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1. Introduction
In 1926, J. W. Alexander [3] showed that the homology groups of X deter-

mined the homology groups of S X whenever X was embedded in S. In
[4], Peterson showed how the stable primary cohomology operations in X
determine those of S X. In this paper, we show how the stable sec-
ondary cohomology operations in X determine those of S X.

Heuristically, if is a secondary cohomology operation defined on the
kernel of 0 with values in the cokernel of 0’ (i.e., corresponding to the rela-
tion O’ 0), then the dual of will be a secondary cohomology operation
defined on the kernel of x(0’) with values in the cokernel of x(0) (i.e., corre-
sponding to the relation x(0) x(0’) x 00) 0), where x is the involution
in the Steenrod algebra (see [4]). If is nonzero in X, then the dual of

will be nonzero in SN X. As in [4], this will be used to prove "nonem-
bedding theorems."
We will state and prove our theorem in the language of J. F. Adams ([1]

or [2]). One of the key steps in the proof is the fact that the two formulas
in [5] are "dual" to each other.

2. Secondary cohomology operations
In this section, we recall Adams’s definition of stable secondary cohomology

operations with coefficients Z, [2].
Let (d, z, m) be such that d:C Co, zeC,d(z) O, where C and

Co are free graded modules over the Steenrod algebra A. Let Co and c,
r 1, ..., R, be bases for Co and C respectively, and let deg Co 0,
deg c q(r), degd 0, and degz n -t- 1. Let

e:C0 -- H*(X) (- q>0 Hq(X; Z))

be a map of degree m. Then is a secondary cohomology operation asso-
ciated with (d, z, m) if it satisfies the following four axioms:

1. O() is defined if ed 0.

2. I,( v) e Hm+n(x) /Er= ar Hm+q(r)-(Z), where z =. a c.

3. If f;X --+ Y, and : Co -- H*(Y), then

H+ H+()-(f*) f*() e (X)//r=l ar (X).

4. Let (X, Y) be a pair, and let i:Y -+ X, and j:X -- (X, Y) be the
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inclusion maps. If ’C0 -- H*(X, Y) is such that (j*n) is defined, then

H’+(Y) /i*.= U’+q()-(X)i*(R)(*) ((z)}
where "C --> H*(Y) is such that yd.

Let (:H*(X) -+ H*(SX) be the suspension isomorphism. The formula
z-i(as) defines a secondary cohomology operation associated with
(d, z, m 1), called the suspension of and denoted by a().
l} is a stable secondary cohomology operation associated with (d, z) if

(1) each is a secondary cohomology operation associated with (d, z, m),
and

(2) a()

_
for all m.

The following form of axiom 4 will be useful in what follows" Let f" Y -- X,
and let M X CY be the "shrunk mapping cylinder." Let g’X-- M
be the inclusion, and let h’M -- SY be defined by collapsing X to a point.
Let v’Co - H*(M) and ’C -- H*(Y) be such that h*a yd. Then

Hm+ Hm+q(r)-(X).f*(g*v) li’(z)} e (Y)/f*L a
This is obviously equivalent to axiom 4 with M taking the place of the pair
(X, Y).

COnOLLnY 2.1. Let {,} be a stable secondary cohomology operation asso-
ciated with (d, z). Let v’Co -- H*(X) and ’C --+ H*(M) be such that
g* yd. Then

Hm+q(r)-1h*a,(f*v) {(z)} eHm+n+(i)/h*a_’= a (Y).

Proof. Apply the construction above to h’M ---> SY. That is, let

M SY CM.

21 is of the same homotopy type as SX (see [6]). Applying the alternate
form of axiom 4 to+ and this _r gives the corollary.

Remark. Corollary 2.1 is another formulation of Theorem 6.3 in [5], as
axiom 4 is another formulation of Theorem 6.1 in [5].

3. Duality
In this section we recall some properties of Spanier-Whitehead duality

[7].
Let X S be embedded as a subpolyhedron. Let X be an N-dual

to X. Define
’Hq(Z) --> H-q-()X).

to be the composition of the Alexander and Pontrjagin duality isomorphisms.

We eliminate the signs that occur in Adams’s axioms by using as the coboundary
operator in dimension i, (--1) times the usual coboundary.
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That is,

Hq(X) Hq(X; Z,) --+ Hv_q_l(3X; Z) -+ HV-q-l()X; Z,)*,

where V* is the dual vector space of V. If f: Y -+ X, and )f:)X ---+ )Y (de-
fined under suitable conditions), then

Hq(X) f Hq( y)

i.i_,v_q_ )X , {Df H
_

q_ )y) .
is a commutative diagram. (For convenience, we will denote by f the in-
duced homomorphism Hq(X) Hq(Y), and by f* the dual homomorphism
Hq( y) * --+ H(X)*.)

Let x:A -- A be defined s in [4]. x has the following properties"

(1) "=0 x(Sq-)Sq 1, the unit element of A, and

(2) Hq(X a Hq+(X)

Hv-q-(19X), x(a)* H-q--(,> :X) *

is a commutative diagram for a e A.

We shll lso need the following standard properties of Alexander and
Pontrjagin dualities.

LEMMA 3.1. Let X Sv S’,
v’-v’Hq()v X) -+ Hq+v’-N( Sv’-v$)v X) Hq+v’-v()v, X),O"

where )v X is an N-dual of X. If u Hm(x), then

v(U) (qv’--N)*V,,(U) e HV-m--I()N X)*.

LEMMA 3.2. Let X S Sv’. If
Hv (IDly Dv X)* Hm(x) * H’(Dv, idly, X)*,

then
-1 o.N ’--tO --1 --1 HN--m--1(v) x),

where z:v’-v. H:V-,-i(3v X) ---+ Hv’-m-l()v, X).. The mcin theorem

We now define a dual x() for stable secondary cohomology operations
analogous to x (a).
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Let [(m} be a stable secondary cohomology operation associated with
(d, z). Let 1 be the free module over A on generators r, r 1, R,
0 the free module over A on the generator 0. Define : (1 -- 0 by

(e) x(-) e0,

where we recall that z rl a cr. Let

’= x(a) e.
Then

() x(ar)x(a)o (x(a a))o x(a ar)o O.

Let X c SN. Let e:0 - H*(X) be such that 0; that is, let(0) u
Hn+n Hm+be such that X(ar)(u) 0 for all r. Let v e (X)* (X)* be

H.+-()(X).such that x(a)*(v) 0 e for all r.

THEOnEM 4.1. The formula
(()(u), v) (__._(-()),

defines a stable secondary cohomology operation associated with (, ).

(S=+. x(a)* H.+.-() ,),Proof. v e Ker (X)* (X) which has as dual

U’+n(X)/= x(a)H’+’-q() (X).
R

-l(v) e Ker (SN-’-n-(X) ar) HV_,_,,+q()()X)).
rl

Hence __n_(-(v)) is defined and is a member of

R HN--m--n--2+q(r)H-’-’()X / Zr:l Olr ()X),

which has as dual
R

l Ker (H-’-()X) * a, Hr_m_n_2+q(r) )X) *).

(u) belongs to this latter group; hence our formula makes sense, and
x()(u) is defined.
Axioms 1 and 2 follow immediately from the construction. The proof of

axiom 3 will imply that x()(u) is independent of how X is embedded in

Let f:X --> Y, X S, Y S’. Assume that N is large enough so
that S" S’-(SN) S"-’(S’) contains X, Y, and the mapping
cylinder of f. First note that

(x()(u), > (---(;()), (u)
((N_m_n_l(/ N"--N\--I--1 N"--N,,(,)), ( )*,,(u))

by Lemmas 3.1 and 3.2
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(("-)__._(("-")-.(v)), .(u))

(.__._(-.(v) ), .(u) ).

Hence x() is independent of N. Thus we may assume that the mapping
cylinder of f is embedded in or that f is an inclusion.

HLet u e (Y) be such that x(a)(u) 0 for all r. Then

(x()(u), v> (.__._((,)), ,,.(u))

(.__._(-,.(,) ), ()*,.(u))

((f),.__._ -,,.(v) ), .(u) )

(.__._(( -,.(v) ) ), .(u) >.*(v) ), ,.(u))

(x()(u), *(,))

ffx()(u),
and axiom 3 is verified.
For axiom 4, let

f: Y ---> X, g"X --, M X CY, h’M SY, Sf: SY -’-* SX,

with M, SX, and SY embedded in SN. Let u e.H(M) be such that
Hm+n-q(r) +1x() (gu) is defined. Let w,. (SY) be such that h(w,.)

x(ar) (u). We are to show that

/f_,-xfx(),,,(gu) -1X(a)wr} e Y) (X).

Let
R

v e fl Ker (H’+’(Y) * .x!.a)*f*)H+n-q(r)(X).).
r--1

HN-m-n+q(r)Also, let x e (M) be such that

(ff)h)(x,.) a,.(,-l(v)) ,-(x(a)*)(v),
or

h*,(x,.) ,(h)x,. x(a,.)*(v).
Then

by axiom 4 for
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<E-,= x()*,(x,), u> L <x(-,)*,(z,), u>
= ((x). x()()> L ((x). hw

L <x(a). v> <EL x(a)w. ,>,
and axiom 4 is proved.
We must also show that ax() x()-

<x()(u). > (-x()(u). )
<x()(u). (-)*(v)>
(___(,-(-)*(v)). (u)>

<__n_(--(,)). *,(U))

<___(-.-(V)). (U)>

<__(-1()). ,(U)>

(X()-(U).

To finish the proof of Theorem 4.1, we remark that it is sufficient to prove
the Adams axioms for X a finite complex, and this we have done.

5. Applications
For a finite complex K, let d(K) denote the least integer N such that K

can be embedded in S up to homotopy type. In this section we will com-
pute d(K) in two particular examples. We do this not for the intrinsic in-
terest of these particular results, but as examples of the general technique
developed by Theorem 4.1. It seems likely that, with more information
about secondary cohomology operations, similar results can be obtained for
more interesting spaces.

THEOREM 5.1. Let X S e+ (n 2), where e+a is attached by the
nontrivial element in +2(S). Then d(X) n + 6.

Proof. Let , be the secondary cohomology operation described in [2].
, is associated with the relation

SqaSq+SqSq 0.

(Thatis, a Sq,a2 Sq,a Sqa,a2 Sq.) Let x(,). Then
is associated with the relation

Sq(Sq Sqx) + Sq Sq 0.

is defined on Ker Sq Sqn Ker Sq H(X), and has values in

H+a(X)/Sq H+2(X) + SQ H+(X).



THE DUAL OF A SECONDARY COI-IOMOLOGY OPERATION 403

Thus in X, we have

g[’H’(X, ;Z.) H’+3(X, Z.).

We assert that here ,I, is an isomorphism. To see this, let Y S+1 e+3,
where e+ is attached by the nontrivial element of r+2(S+1). Define a
map f: Y -- X by mapping S+ onto S by a generator of r+l(S) and ex-
tending over en+ as a homeomorphism on the interior. Then

f*’H’+(X, ;Z2) -+ H+3(Y; Z)
is an isomorphism. Let h e Hn(x ;Z) be the generator. By Theorem
6.1 of [5], we see that

f*(h) Sq S@(h) -t- Sq(Sq Sq)](h)
Sq Sq(h) the generator of H+a(Y; Z:).

Hence (h) generates H+3(X, ;Z).
We now assume that X is embedded up to homotopy type in Sn+5 and

consider D +5(X). By the Alexander duality theorem

H(D; Z.) Z. H4(D; Z2),

and by Theorem 4.1, x(,I) q)l. must give an isomorphism between these
groups. We shall now show that (I:)1,1 is 0 on this one-dimensional class. To
obtain 1.1, we begin with a space K(Z, 1) and kill the class

H(Z. 1; Z:).S@ e

The resulting space is K(Z4, 1). Since Sq is already zero in H (Z, 1 Z:),
q)l.1 corresponds to an element of H(Z4, 1; Z.) Z. This group is gen-
erated by Sq * , where generates Hi(zt, 1; Z2) and is the secondary

HBockstein operator. Hence, if h e (D; Z.), then ,i(h) aSq ti* h, where
a 0 or 1. However, in D, ti* h 0 because H(D;Z.) 0. Thus X can-
not be embedded in S+.
COROLLARY 5.2. d(Xn) n - 6.

Proof. In order to prove that X can be embedded in Sn+6, it is enough
to show that X. can be embedded in S as SX, Xn+. Let M be the
mapping cylinder of a nontrivial map S-- S. X M e, where
e n M S, the boundary of e and the upper cap in M. M is a subspace
of the join S S SS, where is a subequator of S, and we embed S as
an equator in Ss. Clearly, we may embed e in S so that e n S S.
This embeds X2 in Ss.
THEOREM 5.3. Let K,

composition S+ -- Sn+3

Then d(Kn) >= n + 12.

S en+7 (? >= 4), where e+ is attached by the-- S of the svspensions of the Hopf class e r(S4).
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Proof. The proof of this theorem is, in part, very similar to that of Theorem
5.1 and hence will be only sketched. Let be the secondary cohomology
operation associated with the relation

SqSq-t-SqSq+SqSq O.

Then x() is associated with the relation

(Sq -t- Sq Sq) (Sq + Sq Sq) - Sq (Sq Sq) + Sq(sq Sq Sq) 0.

By considering a space analogous to Y in the proof of Theorem 5.1 and using
Theorem 6.1 of [5], we see that is nonzero in K. Thus, if K S+,

is nonzero on the three-dimensional cohomology class in
To show that this is impossible, we consider the space W constructed from

K(Z, 3) by killing Sq, Sq, and Sq*. By explicitly computing H(W; Z),
we see thut ( on a three-dimensional class is decomposable into cup products
and Steenrod squares of cohomology classes of dimensions between 4 and 9.
Hence is 0 in +u(K.).

COnOLLa 5.4. d(K,) n - 12.

Proof. The construction in Corollary 5.2 can be carried over to a similar
construction for K.
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