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1. Introduction
The main theorem of this paper concerns the Hausdorff-Besicovitch dimen-

sion of the range of the sample functions of a stable process in R. Results
of this sort for the symmetric stable processes were obtained earlier by Mc-
Kean [6], [7] and by us [1]. The symmetric stable processes are subordinate
to Brownian motion, a fact that we found useful in [1]; but there seems to be
no similar relationship for the general stable processes, so a different approach
is necessary.

2. Preliminaries
If F is a stable probability distribution on R and is its N-dimensional

characteristic function, then either F is a (possibly degenerate) N-dimen-
sional normal distribution, or else

(1) log (y) i(a, y) ) Y w,(y, o)(dO)

for some a in R, , > 0, 0 < a < 2, a probability measure on the surface
of the unit sphere S in R. In this formula 0 denotes a variable point on
S, and the function w, is defined by

w,,(y, O) [1 i sgn (Y/I Y I, O) tan 1/2ra]. (Y/I Y I, )
if a # 1, and

w (u, o) (v/I I, o) + i, o) log (u, o) I.
The correct interpretation of this if y 0 or if (y, 0) 0 is obvious. The
number a is called the index of the stable distribution. Formula (1) is due
to L!vy [5]. If a < 2, then is integrable, so any stable distribution of
index a < 2 has a bounded continuous density. From now on we will
consider only the nonnormal stable distributions.

If F is stable of index , then for every ] > 0

F({x:lx[ > r})/F({x:lxJ > /r})--k" as r-- .
This is a consequence of Theorem 4.2 of [8], and it implies that if p > 0, then

F(dx)

if and only if p < a.
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Let {X(t); >= 0} be a stable process in RN of index a < 2 defined over
some basic probability space 2 of points ; that is, a process with stationary
independent increments, such that for each > s the characteristic function
of X(t) X(s) is e(t-8)() with given by (1). We assume that X(0) 0
and that in (1) we havea- 0andh 1. It follows that ifa 1 andr
and are positive, then rl/"X(t) has the same distribution as X(rt). In the
case 1, rX(t) has the same distribution as X(tr) (r log r) a, where
a is the point in RN with coordinates

a O g(dO).

We will assume that the process has been normalized to have right-continu-
ous sample functions.
Now let be a positive real number, and E a subset of R. For each
> 0 set A(E) inf ’=1 (diam Ei)s where {Ei i >= 1} is a cover of E

by subsets of R all of diameter not exceeding r, and the infimum is taken
over all such covers. We would get the same number if we restricted the
Ei’s to be open sets or closed sets or, in the case of the real line, closed inter-
vals. Let As(E) lim_.0 A(E). As is called the Hausdorff -dimensional
outer measure on R. It is a metric outer measure, and so the Borel sets
are always measurable. If E is a Borel set with Aa(E) M -<_ , and
if 0 < h < M, then there is a closed set F contained in E such that hS(F) h.
This fact, actually for analytic E, is proved by Davies in [2], and it implies
that As restricted to the Borel sets is inner regular. In general As is not
outer regular. It is also true that

sup{’A(E) } inf{’A(E) 0}.

This common value is called the Hausdorff-Besicovitch dimension of E, and
is denoted by dim E.
We need two more facts. First of all, a Borel subset E of RN is said to

have positive f-capacity (Cs(E) > 0) if there is a probability measure m,
concentrated on E, such that

lx <

A theorem of Frostman [3, p. 86] states that if E is closed and AS(E) > 0,
then C(E) > 0. Secondly we need the following fact which is implicit in
[7]" If f is a measurable function from [0, 1] to R and E is a Borel subset of
[0, 1], and if there is probability measure m on [0, 1] with re(E) 1 such
that

then A[f(E)] > O.
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3. Dimension theorem
In wht follows, E will be Borel subset of [0, 1] of dimension

will be the index of our process {X(t) _>_ 0} tking wlues in Rn. IfN 1,
we will always assume a, -< 1. We denote by X(E, o) the rnge of the
function X(t, oo) s wries over E. We will lmost lwys delete the in
expressions involving the smple functions. Our theorem is that if dim E (,

then dim X(E, o) 3’ for Mmost ll . We proceed in steps.

(i) P{dimX(E) >= a.} 1.

Proof. Assume a 1. Let ( be positive and strictly less than a(, but
otherwise arbitrary. Then fl/a < ,, so A(E) , and coording to
Davies’ theorem there is closed set F contained in E such that h=(F) > 0.
Then C=(F) > 0 by Frostman’s theorem. Let m be a probability measure
concentrated on F such that (2) holds with/ replaced by /a. Now

l x(t) x()i- al x(t- ) -It I-l x() - lt
with 0 c (reclltht a, <- 1 if N 1 nd that X(1) hs con-
tinuous density). Integrating this relation over F X F with respect to
m X m nd using Fubini’s theorem, we find that

(3) f, f x(t, o,)- X(s, ) - m(dt)m(ds)

for almost all o. Then as noted ubove, P{A(X(F)) > 01 1 and so
PIA(X(E)) > 01 1. The necessary modification of this argument in
case a i is obvious. Since ( < a( ws arbitrary, the proof is complete.

(ii) If .y < 1, then P{dim X(E) <= a’/ 1.

Proof. Assume a 1. Choose / > ( with /a < a, but / otherwise
arbitrary. For each n let {E, i _>_ 1} be a cover of E by closed intervals
such that o=z (diam E,)a-- 0 as n-- . This can be done since
Aa(E) 0. Now for each n, {X(E,, 0); i _>_ 1} is a cover of X(E,
and moreover [diam X(E,)]" is distributed as

(diam E,)a [diam X([0, 1])]".
Assuming for the moment that 8(diam X([0, 1]))" < , we have

(4) 3=z [diam X(E,)] %z (diam E,)8[diam X([0, 1])].
The right side of (4) goes to 0 as n -- , and so for a subsequence of n’s
approaching oo (which is all we need) =z [diam X(E,, )]-- 0 for
almost all . Since/ was arbitrary, this implies Pldim X(E) <- a.y} 1.
Concerning the finiteness of the expected value above" pick number M
such that for every t__< 1, PIIX(t) X(1) >-- M} __< 1/2. This can be
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done since almost all sample functions of our process are bounded on bounded
t-intervals. A standard argument then shows that for every k > M

P{sup__<l IX(t) >-_ 2k} -< 2 P{I X(1) ->

and so for all k > M
P{diam Z[0, 1] => 4k} =< 2 P{] X(1) =>

We observed in Section 2 that gl X(1) 18" < , and so the expected value
in question is finite. Again, the necessary modification of the proof if a 1
is easily found, and we omit the details.

(iii) /f / 1, then P{dim X(E) __< a} 1.

Proof. We may as well assume E [0, 1]. We first remark that if
a <- 1, then an argument involving the variation of the sample functions, as
used in [7], gives the result, and if N 1, these are the only values of a worth
considering. But for the other cases, this argument is not available. We
proceed with the proof in general.

First assume a 1. Choose > 1, but otherwise arbitrary, and for
each e > 0 define as follows"

T inf {t > O’IX(t) >
T+,, inf {t > O" X(t -l- TI + -F T)

for all / >__ 1. Our process has right-continuous paths and stationary inde-
pendent increments, and so it follows from the extended Markov property
of such processes (see [4, Sections 1-3]) that T:, T:-.. is a sequence of
mutually independent and identically distributed random variables. Now

P{T,: < a} P{sup,<: X(t) >
P{supt< -1/" X(t) > 1} P{sup< Z(t-l) > 1}

P{sup<-, Z(t) > 1} P{T < a-},
so Tk has the same distribution as Tk (T is defined as above with 1).
Let N be the smallest value of n such that T -+- -+- Tn > 1. If S(0, )
denotes the solid closed sphere with center at 0 and radius /", and S(/, )
denotes a similar sphere with center at X(TI-t-"’-F T), then
S(0, ),--. S(N 1, ) is a cover of X[0, 1] by sets of diameter 2e",
and

r=%-1 (diam S(], ) " 2"N.
Given any x > 0

P{N <- x} P{T +.-. + T=-, > i}
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If we write e as x11/k11, this probability is

P{ x1/fl Tn -4-

and, since > 1, by the law of large numbers this probability approaches 1
as /-- (e--+ 0). We have shown then that eaN- 0 in probability
as e -- 0. Hence a subsequence approaches 0 with probability 1, and thus
P{ As"(X[0, 1]) 0/ 1. Since f > 1 was arbitrary, the proof is com-
plete, at least if a 1.
We will indicate the changes required if a 1. Assume now a 1.

We observed earlier that for each positive r and t, rX(t) has the same dis-
tribution as X(rt) + tr log r.a where a is a point in R. Moreover the
process IX(rt) tr log r. a; >- 0/ has stationary independent increments
and hence is probabilistically the same as the process (rX(t); => 01. Given
any > 1, pick t > 0 but such that - f > 1. Nowellog el--+0 as
e-+ 0, and hence there is an e0 > 0 such that log e II a I+ 1 < e- for
alle__< e0. Given anye > 0let

TI inf {t > O: X(t) > ei-li},
and define T, Ta, inductively as we did above. Then T, T2,
are independent and identically distributed. Now given any e __< e0 (above)
and c =< e we have

PI TI < v} P{ supt< X(t) > ei-li}
r{supt< -l X(t) >
P{ supt< X(te-) te-1 log

P{sup<- IX(r) r log e.a

Since c/s -< 1 and e <= e0, it follows that r log s a + 1 < s-a, and so
the last displayed expression above does not exceed

P{supr<- Z(r) > 1} P{Tn <
Let

Rk TI if T_<_ 1,

1 if Tl > 1.

Then R, R2, are independent and identically distributed, and for each
e > 0 and each x, P{eR__< x} => P{T <- x}. From here the proof pro-
ceeds as in the case a re 1. We let N denote the smallest n for which

T "4- -t- Tne> 1,

cover X[0, 1] with N closed spheres each of diameter 2e-a, and thus get a
cover by sets, the sum of whose diameters raised to the power is 2
Then for any x > 0

P{e-N -< x} P{T -t- A- T-, > 1}
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and since - > 1, this probability approaches 1 as e-- 0. Thus the
proof is complete. Let us summarize the results of this section.

THEOREM. If dim E 7, then PIdim X(E) aT} 1.
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