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I. INTRODUCTION AND PRELIMINARIES

IA. Introduction

Let R be ring with the minimum condition on its set of left ideals. A
cleaving for R is a direct decomposition, as an additive group,

R=S@N

where S is a semisimple subring and N is the radical of R. Any algebra over a
field K such that R/N is a separable algebra of finite rank over K affords an
example of such a ring by virtue of the Wedderburn Principal Theorem.

This paper is a sequel to [8] appearing in this iournal. Here we develop
the concepts of structural modules, structures of modules, and structures of
rings which were introduced in [8]. Certain relations between structural
modules and the lattices of submodules of a module are developed in Part II
with the view of application in Parts III and IV. In Part III, particular
submodules of a structural module are identified as modules which are iso-
morphic to those formed by the endomorphism fields of an irreducible
R-module in one case and to the cohomology modules H(R, Hom(F, F.))
in another case.
The structures of rings were used in [8] to give conditions which character-

ized when there exists an extension I’R -- R’ of an isomorphism I0: S --of the semisimple components of two cleft rings R and R’. Such a condition
was expressed in terms of the conformality of the structures of R and R’. In
Part III, we give a condition which is equivalent to comformality, but which
is simpler in statement. This condition demands that there exist an iso-
morphism of the structural modules which satisfies a certain commutativity
relation with the coboundary operator.

In the final part, there is presented an application of these results to graded
rings. A grading of a cleft ring R is a direct decomposition

R= S@M@M@... @M

where S is a semisimple subring, M is an (S, S)-submodule, M is the (S, S)-
M. Heremodule generated by products of q elements of M and N

we show that there exists an extension to an automorphism of R of any iso-
morphisms of the semisimple component of one grading to the semisimple
component of a second grading; moreover, the automorphism may be specified

Received March 2, 1959; received in revised form August 11, 1959.
Part of this research was undertaken while the author held a National Science

Foundation Postdoctoral Fellowship.

376



STRUCTURE OF CLEFT RINGS II 377

to map the components of the first grading onto the corresponding components
of the second grading. It is also shown that any automorphism of a semi-
simple component of a cleft ring R may be extended to an automorphism of
R leaving the (S, S)-submodules of R invariant. This result is also extended

Nto a class of semiprimary rings whose radical satisfies FIq=l 0, which are
complete in the N-adic topology and for which R/N satisfies the minimum
condition on the set of left ideals.

lB. Summary of previous results
Here we review the basic ideas of [8] in order to establish our notation and

to provide an outline of the theory which we previously developed. All
modules introduced will be left modules unless it is otherwise specified; further-
more, they will be assumed to possess a finite composition series. Since S
is a semisimple ring with minimum condition, S @k

=1 S where S is a simple
ideal with identity e. Let F, F, Fk be a set of R- and S-irreducible
modules such that S F 0. Let K be the endomorphism sfield of F we
assume that the elements of K also act on the left as operators of F.

Let R e Re; these are (S., S)-modules and are called the Cartan
submodules of R. We have that R @,= R.. Also R is the direct sum
of indecomposable left ideals Re where s is a primitive idempotent of R. Then
R/Ns is an irreducible left R-module, and Ns is a maximal submodule.
Two such ideals Re and R’ are isomorphic if and only if the modules ReINs
and R/N are isomorphic. We will let U, i 1, 2, k, be a set of
modules such that U is isomorphic to an indecomposable left-ideal com-
ponent of R and U/NU is isomorphic to F. These will be called the princi-
pal indecomposable modules of R.
Because of Proposition 1.1 of [8], R may be regarded as the direct sum of

ideals each of which is an algebra over some field. Then we reduce our con-
siderations to the case that R is an algebra of possibly infinite dimension over
a field K.
A representation module of an S, S)-module M is the (K-, K)-module

Hom(.,s)(M, Hom(F, F.)). The structural modules H, i, j
1, 2, ,/, are defined as

H Hom(s.s)(R, Hom(F, F)) Hom(s.,s)(R Hom(F, F)).

The identification may be made since Hom(s,s)(R, Hom(F, F-)) 0
unless j m and i l; this is becausea 0, and hence(a) 0
unless j m and i /when b e Hom(s,s)(R., Hom(F, F-)), a e R.,, e S, and e .
A structural element b[f*, f] of a module X is an element of H which is

defined for f* e Horns(X, F) and f e Homs(F, X) by [f*, f](a) f*af
where a,. is the left multiplication on X determined by a e R. We noted in

By an (Si, S)-module X, we mean a double module; that is, X is a left S.-module
and a right S-module such that (ax) a(x) for a S" and t S
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[8] that Homs(X, Fj) can be identified with the dual module Homs*(Fj, X)
of Homs(Fj, X). A structure I/I of X is a set of bilinear mappings

k:Homs*(F, X) >( Homs(F, X) -+ H
defined for i, j 1, 2, k by (f*, f) -- /[f*, f]. A structure 2: (R, S) of a
ring R is a set of structures / of .the principal indecomposable modules
U,,i 1,2,...,k.
Let R S ) N and R S’ N be two cleavings for a ring R. Let

Io’S ---. S’ be an isomorphism. Let I:S --+ S, i 1, 2, k, be the
isomorphism of the simple ideal component S of S onto the simple ideal
component S which is induced by I0. An I-isomorphism q of an S-module
A onto an S-module, for example, is understood to be an isomorphism of the
additive groups such that o(ax) ao(x) when a e S and x cA. In
the case of double (S, S)-modules, we speak of (I, I)-isomorphisms.
The isomorphism I then induces an I-isomorphism o of the irreducible

module F associated with S onto an irreducible module F which is similarly
associated with S. This in turn induces an isomorphism, which we again
denote by I, of the endomorphism ring K of F onto the endomorphism ring
K of F. Let H., i, j, 1, 2, ,/c, be the structural modules determined
from the cleaving R S’ N. The principal theorem for double modules
of [8] asserts that there exists an (I0, I0)-isomorphism of R considered as an
(S, S)-module onto R considered as an (S’, S’)-module if and only if for
all i, j 1, 2, k there exist (Ij, I)-isomorphisms 0"H--+ H..

In order that I be a ring isomorphism, certain other conditions must be
satisfied by the isomorphisms 0 inducing I. Let k and [/r be the struc-
tures of the principal indecomposable module U of R relative to the cleavings
R S N and R S’ N, respectively. Then the principal theorem of
[8] asserts that a necessary and sufficient condition for I to be an isomorphism
is that there exists for , i 1, 2, k, L-isomorphisms and * where

* is contragredient to and

:Homs(F, U) -- Homs,(F, U),
*’Homs*(F., U)- Homs,*(F., U’)

such that
f]

where f* e Homs*(F., U) and f e Homs(F, U). When such conditions
are satisfied, it is said that the structures 2(R, S) and 2(R, S’) are conformal.

1C. Extensions and cocycles
In this section, we review the theory of extensions for the purpose of estab-

lishing our notation (cf. [2; p. 289] or [5]). An extension (X, 7, ) of an

Actually, we should write , but the notation is more convenient when the sub-
scripts ure suppressed.
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R-module B by an R-module A is an exact sequence formed with an R-module
X and R-homomorphisms and e such that

(1.1) 0-- B v.X A -.0.

Since B, X, and A are also S-modules, the sequence (1.1) splits as an exact
sequence of S-modules and S-homomorphisms. Thus there exists an exact
sequence

(1.2) O(--B, X( A (--O

-1of S-modules and S-homomorphisms such that 1 is the identity
isomorphism of A and -ie is the identity isomorphism 1B of B. Sequence
(1.2) will be called a splitting sequence to the sequence (1.1) or to the exten-
sion (X, , ).
The homomorphism r is not uniquely determined; however, given 1,

--1 --1there is only one homomorphism such that (1.2) is exact and e e lB.
It then follows that X -IA @ B when it is considered as a sum of S-

--1modules. We will call the homomorphisms r cross-sections of the extensions
(X, , ).
Let p(a)’A -+ B be the K-homomorphism determined by

--1 --1 --1 --1(1.3)

for a e R where aL is the left multiplication determined by a on A and on X.
If is the inclusion mapping, we adopt the convention of writing for a e R

71.--1 --1(1.33) p(a) aL rr

Now p:a -- p(a) is a 1-cocycle because for a, 5 R

(1.4) p(a) ap(5) q- p(a)
where we set a p(5) ap(5) and p(a)5, p(a)5. Furthermore, p(S) 0
so that p(hat,) p(a)u where h, S and a e R. Such 1-cocycles will be
called the cocycles of the extension (X, r, ) or S-cocycles. They form a sub-
group Z (R, HomK(A, B)) of the additive group of l-cocycles. The S-co-
cycles p for which p(a) ah ha where h HomK(A, B) and a e R are the
coboundaries. Because p(S) 0, h actually is in Horns(A, B). These
coboundaries are the cocycles which are derived from the split extensions.
They form a subgroup B B(R, Hom(A, B)) of Z. It is not difficult
to verify that the factor group Zs/Bs is isomorphic to the cohomology group
HI(R, Hom(A, B)). This fact may also be derived from the theory of
relative homology (cf. [6]).

It follows from the theory of extensions that two cross-sections of the same
extension determine cohomologous cocycles. Furthermore, Hochschild has

While --lTr-1 0 because of the splitting sequence (1.2), we prefer to use the form
-1(aL -1 -iaL for a cocycle because of its relation to the conventional formula
(1.3a).
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shown that there is an isomorphism between the cohomology group
H2(R, HomK(A, B)) and the group of extensions under the Baer multiplica-
tion. In particular, to every cocycle there corresponds an extension.

In what follows, we will consider A often to be an irreducible R-module
with endomorphism sfield K. Then A is a left KA-module and
HomK(A, B) is a right K-module. Then it follows that Zs, B, and
H are right K-modules.

II. COMPOSITION FORMS AND STRUCTURES OF MODULES

2A. Composition forms
A composition form e of a module X given by a composition series

(2.1) X X1 X2 Xt Xt+l 0

is a composite concept consisting of a set of extensions

(2.2) 0 X+I Xt, Fi, 0

for 1, 2,.-., and corresponding splitting sequences given by cross-
--1sections ,

--1 --1

(2.3) 0 - X"+I( o, X,( F, +- 0

where is the inclusion mapping and 1 is, therefore, the projection of X,
--1onto X+I with kernel r F. We denote this composition form by

e(r, r-). The cocycles x, defined by the sequences (2.3) will be called the
--1cocycles of the form (r, r). Because is the identity on X+, we have

--1 --1(2.4) x,a)" o r, v. o.

PROPOSITION 2.1. Given a composition form e(r, r) with a composition
series (2.1), extensions (2.2), and splitting sequences (2.3), there exists a direct
family of homomorphisms lf*, f 1 <= <-_ t} representing X as the S-direct sum

of the modules FI F., F such that
-1(2.5) f* r p and f

for 1 <= <= and where p,’X -+ X is a projection with kernel
--1@ f F

and i"X, ----> X is the inclusion mapping.

The direct family {f,*, f,} thus determined will be called the direct
family of the composition form e; sometimes we distinguish e by setting
e e(f,*, f,).

Proof. Clearly f,* andf defined in (2.5) are S-epimorphisms and S-mono-
morphisms, respectively. We wish to show that they form a direct family.

Direct families are discussed in 1C of [8].
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First, p,fv= Oif <,andp,fv=fif => . But if> ,fiF = X,+I
so that ,fi 0. Hence f,*f, 0 when . On the other hnd,

--1 --1f*f , p i 1.
Next we prove that

We rgue by induction that if x B,

f *x x.

First, if s 1, then f,*x 0 when > 1. Also the restriction of f* to A is
n isomorphism. But since f*f 1, ff* is the identity on A that is,
f,f*x x for x e A B. Suppose now that (2.6) holds with s replaced
bys- 1. LetxeB. Theny x-flfl*xisinBandf*y O. Hence
y e B_ and =f,f*y y. From this, follows (2.6).
The structurM elements [/,*, f], , 1, 2, , determined by the

direct fmily {f,*, f of composition form e re clled the sruc$ural elements
of the composition form e. The following proposition summarizes their
important properties.

PROPOSITION 2.2. Le #[f*, f] be the s$rucural elements of a composition
form of a module X. Le x, 1, 2, , be he cocycles of e(f,*, f).

(i) U < , then #If,*, f] 0.
(ii) U > , then #[f,*, f] f,*x.
(iii) U , $hen #If,*, f]

where is he mapping of R onto the ring of K-endomorphisms of F given by
L.

Proof. (i) We hve Rf F R F + x =v RF (R)F X
X,+ X,+ O.But X c X,+ the kernel of ,; so f,*X

Therefore, #[f,*, f] 0.
--1 --1(ii) /,*x() f,*i x() f,*i( ) f,*f

[/,*, f]().
-F i, -F c X(iii) Sincef,F i,=, a ,= ,,

*f, ,p,f, ,f, ,f, f,*f, .
2B. Principal indecomposable modules

A principal indecomposable R-module is a module which is isomorphic to
an indecomposable left ideal of R. It may be also characterized as an in-
decomposable proiective R-module (cf. [1] or [2]). We recall that NU is
the unique maximal submodule of U and that we have chosen U so that the
exact sequence (2.7) may be formed:

(2.7) 0 -- NUi "- U
with the inclusion mapping NU-- U.
which determines the splitting sequence

--1

(2.8) 0 +-- NU ’

Fi -- O

Let ),71 be a cross-section for (2.7)

U F -- 0.
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Let pi be the cocycle defined from (2.8); we will call such a cocycle a principal
cocycle, and we will call a set {pil i 1, 2, k/of principal cocycles which
is derived as above from each of the distinct principal indecomposable modules
a complete set of principal cocycles. The corresponding cross-sections will be
called principal cross-sections.
Now let there be given a composition series for an R-module X

(2.9) X X1 X2 X+I 0

and extensions defined for t 1, 2,

(2.10) 0 -- X,+ -- X F -- 0.

Because Ui is projective, we may form the following commutative diagram
with R-homomorphisms"

0 NUi

(2.11) [
--1Then r.

i.
0 -- X.+I -- X. r. Fi. O.

OX- is a cross-section for the lower sequence in (2.11) and
gives a splitting sequence for (2.10). The composition form (r,, r-!)
which is thus obtained for X will be said to be formed with the complete set
of principal cocycles pi, i 1, 2, ..., k, and the homomorphisms 0,
g 1, 2, t. One may verify that the cocycles of this composition form
are O. Pi

2C. Structures of modules
Certain submodules of a module X frequently occur in our investigation;

because of this, we will formalize our method of handling them. Also we
will study their relationship to the structures of X.

Let f eHoms(F, X). Then set A(f) fF. This is an irreducible
S-submodule of X. Let X(f) RA (f); then X(f) is an R-submodule of X.

PROPOSITION 2.3. Let A be an irreducible S-module. Then RA A NA.
Furthermore, RA is an epimorph of a principal indecomposable submodule U,
and NA is its unique maximal submodule.

Proof. We have thatRA S + N A A + NA. EitherAnNA =0
or A NA. Should the ltter case hold, then A -- RA NA N2A

N+A 0 if r + 1 is the index of the radical N. Hence as A 0,
RA A (R) NA.

Let U be a principal indecomposable left R-module such that U/NU is
isomorphic to A. Then there exists an epimorphism h’U -- A with kernel
NU. Also there exists an R-epimorphism v’RA --> A with kernel NA.
Because U is projective, there exists a homomorphism ’U -- RA such that
rq ),. We wish to show that is an epimorphism.
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It follows from Proposition 3.5 of [8] that U B @ NB where B is a suit-
ably chosen irreducible S-submodule of U; furthermore, NB NU. Let
C B. ThenrC--- B A. HenceCnNA O. Let x be an S-gen-
erator for A, and y the element of C such that rx ry. Since Rx RSx
RA, there existsa e R such thatax y. But r(ax) xx. Hence a 1 +
where v e N. Since v is quasi-regular, there exists t e R such that /a 1.
Hence y x. This means that RC Ry Ry Rx RA. But
U RB RC. Hence is an epimorphism.
The kernel V of is contained in the unique maximal submodule NU of U.

Hence U/V and thus RA have unique maximal submodules. Thus NA
is the unique maximal submodule of A. This concludes the proof.

In particular, we have that

(2.12) X(f) RA(f) A(f) @ NX(f) A(f) @ NA(f).

To each element f* in Hom.*(F, X), there corresponds a maximal R-sub-
module X(f*) such that f*X(f*) 0. It is easy to see that X(f*) is unique.
We define the degree of a homomorphism f Homs(F, X) to be the non-

negative such that fF A(f) c NX but A(f) n NTM 0. Hence
X(f) -- NX, but X(f) N+IX X(f). We define the degree of
f* Homs*(F, X) to be the nonnegative integer such that X(f*)

_
N+ix

but f*NX O.

LEMMA 2.4. Let be the structure of a module X. Let f* Homs*(F., X)
andf Homs(F, X). Then [f*,f] 0 if degf* < degf, or if degf* degf
and f*f O.

Proof. When deg f* < deg f l, X(f)

__
NX --_ X(f*). Also when

deg f* deg f l, NX(f) -- Nt+IX X(f*) and, if f*f O, A (f) -- X(f*).
Thus, in both cases, X(f) A (f) @ NX(f) --- X(f*) that is, f*X(f)
f*RA(f) f*RfF 0. Hence [f*,f](R) f*Rf O.

Let X again be an R-module with a composition series

(2.13) X X X ::D X Xt+ 0

which is a refinement of the upper Loewy series

(2.14) X NX N:X NX Nr+x O.

A composition form given with such a series as (2.13) will be called a refined
composition form.
LEMM 2.5. Let be a refined composition form which is given by the com-

position series (2.13). Let lf,*, f, 1, 2, t} be the direct family of .
Then

deg f* deg f,,
and if < ,

deg f, -<_ deg f and deg f,* -< deg f*.
Conversely, if deg f, < deg f or deg f,* , deg f*, then t < ’.
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Proof. From Proposition 2.1, it follows that f*X,+l r, p X+I O.
-1 X,. Since f,*A(f,) O,But A (f) f Fi i r Fi =
X A(f) @ X+I.

Because (2.13) is a refinement of (2.14), there exists a positive integer
such that NX X, X,+I N*+IX Thus f,*N*+Ix 0 while

f,*NzX O, and A(f) N*X while A(f,) n N+IX O. Hence/
deg f,* deg f.

If v > ,,thenA(f) X, X" NzX. But ifdegfi m, thenmis
the largest integer such that A (f) N’X. Hence < m; that is, deg f <
deg f,. From the first result, it follows that deg f* <- deg fi*. To establish
the stated converse, merely observe that we have shown that if degf > degf
or degf,* > degf*, then , -> v. The result then follows by an obvious change
of notation since clearly # v.

III. HOMOLOGICAL INTERPRETATION OF STRUCTURAL MODULES

3A. Submodules of the structural modules
If M is a (two-sided) ideal of R, then it is a (S, S)-module. From the

theory of functors, it is known that Homs.s>(R/M, Hom(F, F.)) may be
regarded as a (K;, K)-submodule of the (K;, K)-module

H Homs.(R, Hom(F, F)).

In particular, we define

(3.1) Hi Hom(s,s)(R/Nq+l, Hom(F,, F)).

Then the module Hi may be regarded as the submodule of elements of H:
which vanish on Nq+l. We have

(3.2) 0 g H} c ..;,

where r - 1 is the index of the radical of R.
The natural isomorphism of R/N onto S induces an isomorphism of

Homs.s>(S, Hom(F, F)) onto Hyi; we will use this isomorphism to
identify these two modules.
The module Hi Hom(s,s)(R/Nq+l, Hom(F,, F.)) may be interpreted

as the representation module of the ring Rq R/Nq+l with radical
Nq N/Nq+i. Since S fl Nq+l 0, we may and will identify S with the
semisimple subring (S -- Nq+l)/Nq+l of Rq to obtain the splitting

(3.3) Rq S Nq.

Let T Hom(s,s)(R/S, Hom(F, F)). This is the module of ele-
ments k of Hi such that k(S) 0. Clearly, it is isomorphic to

Cf. IB or Part III of [8].
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Hom(s.s)(N, HomK(F, F.)). Let

T Hom(s.s)(R/(S - Nq+l), HomK(F, F.)).

Since this is the submodule of Hji consisting of the elements e Hji such
that (S) 0 and (Nq+) O, we will identify Ti with
Hom(s.s)(Rq/S, HomK(Fi, F)). Clearly T is isomorphic to
Hom(s,s)(Nq, Hom(F, F)). Because of the clearings of Rq, we obtain
the direct decompositions

H H(R) Ti and H H Vi.
In particular, H tt (R) T}

LEMMA 3.1. Every element b Tj can be represented as a structural element
b[f*, fl] belonging to a refined composition form of the principal indecomposable
module U. Here fl may be talen to be a generating element for Ui.

Proof. For convenience, set U X. Let fl be a generating homo-
morphism for U X. Then A (f) @ NX X. It follows from Proposi-
tion 3.6 of [8] that there exists f* Homs*(F, X) such that b i[f*, f].
Furthermore, as b(S) O, f*Sf 0; hence f*f 0. Then there exists
> 1 such that f*NX 0 and f*N+Ix O. Let, say, (2.13) be a composi-

tion series for X refining (2.14). Then for some , f*X 0 and f*X+ O.
Since X: NX, > 1. Another way of stating this is to say that
f*X f*X+ for and 1.

Choose a direct family of monomorphisms Ifl 1, 2, tl repre-
senting X as the S-direct sum of the modules F, F., F in the following
manner. Let f be the generating element for X chosen in the preceding
pragraph. Letf be such thatf*f 1. Then X A(f) X+. Choose
f, 1 and , so that f*f 0 and X, A (f,) @ X,+ this can be
done because f*X, f*X,+. Let {f,*, f} be the corresponding direct family
of homomorphisms. Then the restriction v, of f,* to X is an S-homo-
morphism with kernel X,+. Then r, is an R-homomorphism, and we may
use r,, z 1, 2, t, to form the extensions of u composition form. Here

--1f,* r p, in the terminology of Proposition 2.1. Let r pf. Then
form the composition form e(v,, -1) lf*, f,} will be u direct family for C.
As f*f, f*f 1, 2, t, f* f*. Hence i[f*, f] b,[f*, f].

3B. Cohomology of structural modules

Interpretations of the modules H and T are the objective of this section.
For this purpose, we introduce the coboundary operator which is a (K., K)-
isomorphism into the (K, K)-module C(R, HomK(E, F)) of those

cf. Is; 3c].
Cf. IC of [8].
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2-cochMns which are also (S, S)-homomorphisms. The defining equation
for t is

(3.4) tiC(a, ) (ag) a(g) (a).

PROPOSITION 3.2. The (Ks, K)-module H is isomorphic to
K Homs(F, F), and if b eH b(a) aaL for some K,. Further-
more, Hi-- 0 when j i.

Proof. Let fl be the element of Homs(F, U) which is the S-cross-section
)1 of the extension

(3.5) 0 -- NU "- Ui ’ Fi --) O.

Then fl can be seen to be a generating element of Ui in the sense of [8]. From
Proposition 3.6 of [81, it follows that f* -- [f*, fl] is a Ks-isomorphism of
Homs*(F, U) onto H. If ’[f*,fl]H Hom(s.s)(R/N, Hom(F, F)),
thenf*Nf 0. This means that f*NU 0, and thusf* must be an R-homo-
morphism. But because U has a unique maximal submodule NU such that
U/NU is isomorphic to F, f* 0 unless i j. Furthermore, if i j,
thenf* z),where eKe. Hence bi[f*, fl] a)i aL )x O’OL. Thus (a)
is nothing more than the mapping x---+ raL x a, ax of F. It is eas-
ily seen that the mapping --+ z is a (K, K)-isomorphism of H-., onto
Homs(F, F) K.
PROPOSITION 3.3. Let [f*, f,] be a structural element of a refined composition

form for a module X. Then for a, e R

(3.6) ti[f*, f,](a, ) <<, [f*, f](a)b[f*, f,](f)

where the summands in (3.6) are nonzero only if deg f* > deg f, and deg f,* >
deg f,.

Proof. Because E=lft ftt$ 1, we have that

(3.7) [f*, f,](af) =1 b[f*, f,](a)C[f,*, f,] ().

From Lemma 2.4 it follows that [f*, f,] 0 only when deg f* ->_ deg f,
and [f,*, f,] 0 only when deg f* >= deg f,. Lemma 2.5 implies that the
summands of (3.7) are nonzero only when deg f* deg f,, deg f,* deg f,,
or > z > v. Furthermore, we may obtain from Lemma 2.4 that when
deg f* deg f,, b[f*, f,] 0 only when f*f 0; this happens only when

t. Then [f*, f,](a) a. Likewise when deg f,* deg f,,
[f*, f,] 0 only when t v, and then [f,*, f,]() . Hence we have

from (3.7)

(3.8) [f*, f,](a) ’=<__<, [f*, f,](a)b[f,*, f,]().

Actually, this is the negative of the coboundary operator usually used in the theory
of ussocitive algebrus (cf. [5]).
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From the preceding remarks and (3.8) follows (3.6). In (3.6) neither t
nor 7. Thus the last remark in the proposition is a direct consequence
of Lemma 2.4.

PROPOSITION 3.4. The (Kj, Ki)-module Ti is the (Kj, Ki)-module of
S-cocycles ZI(R, Homr(Fi, F-)), which, in turn, is (K, K)-isomorphic
to the cohomology module Hi(R, HomK(F, F.)).

Proof. If T) c T., then + may be represented as the structural
element + +[/*, fl] of a refined composition form for U by virtue of Lemma
3.1. As f is a generating element, NfF NUi andN2f F N2U. Since
+(N) 0 and (N) 0, it follows that deg/* deg fl 1. Hence from
Proposition 3.3, + +[f*, f] 0 as all the summands in (3.6) vanish.
Thus T: c Zs
On the other hand, as we mentioned in IC, there exists an extension

(3.9) 0 -+ F/-+ X --+ F -+ 0

with a given element + Zs(R, HomK(Fi, F/)) as the cocycle that is derived
from a cross-section. Furthermore, + may be represented as a structural
element of a composition form of the module X which defines the extension
(3.9). This, of course, is a structural element of the module X and, there-
fore, belongs to H.. Since N2X 0, +(N) 0. Since is an S-cocycle,
+(S) 0. Thus tt. This shows that T+ Z(R, Hom(F, F)).
Now we claim that the module of coboundaries B(R, Hom(F, F.)) is

zero. First, we observe that if + h where h e Hom(Fi, F/), and if
(S) 0, then 3’h ),’ 0 for all 3’ S. Hence ), Homs(F, F). Thus,
ifij,h 0;hence+ 0 in this case. Ifi =j,),eK Homs(F,F).
When aR, a +- v where,S and yeN. But then +(a) ()
and (,) 0. Hence (a) 7),- h. However, vFi 0. Hence
+(a) 0 for all a e R. Thus h 0. From this and the remarks of 1C,
it follows that Zs(R, Hom(F+, F.)) is isomorphic to H(R, HomK(F, F.)).

3C. Reformulation of the principal theorem
In this section, we will simplify the statement of the main theorem of [8]

(Theorem 3) quoted in IB of this paper. The relatively complex notion of
conformality is replaced by a commutativity condition involving the co-
boundary operator. Nevertheless, as we will see in Part IV, the concept of
conformality is still useful.

Let R S @ N and R’ S’ @ N be cleavings for cleft rings R and R’.
Suppose that I0 "S-+ S’ is an isomorphism. Then let 0 "F-+ F,
i 1, 2, It, be the I0-isomorphisms of the irreducible S-modules onto
the irreducible S’-modules. Then, in turn, there are induced isomorphisms
I "K -+ K, i 1, 2, It, of the endomorphism sfields of F onto the
endomorphism sfields of F.
The principal theorem for double modules [8; Theorem 2] yields the follow-
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ing condition for I0 to be extendable to an (S, S)-isomorphism I of R onto
R’. This is that there exists an (It, L)-isomorphism 0 of the corresponding
structural modules

O’H H, i,j 1, 2, k.

Then 0 satisfies the following equation for a e R’"

(3.10) O(a’) w(a’z),-
where J I-.
Now we develop conditions for I0 to be extendble to n isomorphism.

First let C(R, Hom(F, F)) be the (K, K)-module of 2-cochins. We
extend 0 given in (3.10) to C(R, Hom(F, F)) by setting for , R

J --1(3.1) (., ) (., ),.

Then we have the following theorem.

TEOREM 1. A necessary and sucient cdition that there exist an iso-
morphism I’R R’ which extends Io is that there exist an I I)-isomorphism

O" T T
such that O 0 where is the coboundary operator.

Proof. If I is an extension of I0 which is a ring isomorphism, set J I-.
Then if a’, R’, we hve for e T

o(,’, )= ),

((.’ ’) .,(,) t(.,),

e(’, ’).

On the other hand, should 0 exist satisfying the hypothesis of the theorem,
we proceed by first extending 0 to H by setting for

tj --1if (a’) aa where J is induced by 0. Then since q a we have
that O(a’5’) ( (a’’) ) - On the other han, as a and act on
rreducble modules, a ’ oo here a’ ao + ith ao d

N, d where ’ o % ’ with o d ’ N. Since the restrictio
j)J to S’ is a ring isomorphism, we have that (a.fl) ((a00)- (,,, -1(0 p0 ) . Hence((a’’) )w p )w ,whenCeH.

’ R’For e T we hve that 05 50. Then for a’,

((,,)
_ , ,

(’, + ’(’)
p )

Here we mke use of (3.11). Hence ((’’)) (a’’) for II H
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where i, j 1, 2, k. As we mentioned in the introduction, H. is a
representation module for the (S., S)-module Rii e. Re. Hence if
a e R and h(a) 0 for all b e H., the components1 e ae of a in R. are
zero. Consequently, if (a) 0 for all b H.i and i,j 1, 2, k, o O.
Thus in our case

(,,) ,,.
This means that J and, consequently, I are ring isomorphisms.
the theorem.

This proves

IV. EXTENSIONS OF ISOMORPHISMS. GRADED RINGS
4A. Extensions of automorphisms

As an application of the theory we have presented, we have the following
theorem for cleft rings with minimum condition.

THEOREM 2. Any automorphism Io of a semisimple component S of a cleft
ring R may be extended to an automorphism I of R.

Proof. Let 14 be the restriction of I0 to the simple component S of S.
If a e S, denote by a the left multiplication by a on F. Then there exists- ()a semilinear transformation F F such that a Again
designate by I the automorphism of K belonging to . Define on F a
new module multiplication a.x for a e R and x e F given by a.x a x.
Denote this module by F. When it is specified that x is in F, we will write
ax instead of a.x. Under this convention "F F is an isomorphism of
S-modules.

Let H be the structural module Hom(s.s)(R, Hom(F, F)), and H
the structural module Hom(s.s)(R, Hom(F F)). Define O:H H,
i,j 1, 2,’" k by 7forCeH. Clearly 0isan (I, I)-
isomorphism for each pair (i, j). Then 0 induces an (I0, I0)-isomorphism
J of R onto itself when considered as an (S, S)-module by Theorem 2 of [8].
Let I j-i; we will show that I is an extension of I0 and that it is a ring
automorphism. From Theorem 2 of [8], we have for e H

Using (4.1) and Proposition 3.2, we have for # eH
-1 -1 -1(4.2) 0#() () =

when a e R. Let a, denote left multiplication by a on F then for some
r e K, O#(a) r(a) , by virtue of Proposition 3.2. Setting a 1 and

Iicomparing with (4.2), we obtain that r a Then again from (4.2),
--1 --1(a’), waw ButifaeS, waw (a), (a),. Thusif

a S, a 0 and I is an extension of I0
In order to show that I is ring automorphism, we will show that the

structures of R are conformal. To that end, let U, i 1, 2, ..., , be
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the principal indecomposable modules of R and define

" Homs(F, U)-- Homs(F, U)

*" Homs*(F, U)-- Homs (F, U)

by setting f fw-I and *f* f* for f e Homs(F, U) and
f* e Homs*(F, U). One may verify that and * are contragredient.
Next let lbe a principal structure of R associated with U. If
f* e Homs*(F, Ui) and f e Homs(F,, U), we have that

O/[f*, f] * *[ f f]

because #i[f*, f](a) wbi[f*, f](a)o-1 wf*aLf. Hence we have
established the conformality of the structures, and the result follows from
Theorem 3 of [8].
We must also show that I leaves the (S, S)-modules M of R invariant.

First observe that 0 maps the (K., Ki)-submodule

H(M) Hom(,)(R/M, Hom(F., F.))

of H onto the (K., Ki)-submodule

H’ (M) Hom(s,)(R/M, Hom(F F))

of H.. Then if a e M, and for all b e H(M), (a) 0, and hence
o (a)o-1 O@(a) 0. This means that ’(a) 0 for all ’ e H.(M).
As this is true for i, j 1, 2, k, this means .that e. a e is in e-Me
for i, j 1, 2,..., k. Hence M M. Similarly M M. Conse-
quently, M M.

4B. Extensions of isomorphisms of graded rings
A grading of a cleft ring R is defined in the Introduction (IA). Let

(4.3) R S @ M @ M @ @ Mr,
(4.4) R S’ @ M’ @ M’2 D M’r

be two gradings for R. We study the relation between these gradings in the
following theorem. Because M, M’ and N/N+ are isomorphic as (S, S)-
modules or (S’, S’)-modules, as the case may be, the same number of com-
ponents appear in (4.3) and (4.4).

THEOREM 3. Let (4.3) and (4.4) be gradings for R. Let Io’S S’ be
an isomorphism. Then Io may be extended to an automorphism I of R which
maps M onto M, q 1, 2, r.

Proof. To prove this theorem, we may assume that I0 induces the identity
utomorphism on R/N since, by Theorem 2, there always exists an auto-
morphism I’ of R which leaves S invariant and which induces the same

0 For example, refer to the proof of Theorem 3 of [8].



STRUCTURE OF CLEFT RINGS II 391

automorphism i0 as I0 on R/N. Therefore, we will take the irreducible
R-modules F1, F2, Fk for the irreducible S’-modules in forming the
structural modules H.i Hom(s, .s,) (R, HomK(Fi, F)). Then we have
that (aI) L aL when aeS and represents the left multiplication induced
on F by an element e The lsomorphlsms ooi :Fi --> Fi induced by the
restriction I of I0 to the simple component S are identities. Thus we must
find, first of all, (Ks, Ki)-isomorphisms O:H --+ H i, j 1, 2, k.
To do this, we first observe that (4.3) and (4.4) induce a decomposition

Mp where M S.of the structural modules H. Indeed let/%q @pq
M’’. Then setLet/%’q @q
^q (R/q, HomK(F, F))Hii Hom(s,s)

Hi Hom(s,,s,)(R/’q, Hom,(Fi, F)).
^0 P0 ^P0 "1 1Note that H H and H. H., and that T H.i and T H.

Furthermore, because of (4.3) and (4.4), we have

H H,q0

H q H q=oq=o Hi
To prove Theorem 3, we establish two refined composition forms e and

e on each principal indecomposable module U, i 1, 2, k, which are
defined from the cleavings of R that are given by the gradings (4.3) and
(4.4) and which are related in a particulur manner. First of ll, let s be
primitive idempotent of the simple component Si of S. Then U is iso-

morphic to R. But the gradings (4.3) and (4.4) give the direct decomposi-
tions R @" Mq=0 e (R)q=0 It will be convenient to set U X
in order that the notation of this section should correspond with that of the
previous sections. Let 27v, p 1, 2,..., r, be the S-submodules, and

..., S-submodules of X corresponding to the com-b’s, p 1 2, r, the
ponents MP and M’ of N, respectively. Then Nqx ,=q

’. Let
X Xl X2 ) X [[) Xt+l 0

be composition series for X which is refinement of the upper Loewy series
for X.

Let q be chosen so that NqX -- X, X,+ Nq+X. Then by the modular
lw, X, (X, q) @ Nq+Ix. Because similar result holds for X,+,

q and is un irreduciblewe may conclude that X, A, @ X,+ where A
S-module. Similarly, X A, @ X,+ where A’, .’q and is an irreducible
S’-module. Then

(4.7) X @=A @= A.
We may and will further require that A,, @ Nq+IX A,, @ Nq+x; that is,
we choose A, and A from the same cosets of the completely reducible module
Nqx/Nq+IX.
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Let {f*, f} and {g*, g} be the direct families of S-homomorphisms and of
S’-homomorphisms which, respectively, give the direct decompositions of
(4.7) when 1. The restriction r of f* to X is an S-epimorphism of
X onto F since the kernel of v is the R-module X+, r is an R-epimor-
phism. Likewise, the restriction r of g* to X is an R-epimorphism of
X onto F. But the kernels of r and r coincide. Hence we may replace
g* and g by g,* and g -, respectively, with e K, if necessary, so that
the restrictions of f* and g* coincide on X. Let and C’ C
be the composition forms defined on X with the extensions

(4.8) 0 --* X+ -- X F --* 0

and respective cross-sections r; pf, where p :X, X is the projection
with kernel A in the first case, and ’- p. g, where p’X X

-Iis the projection with kernel A in the second case. Then f*, f} is
the direct faraily of , and {g*, g} is the direct family of e’. Let p and
be the cocycles formed from the extensions (4.8) with the respective cross-

t_

sections nd Of course, nd re oohomologos.
Le nd ’ be he srucures of he module deermined from he

clearings given by (.3) nd (.), respectively. I is clear from he grading
of h +. Heuce/* =/*+ 0 unless deg*+ . Ledeg/ . Then /nd//=* 0
unless deg/* deg/ . That is, [/*/]() 0 unless deg/*
e/ . Thus [/*,/] whe on n [/*,/] .
under the same circumstances, ’[g*, g] H.
We ll now define (K, Ki)-isomorphisms 0q "H H inductively for

q 0 so that 0q+ is an extension of 0q. We will further show that when
deg f* deg f q,

(4.9) 0q [f*, f] ’[g*, g].

We first treat the case that q 0. Thenifj i,H =H 0. By
Proposition 3.2, the elements of H are given by the form (a) aa where

e K and a is a left multiplication on F. The same is true for the elements
of H?. Hence H H’. Therefore, define 00 to be the identity on H.
Ifdegf*- degf 0, [f*,f] 0 unless . But if , then
[f*,f,](a) f*af. ButA(f) A,X,= Hencef*af= af
arf af*f a. Similarly, ’[g,*, g,](a) a. Hence

00 [f*, f] ’[g,*, g],

which verifies (4.9) in the case that q 0.
We also treat the case that q 1 in (4.9) before we establish the induction. As

both i ,
H# T# and H# T#, we have from Proposition 3.4 that and

H are both submodules of the cocycle module Z(R, Hom(F, F#)) which
are isomorphic to the cohomology module H(R, Hom(F, F#)) under the
natural homomorphism onto H(R, Hom(F, F#)). Therefore, we define
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01 by setting 01 b to be the unique element of H which is cohomologous to
e H. Clearly, this defines an extension 0 of 00 to H.
We next observe that if deg f,* q, then the restriction r* of f* to NqX

coincides with the restriction r, of g* to NqX, and that this is an R-homo-
morphism. Indeed, r* induces an S-homomorphism of the completely
reducible module NqX/Nq+X onto an irreducible module. Thus r* in-
duces an R-homomorphism. Since Nq+IX is an R-module, r* is an R-homo-
morphism. Since r, induces the same S-homomorphism of NqX/Nq+IX
as does *, we have that r*
Next we assert that p,,(R)F NX(f). Indeed, p(S) 0; so p,,(R)

p(N). For e N and x Fi, we have that x 0. Hence p(v)x q’-lx.
Thus p(R)F Nr-lF. Since r-iF A A(f),

p(R)F NA(f) NX(f).
Let deg fi q; then NqX X(f); so Nq+X NX(f) p(R)F.

But if f,* e Homs*(F,, X) and deg f* q + 1, then [f,*, f] f*
cohomologous, [f*, f] ’[g*, g]. This verifies (4.9) for the case
where q 1.
Now suppose that Oq has been defined on each of the modules H, i, j

1, 2, k, so that (4.9) is satisfied. We wish to define Oq+. First, using
Proposition 2.3 note that f and g are generating homomorphisms for X U.
Thus the elements Cir,*, f], 1, 2, t, for which f* e Homs*(F, X)
form a basis for H. Because of the decomposition (4.5), those elements
[f,*, f.], 1, 2, t, for which f,* Homs*(F, X) and deg f,* q + 1
form a basis for Similarly, those elements ’[g*, g], 1, 2, t,

qlfor which g* e Homs,*(F, X) and deg g* q W 1 form a basis for ..
We define Oq+ to be the extension of Oq given by the K-isomorphism ob-
tained by setting Oq+ [f,*, f] ’[g*, g] for this basis of
Let so that [f*,fx] where f* ,G* is a KC-linear

combination of elements of degree q + 1 that belong to Homs*(F, X).
Then, as in Proposition 3.3,

(4.10) (, ) [f*, f](, ) [f*, fl()[f*, fx](),

where the summation extends over certain indices described in Proposition
3.3. Here [f*, f] a, [f*, f] is a Kj-combination of elements in H.
with u deg f,* deg fe while [f*, f] eH where v deg f* deg f
degf*. Hence u =< q and v -< q. This means that ib(a, ) 0 if a e Nq+

or e Nq+.
On the other hand, we have defined 0q on

H] Hom(s,s)(R/Nq+l, Hom(Fi, Fj)).

Then by Theorem 2 of [8], 0q induces an (I-x, I-)-isomorphism Jq of R/N+
taken as an (S’, S’)-module onto R/N+ taken as an (S, S)-module such that
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0q(a) (aJq) where a e R/N+1. Thus we note that if a a’ e N+1,
then (a) (a’); hence we my set for a e M’,=0 a to be the unique
element of M"=0 in the coset where contains a. Thus O(a)
(a) for ae M.=0 We my now define (Ki, K)-homomorphism
of 8T, which we gin denote by , by setting o(a, ) o(a, )
for0eST But thenby (410) fora e M,0

0a (, ) e [f*, f](z)[fe*, f](z)

0 elf*,/](.)0 [f*,

ff’[g*, g](a)’[g*, g]()

Thus we have obtained

/tb’[g*, gl](a, g) /t0+ [f*, fl](a, f).

0 (, ) +(, ).

Now ti is a (K., Ki)-isomorphism of T+-i The kernel of/t is H T.
Thus on + -H, + , nd hence the restriction of + to this
submodule is (Ki, K)-isomorphism. The restriction of 0+ to H is, which we hve shown to be (Ki, K)-isomorphism. Hence 0+ is a
(Ki, K)-isomorphism.
Now let deg f.* deg f q + 1; then we have seen that [f.*, f]

fq+land ’[a*, ff] But by Proposition 3.3,

[f,*, f,](, ) @[A*,/]()[fe*, f,](),

’[g,*, g](a, ) #’[g,*, g](a)’[g*, g]().

By the argument of the preceding paragraphs, we then obtain that

Oq [A*,/](, ) e [/*, f](aq)[f*, f](q)

’[g,*, g](a)’[g*, g]()

[g*, g](, ).

Since Oq Oq+ and is an isomorphism of q+i we have that 0q+x [f*,f]
’[g*, g]. This establishes (4.9) for the case q 1.
To conclude the proof of Theorem 3, we define 0"Hie H to be the

(Ki, K)-isomorphism 0 such that 0 . This is obtained from the above
urgument by taking q r. From Theorem 1, it follows that 0 induces an
automorphism of R. From (4.1) we obtain that if a e S and e T,
0(az) 0. Because 0T T, wehave that azeS’ so that S S’.
Furthermore, the restriction of I to S is the isomorphism induced by the
restriction 0 to H Hom(s,s)(R/N, Hom(F, F)). Since 00 1, the
restriction of I to S is I0.

Because of the grading (4.3), the set Hom(s,s)(R/M, Hom(F, F))
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^pof elements of H which vanish on M is @1 H.. Then it follows that

0 Homs,s)(R/M, HomK(F, F)) Homs,,s,)(R/M’, HomK(F, F.)).

As we have argued in the proof of Theorem 2, this implies that M M’.
We have thus proved the theorem.

4C. Complete graded rings
Let R be a semiprimary ring; that is, let R be a ring with radical N such

that R/N is a semisimple ring with the minimum condition on its left ideals.
We assume, furthermore, that %1 Nq 0 and that R/N possesses the
minimum condition on its left ideals. The sets N, q 0, 1, 2, form a
subbase for the neighborhoods of zero for a topology in which R becomes a
topological ring. In [9], for example, it is shown1 that when R is complete
in this topology, R is the inverse limit

(4.11 R lim R/N.
Here we use the natural homomorphism "R/N -- R/N for 1 -_< p -< q
to define (4.11). We say that a complete semiprimary ring is a complete
graded ring if there exists a semisimple subring S and an (S, S)-submodule
M such that for r _> 1

(4.12) R S @ M (R) M @ (R) M (R) Nr+.
A set of decompositions (4.12) will be called a grading of R. If R is not
complete, but %1 N 0, then it is known that/ lim R/N is complete,
and we may apply our considerations to/.

THEOREM 4. Let R be a complete semiprimary ring with gradings

(4.13) R S (R) M (R) M @ @ M (R) Nr+, r >= 1,

(4.14) R S’ @ M’ (R) M’ (R) (R) M’r @ Nr+l, r->- 1.

Then an isomorphism Io’S ---+ S’ may be extended to an automorphism I of R
which maps M onto Mr.

Proof. We will show that there exists a map of the inverse limit lim R/N
onto itself which is given by the automorphisms Iq" R/Nq ---+ R/Nq such that

I I-q Then these mappings will induce an automorphism of the71"pq

inverse limit by virtue of I4; p. 219]. By further requiring that
Iq,q-1, 2, ..., extend I0 we will obtain an extension of I0 to R.

Let H. and H, i, j 1, 2, , be the structural modules for R
relative to the cleavings given by (4.13) nd (4.14), respectively. Set
Rq R/Nq+i as in 3A. It follows that each ring Rq iS a graded ring with

Although the theory is developed for topological groups, the results extend im-
mediately to topological rings.
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gradings

(4.15) R S M M ... Mqq,

(4.16) R S M M’ M,
where S S N+ /N+, M M N+ /N+, etc. Furthermore,
H and H, i, j 1, 2, k are the structural modules of the ring R.
As in 3A, we identify S with S.

It was established in the proof of Theorem 3 that there exist ring auto-
morphisms I J of R which extend the isomorphism I0 and which are
induced by (K, K)-isomorphisms O:H H. The restriction of
toH for p q is . On the other hand, induces the injection:H
H. Hence, q . But this means that for a R and H

%x() (J) ((J)),

x o() () (()’).
Hence vq Iq I

Furthermore, we defined 0q so that 0qH Hf, p q. This means
that (M)q M’q. But M lim Mq inasmuch as q Mq Mq when

p q. Thus there is an automorphism I of R extending I0 such that M M.
Then M) M’. This proves the theorem.
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