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The ring of all continuous functions from a topological space X into the
reals, R, is denoted by C or C(X). In [1, 14E], an example is presented of a
residue class field of one ring of continuous functions that is isomorphic in a
natural way with the quotient field of a residue class ring of another ring of
functions. The first ring is C(II), ll denoting the discrete space of positive
integers. The second is C(2), where 2] ll u z} is the subspace of the
Stone-Cech compactifiction of ll obtained by adioining a single point z

to ll. The set M of all functions in C(II) that vanish on set having z in
its closure is a maximal ideal in C(II) the set Q of all functions in C(2) that
vanish on a neighborhood of z is a nonmaximal prime ideal in C(2). In
the manner to be described in 2, the mpping that sends each function in
C(2;) into its restriction to ll induces an isomorphism of the integral domain
C(Z)/Q onto a subring of C(II)/M, and C(II)/M is the quotient field of
that subring.

In the present pper, we investigate the possibility of obtaining, in a similar
way, the quotient field of C(Y)/Q, where Q is a prime ideal in an arbitrary
function ring C(Y). We shall find that a necessary condition is that Q be

z-ideal, i.e., if h C(Y), and if there exists g e Q such that h(y) 0 wherever
g(y) O, then h e Q. A sufficient condition is that Q have an immediate
successor in the family of all z-ideals in C(Y). On the other hand, if Q is
the intersection of countable family of z-ideals different from itself, then the
quotient field of C(Y)/Q is not isomorphic with a residue class field of any
function ring. The question is left open as to what may hppen in case Q
neither has an immediate successor nor is a countable intersection; whether
such prime z-ideal Q exists at all is lso left unsettled.

1. Preliminaries

The terminology and notation of [1] will be used throughout the paper.
In this section, we summarize the material from [1] that will be used. Most
of the information about prime ideals can also be found in [2] and [3].
When deling with algebraic properties of a ring C(X), one loses no gen-

erality by supposing X to be completely regular. We adopt this standing
assumption.
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For f C(X), Z(f)--or when more precision is needed, Zx(f)--denotes
the zero-set of f, that is, the set {x e X: f(x) 0}. The family of all zero-sets
of functions in C(X) is denoted by (X). A family of nonempty zero-sets
that contains the intersection of any two of its members and contains every
zero-set containing any of its members is called a z-filter. For any (proper)
ideal I, the family [I] {(f):f e I} is a z-filter. Thus, I is a z-ideal
provided that Z(f)e 7[I] implies f e I. Every maximal ideal is a z-ideal,
and its corresponding z-filter is a maximal z-filter or z-ultrafilter. If is a
z-filter, then the family of functions If C’Z(f)e } is a z-ideal; and this
ideal is maximal if and only if is a z-ultrafilter.

If I is an ideal such that fl -<- g and g e I impliesf e I, then the residue
class ring C/I is a lattice-ordered ring, and the canonical homomorphism of
C onto C/I is a lattice homomorphism. A z-ideal obviously possesses the
stated property. Every prime ideal also has this property, and, in addition,
its residue class ring is totally ordered. This implies that the prime ideals
containing a given prime ideal form a chain (under set inclusion), and hence
that every prime ideal is contained in a unique maximal ideal. A prime ideal
may or may not be a z-ideal, and a z-ideal may or may not be prime. How-
ever, a z-ideal containing a prime ideal is necessarily prime.
A z-filter is said to be prime if whenever the union of two zero-sets belongs

to , at least one of them does. If P is a prime z-ideal, then Z[P] is a prime
z-filter. Conversely, if is a prime z-filter, then the z-ideal {if e C:(f) e }
is prime.
A (completely regular) space X is a dense subspace of its Stone-Cech com-

pactificatio X. The points of X are in one-one correspondence with the
z-ultrafilters on X and hence with the maximal ideals in C(X). Correspond-
ing to the point p X is the maximal ideal

(la) Mp {re C(X)’pe clx Z(f)}

in C(X). When p e X and we wish to emphasize this fact, we denote Mp

by M clearly, M is the set of all functions in C(X) that vanish at p.
The terms homomorphism and isomorphism, unmodified, refer exclusively

to mappings that preserve the ring operations. Any homomorphism t of
a ring C(Y) into C(X) is automatically a lattice homomorphism. A homo-
morphism t has a particularly nice representation when Y is realcompact,
to wit" There exist an open-and-closed set E in X and a continuous mapping

The order in the residue class ring is defined by I(f) 0 if f g (mod I) for some
g >= 0. Here, I(f) denotes the residue class to which f belongs, and the residue class
I(r) containing the constant function r is identified with the real number r. Ideals with
the property described in the text are called absolutely convex in [1].

The maximal idealM in C(S) is hyper-real (defined in 4) if and only if p is contained
in a zero-set in S disjoint from S. The space S is realcompact (i.e., a "Q-space") if
M, is hyper-real for every p S S. For a detailed discussion of realcompact spaces,
see [1, Chapter 8].
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r:E - Y such that for all g eC(Y), tg(x) g(.rx) if x eE, and tg(x) 0
if xeX E. Since the subspace X E has no effect upon any of the
algebraic questions under consideration here, we may assume that it is empty.
Then r maps X into Y, and t is the homomorphism ’"
(lb) ’g g .
The assumption that Y be realcompact is also devoid of algebraic conse-
quences, because every ring of functions is isomorphic with C(Y) for a uniquely
determined realcompact Y.

2. Embedding of C/Q in a residue class field

Let Q be a prime ideal in a ring C(Y). We are searching for conditions on
Q under which there will exist a space X, a maximal ideal M in C(X), and
a homomorphism l: C(Y) -- C(X) such that the formula

(2a) t*(Q(g)) M(tg)

defines an isomorphism
t*: C(Y)/Q --) C(X)/M,

and C(X)/M is the quotient field of t*[C(Y)/Q]. When these exist, we shall
say that the quotient field of C(Y)/Q is realized as C(X)/M, and that the
latter is a realization of the former. As we pointed out earlier, no generality
is lost if it is required in addition that t r’ for some continuous mapping
r:X --+ Y.
In this section, we shall characterize the prime ideals Q in C(Y) for which

X, M, and t exist so that t* is an isomorphismmwithout considering as yet
the question of the quotient field.

LEMMA 2.1. Given X, M, and t, the formula (2a) defines t* as a mapping
if and only if t[Q] c M. /f t* is defined, then it is a homomorphism and a
lattice homomorphism. It is an isomorphism if and only if Q F-[M].

The verification of this lemma is a routine matter. Actually, the result
is valid in a far more general setting.

LEMMA 2.2. Let r be a continuous mapping from a space X into Y. If
P is a prime z-ideal in C(X), then Q r"-[P] is a prime z-ideal in C(Y).

Proof. The mapping r’, as given by (lb), is a homomorphism from C(Y)
into C(X). Since the residue class ring C(Y)/Q is isomorphic with a subring
of the integral domain C(X)/P, Q is a prime ideal. Consider any h e C(Y),
and suppose that Z.(h) Z,(g) for some g Q. For any x X, r’h(x)
h(rx) 0 if and only if r’g(x) g(rx) 0. Since r’g belongs to the
z-ideal P, so also does r’h; thus, h e Q. This shows that Q is a z-ideal.

denotes the inverse of the mapping ;. Thus, :-[M] {g: tg MI.
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THEOREM 2.3. Let Q be an ideal in a ring C( Y). In order that there exist
a space X, a maximal ideal M in C(X), and a homomorphism t" C(Y) -+ C(X)
such that Q C[M], it is necessary and sucient that Q be a prime z-ideal.

Proof. Necessity. As was pointed out above, we may suppose that t r
for some continuous mapping r’X --+ Y. Since M is a prime z-ideal, so also
is VIii.
Suciency. (This is essentially [1, 14F.1].) X will be the set Y with

the discrete topology, and r will be the identity map from X to Y. Let g
be the family of all complements of members of Z(Y) Z[Q]. Since Z[Q]
is a prime z-filter, the family is closed under finite intersection. Moreover,
each member of meets every member of Z[Q]. It follows that g u Z[Q]
has the finite intersection property and so may be embedded in an ultrafilter.
Like any ultrafilter on X, this has the form Z[M] for some maximal ideal M
in C(X). We claim that Q r’#[M]--or, expressed in terms of the cor-
responding z-filters" Z[Q] Z( Y n Z[M]. Clearly, Z[Q] c Z( Y n Z[M].
And if Z e ,Z(Y) Z[Q], then X Z e g c Z[M], so that Z Z[M].

3. Sufficient conditions for realization of quotient field
We have iust ascertained that in order to realize the quotient field of

C(Y)/Q, it is necessary that the prime ideal Q be a z-ideal. It will be seen
in 4 that this condition is not sufficient. Here, we present a condition that
is sufficient (Theorem 3.2). Although it may appear to be somewhat forced,
many of its specializations are quite natural. The condition leads to all
examples that we have been able to discover.
The space X that provides the residue class field turns out to be a subspace

of Y, and the relevant mapping is the identity map of X into Y, which we
shall denote by . Thus, d is simply the restriction mapping g -+ g X from
C(Y) into C(X), and

V [/] {ge C(Y)’gIXeM}.

We recall that a subspace S of a space T is said to be C*-embedded in T if
every bounded continuous function on S has a continuous extension to T.

LEMMA 3.1. Let S Y, and let A Z(h) be a zero-set in Y containing
Y S. Then for every f e C*(S), f. (h S) has an extension to a function
g e C(Y) such that Z(g) A u Z(f).

Hence, for every Z e Z(S), A Z e Z(Y).

Proof. Define
g(s) f(s)h(s) for s eS,

g(y) 0 for yeY- S.

Then g is an extension of f. (hi S).

This result is a ;eheralization of [3, Lemm 2.1] and [1, 3C].
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Clearly, g is continuous at each point of the open set Y Z(h).
For a Z(h), we have g(a) 0 h(a). Given > 0, choose a neighbor-

hood V of a such that h(y) < /n for all y e V, where n is a bound for
fl. Then foryeV- S,g(y) 0, andforseVn S,

g(s) If(s) h(s) < .
Remark. In the special case A Y S, we have:Every zero-set in S is

the intersection with S of a zero-set in Y"

Z (AuZ) nS.

THEOREM 3.2. Let X be a subspace of Y, and let M be a maximal ideal in
C(X). If some member of Zx[M] is C*-embedded in the complement of a zero-
set in Y, then C(X)/M is a realization of the quotient field of C(Y)/V-[M].

Proof. According to Lemma 2.1, the mapping t’* is an isomorphism from
C(Y)/ t"-[M] into C(X)/M. We are to prove that every element of C(X)/M
is the quotient of two elements in the image under the mapping. Stated in
terms of the behavior of functions, the problem is this: given f e C(X), to
find gl, g. e C(Y) such that

M(f) i(gl X)/i(g. IX).

In case M(f) is not infinitely large, we may assume that f is bounded
on X. By hypothesis, there exist Z eZx[M] and h e C(Y) such that Z is
C*-embedded in Y Z(h). The restriction f Z then has a bounded, con-
tinuous extension f defined on Y Z(h). By the lemma, there exists
g e C(Y) such that fl’(hl[Y Z(h)]) g l[Y Z(h)]. It follows that

(flz).(hlS) lz.
Now, equality of functions in C(X) on the zero-set Z of M implies congruence
modulo M; therefore

i(f).M(h X) M(g X).

Since Z c Y Z.(h), we have Z n Zx(hlX) t, so that Zx(hlX)
Z[M]. Thus, M h X O, and therefore M(f M g X /M h X).
In case M(f) is infinitely large, we first represent 1/M(f) as such a quo-

tient, and then take its reciprocal.

Remark. The hypothesis that Z is C*-embedded in Y Z(h) was not
used in full force: we needed only the fact that those bounded functions on Z
that have continuous extensions to X also have continuous extensions to
Y Z(h).
The most noteworthy application of the foregoing theorem is to prime

z-ideals that have immediate successors (under set inclusion) in the class of
all (prime) z-ideals.
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LEMMA 3.3. Let be a prime z-filter on Y having an immediate successor in
the class of all z-filters. Let A belong to this immediate successor but not to
itself, and define X Y A. Then the trace of on X is a z-ultrafilter on X.

Proof. Since A e , each member of meets X; hence the trace IX of
on X is closed under finite intersection. To prove that IX is a z-ultra-

filter, we show that if E belongs to Z(X) but not to X, then E fails to meet
some member of IX. By Lemma 3.1, E u A e Z(Y); and by hypothesis,
E u A e . Now A does belong to every z-filter that contains properly; in
particular, it belongs to the z-filter generated by together with E u A.
Hence, there exists Fe such that A F n (E A). Thus, F nEc
A E . The set F X is then a member of IX that does not meet E.

THEOREM 3.4. Let Q be a prime z-ideal in C(Y) having an immediate suc-
cessor in the class of all z-ideals. Then there exist a subspace X of Y and a
maximal ideal M in C(X) such that C(X)/M is a realization of the quotient
field of C( Y)/Q.

Proof. Applying the lemma to Z[Q], let M be the maximal ideal in C(X)
for which Z[Q]IX x[M]. Since Q and M are z-ideals, we have
Q d[M]. Theorem 3.2 is now applicable because the member X of
x[M] is C*-embedded in X Y A.

Many particular instances of a prime z-ideM with an immediate successor
are known. Most of them are found by reversing the procedure of Lemma
3.3, as follows.

THEOREM 3.5. Given A e ( Y), let X Y A, and let be a z-ultrafilter
on X each member of which has a limit point in A. Then

is a prime z-filter on Y, and has an immediate successor, namely, the z-filter
generated by together with A.

Furthermore, if
M {feC(X):Z(f)

and
Q ,/ [M] g eC(Y):Z(g)},

then C(X)/M is a realization of the quotient field of C(Y)/Q.

Proof. It is easy to check that is a prime z-filter. (In the notation of
[1, 4.12], q i)E.)
The hypothesis implies that 0 u [A} has the finite intersection property,

and so it generates a z-filter. To see that this is the immediate successor of ,
consider any F e Z(Y) that meets every member of ( but does not belong to.. Then F n X e , and since 9E is a z-ultrafilter, there exists E e 9E such
that E n F 0. Now E u A, which is a zero-set in Y (Lemma 3.1), belongs
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to . Therefore, F r (E t A) F n A belongs to the z-filter generated by
together with F. Consequently, A lso belongs to this z-filter.
The final statement in the theorem follows from Theorem 3.2.

Remark. A z-ultrfilter 91Z stisfying the hypothesis of the theorem will
exist precisely when X nd A re not separated.

COROLLARY 3.6. Let o be a prime z-filter on Y, let A e Z(Y) o meet
every member of 0, and define X Y A. Then o has an immediate suc-
cessor, namely, the z-filter generated by o "together with A, if and only if the
trace of o on X is a z-ultrafilter on X.

Proof. The necessity is stated in Lemm 3.3. For the sufficiency, define
s in Theorem 3.5: the lrgest z-filter on Y whose trce on X is ; 01 X.

Then 0 On the other hnd, for given Z e 0., there exists Z0 e 0 such
that Z n X Z0 r X; then Z u A Z0 tJ A e 0 since A e 0 nd .0 is prime
(3.5), we hve Z e 0. Thus, 0 . Theorem 3.5 now yields the desired
result.

This corollary is generalization of [3, Theorem 2.2(d)]. In the cse
treated there, A consists of single point, so that the immediate successor of
0, when it exists, is z-ultrafilter on Y.
The common occurrence of prime z-ideals hving n immediate successor

shows up from nother point of view.

THEOREM 3.7. If Q1 and Q are prime z-ideals, with Q1 contained properly in
Q then there exists a prime z-ideal Q having an immediate successor in the class
of all z-ideals and satisfying QI c Q Q.

Proof. Choose ny h e Q Q1, nd let Q be the union of the chain of ll
z-ideals containing Q but not h. The immediate successor of Q is the inter-
section of the chain of all z-ideals containing both Q nd h.

Another special cse of Theorem 3.2 that hs noteworthy pplictions arises
when X itself is C*-embedded in Y, nd, in prticulr, when Y X.
THEOREM 3.8. fM is a maximal ideal in C(X), then C(X)/M is a realiza-

tion of the quotient field of C(X)/"-[M].

Because of the well-known isomorphism between C(fiX) and the ring C*(X)
of ll bounded continuous functions on X, this theorem my be restated in
terms of C*. The isomorphism in question is simply the restriction mpping
’; nd for ny subset B of C(X), the subset of C*(X) corresponding to "-[B]
is B r C*(X). The next theorem includes the restatement of the preceding
one long with theorem of Kohls [2, Theorem 2.5].

THEOREM 3.9. The mapping

P P n C*(X)
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is one-one from the prime ideals in C(X) into (in general, not onto) the prime
ideals in C*(X). The residue class ring C*/(P n C*) is isomorphic with the
subring of C/P obtained by discarding all elements with infinitely large absolute
value. The rings C/P and C*/(P n C*) have isomorphic quotient fields. In
particular, for any maximal ideal M in C, C/M is a realization of the quotient
field of C*/ (M C* ).

Proof. For any f e C, the function (- 1 v f) ^ 1 belongs to precisely the
same ideuls as does f. This implies that an ideal in C is determined by its
bounded members. Thus, P C* P C* if and only if P P.
The description of the copy of C*/(P C*) in C/P is due to Kohls. It

reflects the fact that if P(f < r (where r e R), then the bounded function
(- r v f) ^ r is congruent to f modulo P.
To see that the quotient field of the copy of C*/(P C*) in C/P is the

same as that of C/P, recall first that the unique maximal ideal in C/P is a
symmetric interval [1, 14.3] that excludes the element 1. It follows that if
a e C/P and a is infinitely large, then a- exists in C/P, and it belongs to
the subring. The quotient field of the latter contains a 1/a-, and hence
contains all of C/P.

We return, now, to the ring C(X). If M (see (la)) is a maximal ideal
in C(X), with p e fiX X, then Theorem 3.8 asserts that C(X)/M is a
realization of the quotient field of C(X)/V-[MP]. Sometimes, the same
conclusion can be inferred from Theorem 3.5. To do so requires the additional
hypothesis that X X be a zero-set in X--which is equivalent to the
requirement that X be locally compact and a-compact. When this require-
ment is met, we can conclude further that the prime z-ideal V*[M] has an
immediate successor in the class of all z-ideals in C(X). Otherwise, the
question of existence of an immediate successor is left open. The simplest
possibility of such a prime z-ideal without an immediate successor appears
to be the case where X is an uncountable discrete space and every member of
Z:[M] is uncountable.
In case the prime z-ideul P*[M] does have an immediate successor, there

urises the question of whether this immediate successor is the maximal ideal
containing V-[MP]. That maximal ideal can be denoted unambiguously by
M it consists of ull functions in C(X) thut vunish at p. For the space
X N, we can give complete answer to the question.
We recall that a point x e X is a P-point of X provided that every function

in C(X) is constant on a neighborhood of x.

THEOREM 3.10. For any point p fiN N, the prime z-ideal Q ’[M]
in C(N) has an immediate successor. The latter is the maximal ideal M in
C(N) if and only if p is a P-point of N N.

Proof. Because N is a discrete space, the prime z-filter Z[Q] consists of all
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zero-sets in N that are neighborhoods of p.6 Since N N is a zero-set in
N, Theorem 3.5 asserts that Z[Q] has an immediate successor; it is, in fact,
the z-filter generated by Z[Q] together with fN N and consists of all zero-
sets in N that meet N N in a relative neighborhood of p. By .definition
of P-point, this family of zero-sets is all of Z[Mp] if and only if p is a P-point
of N N.

It is known that some points of N N are not P-points and, under the
continuum hypothesis, that some are [1, 6T, V]. Thus, the maximal ideal
Mp is the immediate successor of the prime ideal d-[M] for some, but not
p in N N. We remark that M is hyper-real for every p e N N (see,
e.g., [1, 5.10]). In contrast, suppose that we form Y by adding to any space
X just one point p from X X for which M is hyper-real. Then {p} is
zero-set in Y, and so, by Theorem 3.5, d[M] necessarily has an immediate
successor among the z-ideals in C(Y) (namely, the maximal ideal Mp).

4. Quotient fields not isomorphic with any residue class field
We have succeeded in finding prime z-ideals Q for which the quotient field

of C/Q can be realized as a residue class field. Now we turn to prime z-ideals
Q for which the quotient field of C/Q cannot be isomorphic with any residue
class field of a ring of functions.

First, we review some facts about such a residue class field. It is totally
ordered ;2 moreover, the order is determined by the algebraic structure of the
field, because an element is nonnegative if and only if it is a square. The
field contains a copy of the reals--specifically, the residue classes of the con-
stants. When the field does not coincide with this copy, it is said to be
hyper-real (and the corresponding maximal ideal is also termed hyper-real).
Every hyper-real field is nonarchimedean; moreover, no element is the infi-
mum of any countable set not containing it.

LEMMA 4.1. Suppose that a ring A has an ordered quotient field F, and that
a A and a > 1 implies a-le A. Then the set of positive elements in A is
coinitial in the set of positive elements of F.

Proof. Given c > 0 in F, we have c b/a for suitable a, b A, with a > 0.
If a>- l, thenc= ba-leA;if a< 1, then0 < b ac < c.

THEOREM 4.2. The following conditions on a nonmaximal prime z-ideal Q
in C(Y) are equivalent"

()
(2)
(3)

Q is a countable intersection of prime z-ideals different from Q.
Q is a countable intersection of prime ideals different from Q.
The set of positive elements of C/Q has a countable coinitial subset.

In the notation of [1, 7.12], Q O.
In fact, the field is real-closed [1, 13.4].
In fact, the field is an ,-set [1, 13.8].
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Furthermore, if Q satisfies these conditions, then the quotient field of C/Q is
not isomorphic with any residue class field of any ring of continuous functions.

Proof. Evidently, (1) implies (2).
To show that (2) implies (3), let (Q) be a sequence of prime ideals whose

intersection is Q. Choose g satisfying 0 =< g e Q Q; we claim that the
sequence (Q(g)) is coinitial in the set of positive elements of C/Q. Indeed,
if 0 < a C/Q, then for some n, a does not belong to the ideal Q/Q (in the
ring C/Q). Since Q/Q is an interval in C/Q [1, 14.3], a exceeds every mem-
ber of Q/Q. Thus, 0 < Q(g) < a.

Next, we prove that if Q satisfies (3), then the quotient field of C/Q is not
isomorphic with any residue class field of a ring of functions. First of all,
since Q is not maximal, C/Q contains elements that are infinitely small [1,
7.16], and so its quotient field cannot be the real field. Now, by (3) and the
lemma, the set of positive elements in the quotient field of C/Q has a count-
able coinitial subset. This implies that no hyper-real residue class field can
be order-isomorphic with the quotient field of C/Q. Since the order in a
residue class field is determined by its algebraic structure, a hyper-real field
cannot be (ring) isomorphic with the quotient field either.

Finally, we prove that (3) implies (1). In view of what has just been
proved, Theorem 3.4 shows that Q has no immediate successor in the class of
prime z-ideals in C. Hence if (Q(g)) is a coinitial sequence of positive ele-
ments of C/Q, then for each n, there exists a prime z-ideal Q containing Q
properly, but not containing g. Since the prime z-ideal Q contains none
of the g, it must be Q.

Remark. The contrast between chains of prime z-ideals and chains of
ordinary prime ideals shows up sharply in connection with condition (3).
This condition is satisfied by every prime ideal with an immediate successor
in the class of all prime ideals [1, Theorem 14.6], but by no prime z-ideal having
an immediate successor in the class of all z-ideals.

The following example shows that the theorem is not vacuous.

EXAMPLE 4.3. A decreasing sequence of prime z-filters. Let

Y [0, 1]N,
that is, a point y of Y is a sequence (y)N, with 0 <= y _-< 1, and Y carries
the product topology. We shall make use of the fact that Y is a metrizable
space, so that, for example, every closed set in Y is a zero-set.
A strictly decreasing sequence of prime z-filters on Y will be defined in-

ductively. First, we define S_1 i and

Sk IYeY" y 0foralli > ]el (k 0, 1,2,... ).

As noted in Mathematical Reviews, the example suggested in [2, Example 4.2]
is in error.
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Let fi;0 be the z-ultrafilter of all zero-sets containing the point (0).
n e N, and suppose that 5:k have been defined for 0 -<_ ]c < n, satisfying

Fix

()
(b)
()
(d)

k is a prime z-filter on Y.
S e k, while S_1 e k.
The trace of on S S_1 is a z-ultrafilter a on Sk S_.
Y

_
for / => 1.

Let denote the family of all zero-sets in S whose interiors relative to
S contain members of (t_. Then S e, since S contains the member
S_ S_. of (_1, and therefore is not vacuous. In fact, it is easy to
verify that is a z-filter on S. Since every member of has nonempty
interior, and S S_ is dense in S, the trace of on S S_ is again
a z-filter. We embed the latter in a z-ultrafilter ( on S S_, and we
then define ff to be the family of all zero-sets in Y that contain members
of .

a). , is a prime z-filter on Y. This is easy to verify (cf. Theorem 3.5).
(b). S while S_1 obviously.
(c ). The trace of , on S S,_I is ( By definition of ff, its trace is

contained in a. On the other hand, if A e am, then cly A e ff and since
A is closed in S S_, we have A cly A n (S S_1).

(d). ff c ff_. For any Z e Z(Y) ff._, we are to prove that Z e ff.
Since Z (Sn_ S_.) does not belong to the z-ultrafilter (_, there exists
A e (_ such that Z A 0. Now A is closed in S_ S_., which in
turn is closed in S S_.. Hence A is closed in S S_. and it is dis-

ioint from the relatively closed set Z (S S_2). Therefore, there exists
a relatively open set G in S S_. such that G and its closure

satisfy
F cls_s_. G

A cGFS-Z.
Since G is open in the relative topology of S, the set cls
to the z-filter 8. Consequently,

F cls. G belongs

F n (S, S,_) cls, F n (S Sn-1) an,

But F n Z l. Therefore Z n (S S_1) (., and so Z if=.
This completes the induction.
The family ff ff is a prime z-filter on Y having no immediate successor.

The prime z-ideal Q {g C(Y):Z(g) e 7} satisfies the conditions of Theo-
rem 4.2.

Remark. A possible method for constructing an uncountable, well-ordered,
decreasing family of prime z-ideals is suggested by Theorem 4.2, as follows.
Find a space X and a maximal ideal M in C(X) such that the prime z-ideal
Q V-[M] is not maximal and has no immediate successor in the class of all
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z-ideals in C(X). By Theorems 3.8 and 4.2, Q cannot be a countable inter-
section of z-ideals different from Q; an uncountable decreasing family of z-ideals
containing Q properly can then be found inductively.
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