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1. A knowledge of the global structure of the traiectories of a positive
quadratic differential on a finite oriented Riemann surface is of fundamental
importance in the proof of the General Coefficient Theorem [1, 2, S, 4]. The
first steps in this direction were taken by Teichmiiller I9] who described the
local structure of the traiectories at various critical points, as well as some
of the basic types of domains comprising the global structure with, however,
little indication of proof. His discussion was limited to some rather special
hyperelliptic differentials (i.e., defined on the Riemann sphere). Schaeffer
and Spencer [] gave a fairly complete treatment o the local structure and
analyzed the global structure or those differentials treated by Teichmiller,
as well as or one other special hyperelliptic differential, by a method whose
application is essentially restricted to these particular cases. In particular,
it was not decided whether, in the case of a hyperelliptic differential, a tra-
iectory could be everywhere dense in some domain. The first general results
on global structure were given in a paper [7] by the author and Spencer, where
it was shown that for a hyperelliptic differential the traiectory structure is
made up of end, strip, circle, and ring domains [2; pp. 26, 27] together with a
finite number of domains in which some of the traiectories having limiting
end points at finite critical points of the differential are everywhere dense.
It was shown by example that such domains can actually be present. Later
the author remarked [1] that the same considerations apply on a general finite
oriented Riemann surface, and a complete treatment of this characterization
of the global structure is found in [2], where the results are summarized as the
Basic Structure Theorem [2; Theorem 8.5]. This result is sufficient for
proving the General Coefficient Theorem, but one somewhat unsatisfactory
feature remains. This is the lack of knowledge of the structure within those
domains where there are everywhere dense traiectories. The only information
in this direction is contained in [7; 3]. Now the simplest prototype of every-
where dense structure occurs for everywhere regular quadratic differentials
on a closed surface of genus one. If Q(z) dz is one such differential, then
all such are of the form KeOQ(z) dz with 0 -< 0 < 2, K > 0. For a count-
able set of values of 0 each traiectory is a closed curve; for all other values
each trajectory is everywhere dense on the full surface. In this paper we
will show that those domains in which the everywhere dense structure occurs
decompose into subdomains such that every trajectory in such a subdomain
is everywhere dense.
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2. For all terms and definitions relating to quadratic differentials, we
refer to [2]. Since the trajectories of a quadratic differential form a family
F which displays many of the features of the regular curve families studied in
the topological theory of functions, it is worth while to recall several concepts
associated with these families which extend to the present case [5, 6].

DEFINITION 1. By a right neighborhood associated with F is meant an open
set N such that r admits a homeomorphic mapping onto a square in the u, v )-
plane

K" -1 <__ u-< 1, -1 <- v <- 1

such that there is a (1, 1) correspondence between maximal subarcs of F12
and arcs u c, --1 <- v <- 1, where c ranges over the interval [-1, 1]. We
term u, v canonical coordinates of the antecedent in N of u, v) in K.

Evidently every noncritical point lies in a right neighborhood.

DEFINITION 2. By a transversal of F is meant an open arc or Jordan curve
every point of which lies on an open subarc which lies in a right neighborhood
and admits the representation v (u) in terms of the canonical coordinates.
By the principal transversal of a right neighborhood N is meant the open arc
in N on which

v=O, -1u<1.

We recall also the following result [5; Lemma 3.1].

LEMMA 1. Every closed subarc of a trajectory lies in a right neighborhood.

Finally we have the concept of F-set [6, 2].

DEFINITION 3.
lies entirely in S.

An F-set is a set S such that any trajectory which meets S

We are now ready to prove our key preliminary result.

LEMMA 2. In an open F-set 0 in which a finite number of trajectories are
collectively dense, there exists a closed transversal of F.

In a right neighborhood N in 0 let us denote the set represented
by 0 < v 1,- 1 < u < 1 in the canonical coordinates by N+, the set repre-
sented by -1 v < 0, -1 u 1 by N-, and the principal transversal
of N by },. Let a trajectory be sensed and meet h in a point P. If an open
interval of points immediately preceding P on lies in N-, we say that
crosses }, at P in the positive sense; in the alternative case we say crosses
h at P in the negative sense.

Let tl, tk be the finite number of trajectories in the statement of the
lemma with any assigned senses. We show first that for a given right neigh-
borhood N there exist a t and an open subarc t of }, such that t crosses
in the same sense at successive points of intersection (successive in terms of
the sense on t). Indeed starting with tl and a given point of intersection
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P0 of tl with , regard all points of intersection of tl with "P, P., follow-
ing P0 in the sense on t, and P_, P-2, preceding P0 (following P0 on
t with sense reversed). (These sets may of course be finite or void.) If
any Pj, j > 0, lies on an interval P Pro, 0 =< l, m < j, we are done; if not,
the P., j >- 0, cannot be dense on h. A similar argument applies to the
Pj, j -<_ 0. Thus if tl does not have the desired property, there exists a
subinterval of }, free of points of tl. Repeating this argument in succession
with t2, tk (if necessary) and successive subintervals, we must obtain
the desired t because of the presumed collective density of tl, tk.
We may now suppose the right neighborhood N so restricted that the

trajectory t meets }, in successive points of intersection at which it crosses
7, in the same sense. By suitable choice of canonical coordinates, we may
suppose that both crossings are in the positive sense, and the successive points
of intersection are Q, R (where Q precedes R on t) represented by (u, 0),
(u, 0) with u < u.. Now by Lemma 1 the arc QR on lies in a right neigh-
borhood N’ in which we may take canonical coordinates u’, vr, so that Q, R
are represented by the points (’, vl), (’, v) with w. > v. In a sufficiently
small interval (’ s, r -t- s), s > 0, open subarcs of ), will admit in the
canonical coordinates of N’ in neighborhoods of Q and R the respective
representations v’ (u’), v’ .(u’). Let ’ < ’ < ’, and let
S be the point represented in N’ by (’, 2(’ ), so in N by (, 0), u < < u..
Let a be the arc joining Q and S represented in N by the line segment joining
(’, v) and (’, (%’)). Let be the arc joining Q and S represented in N
by the segment v 0, u < u < %. Then the union of a and provides the
desired closed transversal.

). LEMMA 3. Let Q(z) dz be a positive quadratic differential on a finite
oriented Riemann surface R such that there exists in its trajectory structure a
domain G in which the trajectories having limiting end points at the finite critical
points are everywhere dense. Let U denote the union of trajectories of Q(z dz
having in each sense a limiting end point at a finite critical point. Then G
consists of a finite number of subdomains of G. Let D be such a subdomain.
Then every trajectory in D is everywhere dense in D.
Of course G may have positive genus. Let r be a trajectory in D, and K

its (point-set) closure. Evidently K1 is an F-set (a familiar consequence of
Lemma 1 ), and so unless D c K, we have D K K also an F-set which
is open. The finite number of trajectories with limiting end points at finite
critical points of Q(z) dz are collectively dense in K. Thus there exists a
closed transversal g of F in K. by Lemma 2.
As we describe g in either sense, (Q(z)) 1/2 dz varies monotonically.

Thus it serves to define a linear measure on g which we call g-length. It is
easily seen that g lies in a doubly-connected domain H in K., swept out by
open arcs on trajectories through points of g, whose boundary components
it separates, and which it divides into subdomains H+ and H-. A traiectory
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ray (i.e., one of the open subarcs into which a trajectory is divided by a
point on it, sensed to have this point as limiting initial point) with limiting
initial point on g and an initial open subarc in H+ will be said to leave the
positive side of g;if it has an initial open subarc in H-, it will be said to leave
the negative side of g.
At most a finite number of traiectory rays leaving the positive side of g

have limiting end points at finite critical points and no point of intersection
with g. Their limiting initial points divide g into a finite number of open
intervals I, j 1, K. Similarly at most a finite number of trajectory
rays leaving the negative side of g have limiting end points at finite critical
points and no point of intersection with g. Their limiting initial points
divide g into a finite number of open intervals J, j 1, L. If a tra-
jectory ray r leaving the positive side of g with limiting initial point in an
interval I had no point of intersection with g, it could not re-enter H; thus
apart from the points of its initial open subarc in H, it would be at a positive
distance from g in the Q-metric Q(z) llldz I. Since there is no trajectory
ray with limiting initial point in I and no point of intersection with g leaving
the positive side of g which has a limiting end point at a finite critical point,
the same condition would persist through an open interval in I.. The
trajectory rays with limiting initial points in this interval leaving the positive
side of g would sweep out an open set with infinite area in the Q-metric.
This is impossible, since this set would lie in D which has finite area in the
Q-metric. Thus each trajectory ray r with limiting intial point A in It
leaving the positive side of g has a point of intersection with g. Let B be
the first point of intersection of r with g. Let r* be the trajectory ray with
limiting initial point B and sense the reverse of that of r. If r* leaves the
positive side of g, B will lie in an interval Ik ;if the negative side, B will lie
in an interval J. Further if a second trajectory ray r’ leaving the positive
side of g has limiting initial point A in I., its corresponding point B’ will
lie in the same interval Ik or J as before, and the subintervals AA’, BB’
will have the same g-length. Thus the interval I is mapped onto I or J,
respectively, isometrically in terms of g-length by the correspondence induced
from A to B. In particular, we see that in the first case we must have/ j,
since the mid-point of I in terms of g-length could not correspond to itself
in this manner. We have spoken so far as though there actually are tra-
jectory rays leaving the positive side of g which have a limiting end point
at u finite critical point and no point of intersection with g. If there were
none, the preceding considerations would show at once that D itself would
be a closed surface of genus one on which Q(z)dz would be regular. Thus
under our present hypotheses this cannot occur. Similar arguments apply
to intervals J and traiectory rays leaving the negative side of g. In par-
ticular, the intervals J not obtained before as images of intervals I. are
paired by the latter correspondence.
By the preceding construction the intervals I, j 1, K, and J.,
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j 1, L, are grouped in pairs of equal g-length. With each pair is
associated a domain A swept out by trajectory arcs joining the two intervals.
Part of the boundary o.f the domain A consists of the two intervals. We will
now describe the remainder of the boundary. Starting with an end point
of the one interval we proceed on a traiectory ray until we reach a finite
critical point. This is followed on the boundary by another portion of
trajectory, which, in case the critical point is a simple pole, may be the pre-
ceding reversed in sense. This trajectory cannot continue to unbounded
length in the Q-metric without having a limiting end point at a finite critical
point or meeting g. This follows from Lemma 1 and the fact that the tra-
jectory arcs in A have bounded length. If the former occurs, the boundary
continues along another portion of trajectory, and the same assertion applies.
After a finite number of steps we must have a point of intersection with g
which is evidently an end point of the other interval. Thus A is bounded
by two arcs on g, arcs on the closure of trajectories with one end point on g
the other at a finite critical point, and possible trajectories with limiting
end points at finite critical points (at each end). The domains A for various
pairs of arcs are nonoverlapping. The inner closure of their union is a domain
M lying in K.. Since the points of the arcs on g and of the open arcs on
trajectory rays with one limiting end point on g the other at a finite critical
point each occur twice as boundary points of these domains, M is bounded
by a finite number of trajectories each joining two finite critical points to-
gether with their end points. This, however, contradicts the original as-
sumption that both r and g lay in the domain D.

4. We will now give an improved statement of the Basic Structure Theo-
rem, taking account of the result of Lemma 3. We begin by giving the defi-
nition of a fifth type of basic domain.

DEFINITION 4. A density domain (relative to Q(z) dz2) is a maximal
connected open F-set on 9 with the properties:

contains no point in H;
(ii) C is swept out by trajectories of Q z dz each of which is everywhere

dense in .
(Here the notations are as in [2]: C is the set of zeros and simple poles of

the quadratic differential; H is the set of poles of order at least two.)
The final statement is as follows.

THEOREM 1. Let 9 be a finite oriented Riemann surface, and Q(z) dz a
positive quadratic differential on 9 where we exclude the following possibilities
and all configurations obtained from them by conformal equivalence:

I. 9 the z-sphere, Q(z) dz dz,
II. 9 the z-sphere, Q(z) dz Ke" dz/z, real, K positive,

III. 9 a torus, Q(z) dz regular on .
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Let A denote the union of all trajectories of Q(z) dz which have one limiting
end point at a point of C and a second limiting end point at a point of C t H.
Then

(i) 9 consists of a finite number of end, strip, ring, circle, and density
domains;

(ii) each such domain is bounded by a finite number of trajectories together
with the points at which the latter meet; every boundary component of such a
domain contains a point of C, except that a boundary component of a circle or
ring domain may coincide with a boundary component of ; for a strip domain
the two boundary elements arising from points of H divide the boundary into
two parts on each of which is a point of C;

(iii) every pole of Q(z) dz of order m greater than two has a neighborhood
covered by the inner closure of the union of m 2 end domains and a finite num-
ber (possibly zero) of strip domains;

(iv) every pole of Q(z) dz of order two has a neighborhood covered by the inner
closure of the union of a finite number of strip domains or has a neighborhood
contained in a circle domain.

The discussion of 3 can readily be converted into a completely general
description of a density domain. It is however not canonical.

5. Theorem 1 hs a consequence suggested by the argument of 3 which
is of independent interest.

COROLLARY 1. Let I, the real numbers modulo 1, be divided into open intervals
I1, Ik tc > 1, taken in cyclic order. Let J Jk be a second such
division. Let there exist a reordering i i of 1, t such that J has
the same length as Is. Let the transformation T be defined on I apart from the
end points of the Is by mapping Is in a linear sense-preserving manner on J
For r I we consider the points Tnr for all integral values n for which they are
defined, denoting their totality by 1Tnr}. The set Tnr} is finite for at most a

finite set L of points p pN of I. If L is void, every set Tr} is everywhere
dense on I. If not, L divides I into a finite number of intervals which can be
grouped into collections such that on the union U of such a collection either

a T is periodic, or
(b) for every r e U, Tnr} is everywhere dense on U.

We could of course include the case/ 1 which corresponds to excluded
possibility III of Theorem 1 nd is classical.
To prove our corollary, we represent I as the segment 0, 0 < < 1 in

the -plne ( i) with the points (0, 0), (0, 1) identified. We con-
sider/ rectangles Rs, J 1, ,/, in the z-plane (z = x - iy) given by

0 =< x =< 3, 0 =< y =< l.
where ls is the length of Is We form a Riemnn surface 9 by performing the
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following identifications"

(i) the side x 3, 0 -<_ y =< lj of R. is identified linearly and with preser-
vation of direction with .;

(ii) the side x 0, 0 =< y -<_ l. of R. is identified linearly and with
preservation of direction with

(iii) the segments2 -< x -< 3, y l.onR.nd2 -< x =< 3, y 0on

R’+I re identified linearly and with preservation of direction, j 1, ,/,
where/c - 1 is to be interpreted as 1;

( ) (1,(iv) if 1, 2, ,/c is the permutation inverse to
il, i2, ikql, q2, "", qk

the segments 0__< x _-< 1, y l. on R. and 0 -<_ x -<_ 1, y 0 on R.+I are
identified linearly nd with preservation of direction, j 1, ,/, the sme
convention applying as in (iii).

The points of 9 are the points of I, the points of the interior of the rectangles
R-, j 1, ,/c, nd the points of the (liner) interiors of the segments in
(iii) and (iv). At all points of local uniformizing parameters may be
assigned by using the Euclidean geometry, taking account of the identific.
tions if necessary. The sme is true for all boundary points of 9 except those
arising from the points (2, l.) - (2, 0) in (iii) nd (1, lj) (1, 0) in (iv).
At them we use respectively (2 + ilj z)12 in R-, (2 z) 12 in R.+I nd
(z (1 ilj))l/ in R., (z 1)1/ in R+I, the roots in each cse chosen
to gree with the standard definition of boundary uniformizer (cf. [2; p. 35]).
Then it is clear that 9 is finite oriented Riemnn surface. If is the (mny-
valued) function determined on 9 by defining (z) on ech R. by the rigid
imbedding corresponding to the identifications (i) nd (ii), we see that d
defines quadratic differential on 9 (indeed di" itself defines a differential).
Evidently d is a regular positive quadratic differential on 9. The traiec-
tories of d in ioining pirs of points in C, if such exist, meet I in exactly
the points p, p. Thus the bsic domains associated with the struc-
ture of d on 9 meet I in collections of intervals from among those with end
points at p, p. The only possible basic domains are ring and density
domains. Thus on such a set U, either T is periodic, or for every r e U the
set Tr} is everywhere dense. If there are no traiectories of di"2 in 9 ioining
pairs of points in C, then 9 is itself a basic domain. Since d has at least
one boundary zero on 9, the latter cannot be a ring domain, and thus is a
density domain.

There can be little doubt that the Basic Structure Theorem admits a
straightforward extension to nonorientble Riemann surfaces which would
allow us to admit also sense-reversing linear mppings on the intervals in the
preceding corollary.
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