differentiable in G (or equally well, infinitely
differentiable in G);

(ii) f(x) limn fn(x) for ,-almost all x e G; and
(iii) for every compact K G, lim I(f f, K) 0.

The term precise is borrowed from Deny and Lions [8].

5.2 THEOREM.
precise function
where.

Let f e ACa. Then f is mv-almost everywhere equal to a
Any two such precise functions , agree ,-almost every-

5.3 THEOREM. Let f e ACa be precise. Then
a f is locally absolutely continuous in Evans’s sense; and
(b given > 0 there is a set E G such that . E) < and the restriction

of f to G E is continuous.
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5.4 THEOREM. Let G be connected and f, f,, precise in G for n 1, 2,
such that limn I(fn f, K) O, all compact K c G. Then there are a sequence
of constants c,, and a subsequence of n such that f(x) limn [.f(x) -t- c] for
./-almost all x e G.

These theorems can be proved by straightforward modifications of methods
used in [2, 5 and 6] and [8], together with [Vb, Lemma I].

PART II
We turn to study the following class"

ff [f e BV:f is integer valued, LI(]) + I(f) < ].

The role played by the space t) in Part I is now taken by the class ffl of all
functions W such that W(x) is the winding number about x of an (N 1)-
cycle given by a Lipschitz mapping from a closed (N 1)-polyhedron.
Theorem 5.2 has an analogue (10.1) in the class ft. The proof involves the
study of Lipschitz chains of dimensions N and N 1, and of countable sums
of chains (termed a-Lipschitz chains). We use the result of De Giorgi [Vb]
that the reduced boundary of a set with finite perimeter defines a a-Lipschitz
chain. We also need further estimates for ,(E), first when E is compact
with (N 1)-rectifiable frontier (9.1), and then for open sets E (9.3).

6. Currents of finite mass

For 0 _-< ] _-< N let Rkl and R kl denote the spaces of ]-vectors and ]-co-

vectors co of N-space RN [22, Chapter I]. Let ex and ex, k (,1, kk),
,1 k, be dual bases for R and Rt, corresponding to dual ortho-
normal bases el, eN and e R,..., e for and its conjugate space.
In terms of these bases, x Xex, co _x wx ex. For scalar product and
norm we write, respectively,

Let 2k denote the space of ull /C-forms w with coefficients cox(x)e . We
norm by comss [22, p. 52],

where simple means thut is an exterior product of vectors xl, x.
A current T is a linear functional on 2k, continuous in the topology imposed

by Schwartz and De Rhm (in De Rhm’s book [9, Chapter III], T would
be called current homogeneous of dimension ] and odd kind). The mass
of T is the quantity

It is known that T has finite mass if and only if there is a ]-vector-valued

measure I, with finite total variation such that

(1) T(co) all
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The mass T is the total variation of ,I, [22, Chapter XI, especially p. 326],
provided Rkl is normed by mass [22, p. 52] rather than I- For the ex-
treme dimensions k 0, 1, N 1, N with which we shall be principally
concerned, all/c-vectors are simple, and 1 equals the mass of . The bound-
ary bT is defined as in [9,. p. 53] by the formula bT(o) T(dco).
For any distribution T let .T denote the current of dimension N dual to

T, defined by

(2) .T(feI"’N) T(f), all f .
Suppose T and b(.T) have finite mass. For each (N 1)-form

= -e, (1,...,i- 1, i+ 1,-..,N),

one finds by direct calculation and (2) that
hr

(3) b(,T)(co) (-1)0T
= - ().

From (3) the finiteness of b(.T) is equivalent to the fact that the partial
derivatives of T are totally finite measures, whence T is a function f BV
by [21, p. 41]. Moreover,
(4) Ll(f) ]lf *f[I, I(f) b(*f)l[.
We say polyhedral t-chain for a current which corresponds to a finite linear

combination of oriented /c-simplexes, with real coefficients. Given
/c (1 _-< /c -< N) and an open set G, let V denote the set of all polyhedral
k-chains with support in G. V is a vector space [22, p. 152]. For c e V, let

#0(c) inf c’

u(c) inf T

where spt T is at positive distance from Rn G.

cpeV, bc’ bc;

bT bc,

6.1 LEMMA. No(C) # c all c e V.

Using methods of [14a], one can prove more; namely, each such T is the
weak limit of a sequence ceV with bc bT bc, n 1, 2,..., and
lim c T II. Instead we give a short proof of 6.1 making use of Whit-
ney’s notions of flat chain and cochain in the open set G [22, p. 232]. To
begin with, we observe that while the flat norm of c is usually less than c II,
we do have

(5) u0(c) inf (fiat norm of c’), c’ V, bc’ bc.

Clearly (c) -< t0(c). Suppose there exist Co and To with bTo bco such
that To < t0(c0). Now 0 is a seminorm on V depending only on bc.
By the Hahn-Banach theorem [3, p. 29] applied to the vector space bV, there
is a linear functional on V, depending only on bc, such that

(6) I(c) _-< 0(c), al c v, (c0) 0(c0).
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By (5) and (6), is bounded in the flat norm, and so defines a flat cochain
in G. There exist regularizations con of [22, p. 176], n defined in G
G [fr G]l/n, such that 0n is a k-form with infinitely differentiable coefficients
and

(7) C(OOn) 0 if C

(8) limn C(o) l(c), all c e V

(9) (0n)l =< I[, any k-simplex c G
From (9), con --< 1. From (7) it follows by theorems of De Rham [9,
pp. 94, 114, 117] that wn d, , a (It 1)-form with infinitely differenti-
able coefficients. Hence T0() c0(con) and by (8)

T011 < 0(c0) l(c0) limT0(wn) -< To,
a contradiction. This proves 6.1.
Now suppose bc is a (] 1)-cycle with integer coefficients. Let

1(c) inf c’ II, bc’ bc, c’ e V with integer coefficients.

6.2 LEMMA. Let c be a polyhedral It-chain with real coecients, where 1,
N 1, or N, such that bc has integer coejcients. Then c is a convex combina-
tion c ai ci where every cl has integer coecients, bc bc, spt ci spt c,
and c a c ll.

This can be proved by purely formal changes in the reasoning used in [14a,
3.3 and 8]. Except for the requirement that the masses add, it is a well
known consequence of the absence of torsion (k 1)-cycles with the indicated
values of k for complexes embedded in RN [1, p. 390]. From 6.1 and 6.2
we have

6.3 THEOREM. For ]c 1, N 1, or N and any open set G, (c) o(C)
(c for all c e V such that bc has integer coecients.

It is an interesting question whether 0 for arbitrary k, or perhaps
p(c) is no more than a constant multiple of 0(c). There is some evidence
suggesting that 0(c) and (c) may not always agree [14b, Theorem 3].

7. -Lipschitz chains

Let g be a Lipschitz mapping from an m-measurable set A R into RN.
A set D such that D g(A) for some such pair (g, A) is termed a k-rectifiable
set if A is bounded, countably k-rectifiable in the general case [11b, p. 126].
A countably k-rectifiable set D has an m-approximate tangent/c-plane v(x)
at x for m-almost all x e D.
Such a Lipschitz mapping g has a Lipschitz extension to R with the same

Lipschitz constant [18]. For m-almost all u e A the Jacobian k-vector

O(u) o(,’’" )o() O(u)e,
o(u, ..., u)
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exists and does not depend on the particular Lipschitz extension of g to
RN- A. Let

a(g, A) fA I(u) dm(u),

which is the classical formula for It-area. If a(g, A) is finite, g defines a cur-
rent c by

.f [g(u)].O(u) dm(u), ll e t.1

Since 0(u) is simple k-vector, ve hve from the definition of [[ and
c

(2) c a(g, A).

A current c will be called a e-Lipschitz k-chain of finite mass if c hs repre-
sentation (1). Let 2 denote the class of ll a-Lipschitz k-chains of finite
mass.

7.1. LnMM. C 2 if and only if there exist a countably k-rectifiable set
D R and m-measurable functions 0 (x), M(x) defined on D, such that

(i) O(x) is an m-approximate tangent -vector to D at x, and O(x) 1;
(ii) M x is integer valued and m-integrable on D;
(iii) c M O dm, all and

Every c e has a Lipschitz representation (1) such that equality holds in (2).
is a group under addition, complete in the norm

Remark. The nonnegtive number a(g, A) c appears several times
in later sections. It measures, roughly speaking, how much the mapping g
leads to tangent k-planes "back to back," i.e., with opposite orientations.
Equulity in (2) means that this occurs m-almost nowhere in R. By 7.1
and [11b, 5.9], by taking D g(A),

m{[x eg(A):i(x) 0]} a(g, A)

If DI and D are countably k-rectifiable, then so is D u D and the m-approxi-
mate tangent -planes agree m-almost everywhere in D D. Then if
c, c e, one finds O, M, M defined on D D D with M(x) 0
for x D D, M(x) 0 for x eD D, and

(3) (c c) () f, (i i) (. O) d, a u.

From this we get, letting denote symmetric difference

7.2 LEMMA. For i 1, 2 let c have representation (g A). Then

ie(A) e(A)} c c + ia(e A) c .
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7.3 LEMMA. For every f e , b( .f) e -!
A stronger result (8.5) is proved later.
Lemma 7.1 can be proved by known techniques [llb, 5], [23a, Appendix

B]. If f is a characteristic function, 7.3 follows from 7.1 and De Giorgi [7b,
Theorem III]. The general case can then be obtained by using 3.3. Lemmas
7.3 and 8.4 below can also be gotten as consequences of general theorems for
/-dimensional currents in R, obtained by different methods, to appear in a
forthcoming paper by Federer and the author, "Normal and Integral Cur-
rents." In that paper the elements of 2k are termed rectifiable currents of
dimension k.

8. Special chains

Besides the notion of Lipschitz chain defined in 7 in terms of currents, we
need to consider a more classical one. Let P be an oriented polyhedron in
some euclidean space which is the union of finitely many/-simplexes. Let C
be a simplicial complex subdividing P, and al, an the k-simplexes of
C oriented consistently with P. Let us assume that the chain zi, regarded
as having integer coefficients, has boundary of the special form r., where
the r are distinct (] 1)-simplexes. We write 0P for its carrier with the
induced orientation. (We could equally well consider arbitrary chains over
C with integer coefficients, but this would only serve to complicate the dis-
cussion to follow.

Let h be a Lipschitz mapping from P into R. We call the pair (h, P)
a special l-chain, special k-cycle if 0P is void. Let A c Rk be the union of
disjoint /-simplexes sl,..., Sn, and a mapping from A onto P taking
each si affinely onto ai so that the orientation induced on a agrees with the
one given. To (h, P) corresponds an element c of 2k represented (7, (1))
by (h o, A). We write a(h, P) for the /c-area integral a(h ob, A). By
[22, p. 298(8)], bc e

_
and corresponds to (h, OP).

Now let/c N, and let (, P) be a special N-chain. For x (/), let
W(x) denote the local degree at x of (, P) as defined in [1, p. 474]. For
x (0P) we set W(x) 0. Then W is well defined at every point x, which
is important since this is the class ff of functions to be used in making precise
functions of ft. When (,/5) carries a subscript n, the corresponding and
W carry that same subscript.

8.1 LEMMA. For any special N-chain (,/5), ,W 5.

Proof. Let n be a sequence of simplexwise affine approximations to
with uniformly bounded Lipschitz constants, such that tends uniformly
to and the corresponding Jacobians On tend boundedly to 0 [22, pp. 289-294].
The validity of 8.1 for (n, /) is an easy consequence of the definitions.
NOW n tends weakly to , Wn(x) tends to W(x) for x e (0P) by Rouch’s
theorem [1, p. 459], and m{(OP)} 0 since is Lipschitz. By 7, (1)
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and 6, (4)
I(W,) b, <= a(, 01),

which is bounded. The functions W have uniformly bounded supports.
By 2.2, lim LI(W W,) 0, from which 8.1 follows.

Let (h, P) be a special (N 1)-cycle, and c the corresponding element
of 2N_1. By cone construction there is a polyhedron/ with boundary P.
Let be a Lipschitz extension of h to/. Now W(x) equals the order (or
winding number) of (h, P) about x [1, p. 474, Satz V]. Hence W(x) does
not depend on the particular choice of/ and . Since b c, we have from
8.1

8.2 LEMMA. For any special (N 1)-cycle (h, P), b(.W) c.

This is a way of saying the Gauss-Green theorem for special (N 1)-cycles.
Remarlc. In area theory one considers sequences h of simplexwise affine

mappings (h, P) from a closed (N 1)-polyhedron P into RN such that
h tends uniformly to a limit h (h merely assumed continuous) and
the (N 1)-areas a(h,, P) are bounded. Then c 1] is bounded, from which
c tends weakly to a limit c for a subsequence of n. The above reasoning
shows that if m{h(P)} 0, then b(.W) c. By 7.3, c e2_1. The
problem is to relate c to the mapping h. There are several results known in
this direction; see Cecconi [5] for N 3, Michael [19], and Federer [Notices
Amer. Math. Soc., vol. 6 (1959), Abstracts No. 558-33,558-34, pp. 381,382].

8.3 IEMMA. Let q and q’ be concentric k-cubes in Rk (1 <= ]c <__ N) with
q c q’. Let g be a Lipschitz mapping from a set A qinto Rv, and the
Lipschitz constant of g. Then g has a Lipschitz extension g’ to q’, such that
(a) g’ has Lipschitz constant t’ <- rt, where r depends only on k and N; (b)
there is a subdivision of fr q’ on each (k 1)-simplex of which g’ is one-one
and a?ine.

Proof. First, g has some Lipschitz extension gl to q’ with Lipschitz con-
stant [18]. Let be the distance between q and fr q’. By [22, p. 290] there
is a constant r > 1 and a simplexwise affine mapping g2 of fr qP into R, such
that g.(u) gl.(u)l < (r 1)t, u err q’, and g has Lipschitz constant
<= rt. By small modifications of g if necessary, we arrange that (b) holds,
upon setting

t g(u), u e A
g (u)

g(u), u e fr q’.

Then on A u fr q’, g’ has Lipschitz constant =< ft. We extend g’ to all of
q’ with this same Lipschitz constant.

8.4 LEMMA. Let G be open; let Co e 2_1 be such hat bco 0 and spt Co has
positive distance from Rv G. Then given > 0 there exists a special N 1)-
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cycle (h, P) with c 2._1 corresponding to (h, P), such that
(i) h(P) c G;
(ii) IIc0- cll <,;
(iii) c <= a(h, P) <= c - ,.
Proof. By 7.1 there is a Lipschitz representation (g, A) of co such that

a(g, A) Co and g(A) spt co. Let F be a figure which is the union of
disjoint (N 1)-cubes ql, q chosen so that

a(g, A F) < ,/4, mN_I(F- A) < /8(rt)v-,
where is the Lipschitz constant of g, and r is as in 8.3. Let F (J qi where
qi is concentric with q, qi q, ql, q8 are disjoint, and

m_(F’- F) < ,/8(rt)-.
Let g’ be an extension of g from A n F to F’ with the properties in 8.3 on
each q. For small ,, g(F’) G. Writing c’ for the element of 2_ cor-
responding to (g, F’), we find that

Co c’ <- a(g, A F) - a(g’, F’ (A n F)

< ,/4 - (rt)-mv_(F’- (A F)) < ,/2,

a(g’, F’) <- a(g, A F) - a(g’, F’ (A F) <= Co - ,/4.

Now b(co c) -bc’ is polyhedral with integer coefficients, and we apply
6.3. Let cl be a polyhedral (N 1)-chain with integer coefficients,
spt c G, such that

bc -bc’, c < ,/2.

By n elementary construction we arrange that each (N 1)-simplex of c
is counted exactly once, without changing bc.

Let c c’ - c. Then (ii) holds, and it remains to find a special (N 1)-
cycle (h, P) representing c such that (i) and (iii) hold. Now spt bcl
g’ (fr F’) is an (N 2)-polyhedron Q, and g’ is simplicial from fr F’ onto Q
relative to suitable subdivisions K’, K of fr F’ and Q, respectively. For each
simplex s e K’ we construct (abstractly) a cylinder Z8 with bases s and g’(s).
Then F’, spt c, and the cylinders Z define a closed oriented (N 1)-
polyhedron P, which we may embed in some euclidean space. Define the
mapping h to agree with g’ on F’, with the inclusion map on spt c, and to be
constant on each line joining u e fr F with g(u) in a cylinder Z containing
them.

8.5 THEOREM. f e if and only if .f e 2 and b(.f)e 2_. The class
is dense in in the norm L(f) I(f). In fact, given f e there exist special
N 1 )-cycles h, P, with corresponding W, x such that
(a) limn [I(f Wn) - L(f Wn)] O,
(b) I(Wn) < a(hn Pn) < I(Wn) -- n-, n l, 2,
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Proof. Suppose ,f e2N and b(.f)-1. Then f is integer valued
(m-almost everywhere) by 7.1. By 6,(4), L(f) - I(f) is finite. Con-
versely, let f e . Apply 7.3 and then 8.4 with G R n ,Co b(,f).
Then (b) holds, and I(f Wn) tends to 0, from which we get (a) using 3.4.
Since .Wn 2v and b(.Wn) 2v-1 for every n, the same holds for f by com-
pleteness of 2N and

9. Further estimates for
According to 4.2 and 4, (6), for every compact K, ,(K) <= am_(fr K).

If fr K is (N 1)-rectifiable, a more precise result is

9.1 THEOREM. Let K be a compact set with (N 1)-rectifiable frontier fr K.
Let B be the reduced boundary of K. Then

.(K) -<- m_(B) - 2m_(fr K- B).

Proof. Recall the notation of 3. Consider first the set B. By [Tb,
Theorem III] there exists B1 c B with m_(B B1) 0 such that, for
x e B1, the mN_l-density of B at x is 1 and (x) is an m_l-approximate
tangent plane to B at x. For s > 0 let (x, s) denote the set of all points
distant < s from v(x). Let a denote the volume of the unit (N 1)-ball.
Fix e > 0 and x e B. Then, for small r,

N(a) m{ S (x, r) K} ( ear

b mx-i B n S x, r) arN-1 < arN-i

(c) m_{B n [S(x, r) (x, r)]} < ear-.
LetI(s) (S_(x,r) K) nfr (x,s). Then

f2er fo(d) m_{I(s) ds < mN_l{I(s) ds mN{S_(x,r) g}.

By (a) there exists So, vr < So < 2r, such that

m_lI(so)} < ar-1.
Let G (x, So) S(x, r). Then

m_l {fr G K} _-< m_ I(s0) + mN_l fr S(x, r)

+ m_{fr (x, So) S+(x, r)}.
The middle term on the right has order 2s0 a(N 1)r-, and is less than
(4N 1)var- for any sufficiently small . The last term is no more than

N--1ar Thus, for small r,

m_ (fr G- K) _-< (1 - 4N)r- < 1 -t- 4N mN_(B n G).
1

Since is still fixed, the sets G do not get too "thin" as x and r vary. Each
x e B is the intersection of a family of sets G shrinking to x. Since (b) holds,
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we may apply a covering theorem [20, 4.1] to find a disjointed family of such
sets G:, G, such that

(1) mN_:(fr G K) < 1 + 4Ne mv_,(B)
=, 1 2e

(2)

Consider now the set D fr K B. By a simplification of the previous
reasoning, omitting all reference to exterior normals, one finds disjoint open
sets G’,..., Gq such that

q

(3) m_:(fr G3.) < 2
i -1- Ne m_:(D),

3"=1 1 2e

m_,(D U 3._-, aj) < e.

The part E of fr K still not covered has mN_,-measure < 2e by (2) and (4).
By 4, (6) there exists a countable set of open sets G, such that

(6) fr K < ((J G) o ((J e.) o ((J G).
Since fr K is compact, it is covered by a finite number of these open sets. The
union of these finitely many open sets and K is an open set Go. By (1), (3),
and (5) there is a constant w, such that

m_:(fr Go) < mv_:(B) - 2m_(D) -we.
This proves 9.1. Using similar reasoning, together with right continuity of, on compact sets, we can show

9.2 LEMMA. a. For any countably (N 1)-rectifiable set D, .(D) <=
2mN_,(D). b. For any open set G, compact (N 1)-rectifiable set K c G,
and t > 0, there exists an open bounded set G’, such that

K c G’ c cl G’ G, (cl G’) -< 2m_:(K)
9.3. THEOREM. Let E be an open set such that both P(E) and mv(E) are

finite. Then .(E) <- P(E).

Proof. We shall construct a certain sequence of special (N 1)-cycles
(hn, Pn), with Wn corresponding to (hn, Pn) as in 8. Let H be the 2--neighborhood of fr E. Choose (h, P) by 8.4 with co b(.fE), G
7 to be determined later. Then by using 6, (4) and 8.2,

I(fE W:) b(,fE) -b(,Wx)
Let E1 [x:W(x) 0], and let B be its reduced boundary. Then by
3, (3), P(E) <= m_(fr E). But fr E: h(P), from which by [llb, 5.9],
m_(fr Ex) <= a(h, P). Thus

mv_(B) P(E) -<- m_(fr El) < P(E) --[- 27.



468 WENDELL I-Io FLEMING

On the other hand, by 3.4 and 2.2, lim inf0 P(E1) >= P(E). Hence, given
ny e > 0 we my choose /such that / < e/16 and

mN_I(BI) -4- 2m.v_l(fr E1- B1) < P(E) 4- /2.

By 9.1 and right continuity of - for compact sets, there is an open bounded
set G’ with

el E, c a, 3"(el a’) < P(E) -4- e/2.
We next define inductively, for n 2, 3, (h, P), E

[x" W(x) 0], and G open, G’n open and bounded, scttthat
(i) G HuG’u uG_
(ii) fr E c G’ c cl G’ c G, from which spt b(.W) c fr E c G’
(iii) I(f- =, W) < e/2+a; and
(iv) 3"(g) < e/2, K= cl (E G’).

At each step we apply 8.4 with Co b(.f) b(.".%* W), G G,
/ t/2n+a. Call the special (N 1)-cycle obtained (h, Pn). Then (iii) is
immediate. We have

mN_(fr E) <= a(h, Pn) < 7/2n+2 - 2/ < 8/2n+.
By 9.2b there is a set G’ such that (ii) holds and y(cl G’) < e/2. Since
fr E G’, fr (E u G’) fr G’. By 4.2, 3’(g) /(fr G’) 3" (cl G:).
LetF clG’uK=uKau-.-. Supposex0eE- F. Thenx0frFsince

fr F c F u fr E by construction. Hence there is a neighborhood U of x0 with
U E- F. Then W=(x) 0 for xeU and n 1, 2,.--. Since
L,(f- % W) tends to 0, by 3.4 and (iii), and f(x) 1 for x
this is impossible. Therefore E c F, from which

<  (cl a’1) + :=23"(K) < P(E) + e.

This proves 9.3.
Remark. For bounded open sets E, 9.3 is much better than 9.1 applied

to cl E. According to well known examples in area theory, P(E) may be
finite while m_l(fr E) is infinite. In 12 we show that if fr E is a compact
manifold of zero m-measure, then P(E) equals the integralgeometric area.

9.4 COROLLARY. For every set E,

3,(E) inf "= P(G), E U =1 G,, G open, bounded.

Proof. From the definition of 3’ and 4, (2) the left side is not less than
the right, and the opposite inequality follows from 9.3.

9.5 LEMMA.
E

Let (h, P) and (h., P2) be special (N 1)-cycles, and let
W2(x)]. Then

3"(E) <= 3I(W- W) -4- 2__1 [a(h, P) I(W)].
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Proof. E E’ u E’, where

E’ E [hl(P1) u h(P.)], E" E, [hl(Pl) / h(P)],
/ denoting symmetric difference. E’ is open, and by 9.3, 3.3, and 2.3

.(E’) <= P(E’) P(E) <- I(I W- W. I) <- I(W- W).

To complete the proof, we apply 7.2, 9.2a, and the fact that

.(E) <= .(E’) - .(E’) <= .(E’) - [h(P) /X h(P.)].

10. Precise functions in

With the results of 6 through 9 we can now prove the following analogue
of Theorem 5.2"

10.1 THEOREM. Given f e there is a sequence of special (N 1)-cycles
with properties (a), (b) of 8.5 and in addition a function ], such that

(c) f(x) f(x), m-almost all x;
(d) lim W,(x) ](x), .-almost all x.

The conditions (a)-(d) determine ] uniquely up to .-measure O.

Proof. (a) and (d) imply (c). To prove (d), let
Ix" Wn(x) Wm(x)]. By 9.5, (a), and (b), ,(E) tends to 0 as m, n tend
to . Thus, the sequence Wn(X) is fundamental in -measure, and converges
to a finite limit ](x) for a subsequence of n, which we take as our new sequence.
To prove umqueness, let (h, P) be another such sequence. Then

lim I(W,- W’) 0 by (a). Let En [x’W,(x) W’(x)]. By 9.5,
(E) tends to 0, from which ](x) ](x) /-almost everywhere.
To correspond to 5.1, we term f precise.

Densities (Added November 11, 1959). Federer pointed out that the follow-
ing is a corollary of 10.1 and his proof [llf] of inequality 4.4. For any f
the spherical N-density

](x) limr0+ L[f, S(x, r)]/m[S(x, r)]

RN"exists and is finite for m_-almost all x e If D is a countably (N 1)-
rectifiable set on which b(.f) is represented according to 7.1, then (x) ](x)

Rfor mv_-almost all x e D.
From [llf, Lemma, 2] there exist absolute positive constants X and such

that, if G is any open set and x e G, then

(1) m[S(x, r) n (R G)]/r <= mv_[S(x, r) n fr G]/r-
in any interval 0 < r < ti in which the right side of (1) is no more than

RFor m_-almost every x e D there exists no such that (a) W(x)
](x), n >= no (b) x h(P), n >_- no, where h andP are as in 8.5; and (c)
D o U:_-- h(P) has spherical (N ].)-density 0 at x (cf. [llb, 3.2]).
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For any such x apply (1) with

G [y h,(P,):W,(y) ](x)], n >_- no.

Given e > 0 there exists ti > 0 such that, for every n >= no and 0 < r < ti,

mv[y e S(x, r) W,(y) ](x)] _-< emN[S(x, r)].

By letting n tend to , the same inequality holds with f(y) in place of W,(y).
This proves that ](x) exists and equals ](x).

If f e ff is a characteristic function, then by 3.1, ](x) 1/2 for mN_l-almost
all x e D. For any f e ff one finds, using 3.3 for every integer i, a set E whose
characteristic function f belongs to if, such that if B is the reduced boundary
of E

f -f -fl -f0 -f--f-
I(f) mv_(B), m_[D / ( B)] 0.

By the preceding argument, for any j, (f .i. =< f) (x) exists and is an
integer, for m_-almost all x e D. (3 Il>" B. It follows that ](x) exists
and is half an integer for m_l-lmost all x e D, and hence, since j is arbi-
trary, for mN_l-almost all x e Ry.

If, in 8, W(x) had been defined to be ln(x) for x e h(P), then ](x)
would agree with ](x) m_l-almost everywhere in R.

PAnT III
1. Sets with finite perimeter

Even in case f is a characteristic function fE, the approximating functions
Wn in Theorem 10.1 need not be characteristic functions. We shall give a
modified version of 10.1 in terms of characteristic functions, i.e., in terms of
sets with finite perimeter.

11.1 DEFINITION. A set E is termed elementary if E is open and bounded
and fr E is (N 1)-rectifiable.
The requirement that E be open, rather than closed, is arbitrary but agrees

with the convention in 8 that the winding number W(x) is 0 on the support
of the defining special (N 1)-cycle. In place of 9.5 we need

11.2 LEMMA. Let E and E be elementary sets with respective reduced bound-
aries B and B2. Then

.(E/ E.) <- 3P(E A E.) + 2m_1{ (fr E1 B) o (fr E. B.)},
where /k denotes symmetric difference.

Proof. E E c E’ o E" o E’", where

E’ (E/k E) (fr E o fr E),
E" (B- fr E.) o (B- fr El),
E’" (fr E B) o (fr E. B).
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Since E’ is open, 7(E’) <= P(E’) P(E1 /k E2) by 9.3. If xeE’, say
x e B1 fr E, then a neighborhood of x lies entirely in E or in RN cl E..
Since E has an exterior normal at x, so does E1 A E. Therefore, E" is con-
tained in the reduced boundary of E A E2, from which by 9.2a and 3.1(1),
7(E’) _-< 2mN_(E") =< 2P(E A E). Finally, 7(E’")=< 2m_l(E’")
by 9.2a.

11.3 THEOREM. Let E be a set with finite perimeter P(E) and finite m-
measure. Then there exist a sequence E, of elementary sets and a set E, such that

(a) limn[P(En /X E) -5 m(E, A E)] 0;
(b) lim, m;_(fr E- B) 0;
(c) mN(E /k E) 0;
(d) lim. 7(En /k E) O.

The conditions (a)-(d) determine uniquely up to 7-measure O.

Proof. Let f be the characteristic function of E, let (hn, P,) be as in
8.5, and let

E [x’W(x) > 0].

Write fn for the characteristic function of En. By 3.3

](w.) (f.) + (Wn- f.).

Now 1 (Wn) tends to I(f), and f tends to f mN-almost everywhere, by 10.1.
By 2.2, I(f) -<- lim inf I(fn). Therefore, I(W --f) tends to 0. Then so
does P(E/k E), since

P(E, /% E) I( f, -f I) <= I(fn- f) <-- I(f,- W,) + I(W,- f).

By 8.5(a), mv(E,/ E) tends to 0, which proves (a). Now

mu_(fr En B,) mu_l(fr En) --mN--l(Bn) < a(h,, P,) -mv_(B,).

Both a(h,, P,) I(W,) and I(Wn) I(fn) I(Wn) m_(B,) tend
to 0, which proves (b). The proof now proceeds as for 10.1, by using 11.2 in
place of 9.5.

2. A connection with area theory
One may ask whether in case fr E is a compact (N 1)-manifold X the

perimeter P(E) agrees with the (N 1 )-area of X according to some reason-
able definition of area. Let ix denote the inclusion map of X into RN. If X
is finitely triangulable, we may consider the Lebesgue area L(ix). Without
this triangulability assumption one may still consider areas defined in terms
of suitable multiplicity functions associated with projections of X on hyper-
planes.

Let p denote projection of (x ,... x) onto (x1,.-., x-), t9 the
group of orthogonal transformations p of R, and t* Hair measure on 0,
tt(tg) 1. For any mapping g from X into R-, and y RN-, let M(g, y)
denote Federer’s combinatorial multiplicity [llc, p. 336]. Then the integral-
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geometric (N 1)-area M(ix) is defined by

1 fv f, M(popo ix, y)dmN_l(y)du(p)(1) M(i:)
-1

where is that number such that

1 le R(2) [xl (P P)(x) dt*(P) all x e

[llb, p. 120].

12.1 THEOREM. Let E be a set such that fr E is a compact (N 1)-manifold
X with m(X) O. Then P(E) M(ix).

The condition ran(X) 0 is to some extent natural, since otherwise one
must say what part of X is to be included in E. There are nevertheless some
interesting unsolved problems for the case m(X) > 0, which we shall men-
tion below.

Federer has shown that for any mapping g from a finitely triangulable sub-
set of a It-manifold into R (/c =< N) such that the range of g has ink+l-measure
0, the Lebesgue and integralgeometric areas of g are equal [llc, 7.8] [Notices
Amer. Math. Soc., vol. 6 (1959), Abstract No. 560-44, p. 619]. From this
result and 12.1 we deduce

12.2 THEOREM. Besides the assumptions of 12.1, suppose X finitely tri-
angulable. Then P E L ix

The author’s original proof of 12.1 was much more complicated than the
one to be given, and was written out for N 3 only. The present proof came
about after several helpful suggestions from Federer. He also first posed
12.2 as a problem [lld, p. 451].

xN--1)Let us write x (y, z), where y (x1, z x Given f(y, z)
with compact support and y, let ,(f, y) denote the essential total variation of
f as a function of z; i.e., (f, y) is the total variation calculated using only
intervals on the z-axis at whose endpoints f is ml-approximately continuous
as a function of z. The main step in the proof of 12.1 is

12.3 LEMMA. For every p e 0 and y e ,(fE o p, y) > M(p o p o i: y).
If m{X n (p o P)-(Y)I O, then equality holds.

Before proving this lemma, let us show that 12.1 follows from it. For
feBV, let Ij(f) lollOxl (R),J 1,..., N. Choose p identity,
p, p such that I(f) I(f o p). By [17, p. 117], I(f) is finite if and
only if ,(f p;, y) is an m_-integrable function of y for j 1, N. If
I(f) is finite, then [17, p. 117, 5.1],

(3) I(f) f-, ,(f p,, y) dm_(y), j 1,..., N;
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and also

() I(f) Ii(f o p) dz(p).

If f is, say, continuously differentiable with I(f) finite, then (4) follows from
(2) applied to Grad f and Fubini’s theorem. In the general case let f be
regularizations of f (2). Then lim I(f I f lim I(f o p) Ii(f o p
and I(fn o p) <= I(fn) <-- I(f). We apply Lebesgue’s convergence theorem.

Since m(X) 0, by 12.3 we have for any p e (9

(5) (f p, y) M(p p o ix, y), m_-almost all y.

Suppose P(E) I(fs) is finite. From (4) with f f, (3) with j 1 and
f fop, (5),and (1), P(E) M(ix). Suppose P(E) -. Then,
for any p e 9, I(f p) -t- from which (f o p o pj, y) is not mN_l-integrable
in y for at least one j. It follows from (1) and (5) that M(ix)

Remark. In case m(X) > 0 the first part of 12.3 still yields P(E)
M(ix), E the bounded component of RN X (or equally well, the unbounded
component of R X). Federer pointed out that if N -<_ 3 and both com-
ponents of RN X have finite perimeter, then m(X) 0. Is this true if
N>3?

Proof of 12.3. It suffices to consider the case p identity. For brevity
writeM(y) M(p ix y), (y) (f y). ForyeRN-landr > 0, let

K(y,r) [y’eR-l: ]y’ yl < r]

and let C(y, r) be the open cylinder K(y, r) )< R1. Let F(y, r) denote the
set of components V of X r C(y, r), and for (y, z) X, F(y, z, r) the set of
V e F(y, r) such that V does not meet the negative half line whose points are
(y, z’), z’ < z. For each V the mapping p o ix induces a homomorphism of
the ech cohomology groups with integer coefficients"

(p ix)*:H-llcl K(y, r), fr K(y, r)} H-(cl V, fr V).

Both of these groups are infinite cyclic, and (p o ix)* maps a generator of the
first onto an integral multiple a. of a generator of the second. We suppose X
and R- oriented, and the generators chosen to agree with the assigned oriem
rations. By definition of M,

(6) i(y) lim0+ ’(.r)I a I"
For (y, z) X the order (or winding number) W(y, z) can be defined by

(7) W(y, z) r,(..,)ar
for any r small enough that no V meets both the positive and negative
half lines through (y, z). W is constant on each of the two components of
RN X, and W 0 on the unbounded component [19, 2]. It is well
known that W :t: f, depending on the orientations chosen; but this also
comes out in the proof below.
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Given V e F(y, r); (y’, z’) e C(y, r) V, and r’ small enough that
C(y’, r’) C(y, r), we shall also need to consider the set F,(y’, z’, r’) of
all components of V n C(y’, rr) not meeting the negative half line through
(y’, z’), and the function

(8)

for r’ small enough that no U meets both positive and negative half lines
through (y’, z’). W,(y’, z’) is constant on each component of C(y, r) V,
and is 0 for z’ near -t- . For z’ near , Wv(y’, z’) av since this is clearly
true if y’ y, r’ r. For each V, C(y, r) V has exactly two components.
Indeed, let SN be an N-sphere, q0 a point of SN, and a relative homeomor-
phism of (cl C, frC) onto (S, {q0}). Then (r/oio )* gives an isomorphism
from H-l((cl V), {q0l onto H-l(cl V, fr V) [10, p. 266]; and the asser-
tion follows from Alexander’s duality theorem, since H-l(n(cl V)) and
HN-1 (v(cl V), q0} are isomorphic for N _-> 2.
Suppose that a 0. Let

C K(y, r) X [--b, b], C*= {fr K(y, r)} X [-b, b],

with b large enough that lzl < b for (y, z)
(cl C; cl V, C*), whose cohomology sequence

Consider the triad

3_* HN_I ,) i* HN_(cl C, C -- (cl V, fr V) -- H(cl C, cl V u C*) 3_ 0

is exact [10, p. 37, p. 257]. Now p induces an isomorphism of H-l(cl K, fr K)
onto H-l(cl C, C*). Let u and v be generators for the infinite cyclic groups
H-l(cl C, C*) and H-l(cl V, fr V), respectively. Then i*u -4-

and i*u 0 by exactness. Thus i( v) vtiv 0, from which itv 0
since HN(cl C, cl V u C*) is free abelian. But is onto, which implies
HS(cl C, cl V u C*) 0. Then i* is onto, whence

(9) I 1.

Write for the line p-l(y), and let

0+ [(y, z) , l:W,(y, z) 0]
O_ [(y, z) l:Wv(y, z) v].

Then 0+ o 0_ o (V n 1). Therefore, there is a component " of V n which
meets both cl 0+ and cl 0_; if not, would split into disjoint, nonempty, closed
sets. Since X is locally connected, there is an open set G containing such
that G n X G n V. Choose (y, z’) 0+ and (y, z’) e O_ such that the seg-
ment joining (y, z’) and (y, z’) lies in G. Then

W(y, z’) W(y, z") W,(y, z’) W,(y, z").
For if z’ > z’, then each side equals av U e F,(y, z", r’) Fr(y, z’, r’)
for small r, and the case z" > z’ goes the same way. Hence

(10) W(y, z’) W(y, z") (r, 1.
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Now let n be any integer <- M(y). For small r there exist n distinct com-
ponents V1,..., Vn of the sort just considered. Choose pairs of points
(y, zj), (y, zj as above, j 1, n, such that the segments joining each
pair are disioint. From (10), (y) >- n. Hence (y) __> M(y), completing
the first part of the proof.

Consider zl < z2 < < zm+l such that (x, zi) X for every i. From (7),
for small r

Then from (6)

=1 W(y, z+l) W(y, zi) <= M(y).

But if ml{X n p-l(y)} 0, (y) is the supremum of such sums.
(y) -< M(y), completing the proof of 12.3.

Then

13. Extremal elements
Let K be an N-cube in RN, and a real, positive. The set F of all f with

compact support contained in K and I(f) <- a is convex and compact in the
Ll-norm. Let F denote the set of extreme points of F. It was shown in
[12, pp. 99-100] that if f e Fe there exists a set E c K, such that

(1) fE -4-a-IP(E)f
if N 2, for f e l’e it is necessary and sufficient that E be equivalent to the
region inside a simple closed planar curve in K. To treat the case N => 3,
we need

13.1 DEFINITION. Write B’ B to mean mN-1 (B B’) 0. A set
with finite perimeter has indecomposable reduced boundary B if, for any set
with reduced boundary B’ B, E’ is equivalent either to E or to R E.

Since B c fr E, the following gives a sufficient condition for indecompos-
ability. It covers the situation in 12. It would be interesting to know
whether 13.2 remains true if m(fr E) > 0.

13.2 THEOREM. Let E be an open .set such that (1) P(E) is finite; (2)
E and R clEareconnected; (3) m.(frE) O. Let E’ have reduced
boundary B’ fr E. Then E’ is equivalent to either E or R cl E.

Proof. We may assume that m(E) and m(E’) are finite, since either
these sets or their complements have this property. By 8.4 there is a sequence
of special (N 1)-cycles (h, Pn) with

hn(P,) [fr E]/,. lim I(W f,) O.

By 3.4, limn LI(Wn f, O. Let x’, x" E. Since E is open and con-
nected, x and x" canbe joined by an arc not meeting h,(Pn) for large n. Then
W(x’) Wn(X’), for large n, which implies that f, is m-almost every-
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where constant on E. Similarly f, is m-almost everywhere constant on
RN cl E. Then m(E/X E’) 0; i.e., E and E’ are equivalent.

13.3 LEMMA. Let E1 and E. have finite perimeter and finite mr-measure.
Write BI B. B’, B" for the reduced boundary of E1, E2, El u E. E n E
respectively. Then B u B’ B u B2.

Proof. Write f, f2, f’, f" for the respective characteristic functions. Then
f -[- f2 f’ -4- f", from which grad (f -t- f2) grad f’ A- grad f". The
measure grad (f + f) is 0 outside B1 u B. By 3.3, I(f + f2)
I(f’) + I(f"), which may be rewritten

grad (f + f2) (B tJ B2) grad f’ (RN) A- grad f" (RN).
Then]grad f’ and grad f" [are 0 outside B B2, from which the conclu-
sion follows.

13.4 Lr:MMA. Suppose that E and E’ have finite perimeter with B’ B and
either E c E’ or E’ E. Let f, f’, f# denote characteristic functions of E, E,
E /x E’, respectively. Then I(f) I(f’) -- I(f").

Proof. Consider the case E c E’, the other case being similar. Since
f" f’ f, grad f# is 0 outside B’ u B. Thus B# B’ u B B. From the
definition of exterior normal, B# n B’ n B is void. Hence B# B B.
Then

mr_(B) I(f) <= I(f’) "4- I(f") mu_l(B’) + mr_(B") <- mr_(B),

from which the conclusion follows.

13.5 TnoaM. The set r of extreme points of r consists of all f for which
there exists a set E K with positive finite perimeter and indecomposable reduced
boundary such that (1) holds.

Proof. Let f e Fe. Then E exists such that (1) holds [12]. Consider
any E’ with B’ B. We may assume mr(E) is finite, from which E’ K
(except in m-measure 0). Write f for fE, f’ for feud’ and f" = f’ f.
By 13.3 and 13.4, I(f) I(f’) + I(f"). Suppose that f" is not equivalent
to0. ThenI(f") > 0. Let

F’ I(f) f,, F" I(f___2_) f,, X I(f’)
l(f’) I(f") l(f)

Then F’, F"r, 0 < X < 1, and f XF’ + (1 X)F". Sincef
F’ F" f, which is impossible. Therefore f" is equivalent to 0, from
which E’ is equivalent to a subset of E. Then by a variation of the argu-
ment just made, E’ is equivalent to E. Thus B is indeeomposable.
To prove the converse, we appeal to a theorem of Choquet [6b]. Let f be

given by (1) with B indeeomposable. By Choquet’s theorem there is a
measure / on r such that open sets in the L-topology are g-measurable,
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g(l’) 1, g(F F) 0, and for all bounded measurable functions

j:Nf(x)(x) dmN(x) dm (x)

Then

(2) (grad f). / (grad F).o d(F), all

By Lebesgue’s convergence theorem the class of with Borel measurable
coefficients and !1 -<- 1 such that (2) holds is closed under pointwise con-
vergence. Hence (2) is true for all such .
By [11a, 4.5], B is a Borel set. Now lgrad f is 0 outside B, and
gradfl(B) I(f) a. By [22, p. 319, 5B] there exists with Borel

measurable coefficients such that f 1, is 0 outside B, and

(A) f, .d(grad f), all Borel sets A.[grad

.lhen
gradF.-< IgradF[ (R) I(F) -< a;

and since I(F) a, equality implies that grad F is 0 outside B. But

a (grad f).0 f (grad F.o) d(F) <= a(r) a,

from which[grad F is 0 outside B for -almost all F. In other words, by
writing EF for the set corresponding to F e Fe, BF B for -almost all F.
Since B is indecomposable, m(Es/ E) 0, from which F and f are equiva-
lent, for -almost all F. This proves that f
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