A DIMENSION THEOREM FOR SAMPLE FUNCTIONS OF STABLE PROCESSES

BY

R. M. BLUMENTHAL¹ AND R. K. GETOOR

1. Introduction

The main theorem of this paper concerns the Hausdorff-Besicovitch dimension of the range of the sample functions of a stable process in R_N . Results of this sort for the symmetric stable processes were obtained earlier by Mc-Kean [6], [7] and by us [1]. The symmetric stable processes are subordinate to Brownian motion, a fact that we found useful in [1]; but there seems to be no similar relationship for the general stable processes, so a different approach is necessary.

2. Preliminaries

If F is a stable probability distribution on R_N and φ is its N-dimensional characteristic function, then either F is a (possibly degenerate) N-dimensional normal distribution, or else

(1)
$$\log \varphi(y) = i(a, y) - \lambda |y|^{\alpha} \int_{S_N} w_{\alpha}(y, \theta) \mu(d\theta)$$

for some a in R_N , $\lambda > 0$, $0 < \alpha < 2$, μ a probability measure on the surface of the unit sphere S_N in R_N . In this formula θ denotes a variable point on S_N , and the function w_{α} is defined by

$$w_{\alpha}(y, \theta) = \left[1 - i \operatorname{sgn} \left(y \middle| y \middle|, \theta\right) \tan \frac{1}{2} \pi \alpha\right] \cdot \left| \left(y \middle| y \middle|, \theta\right) \right|^{\alpha}$$

if $\alpha \neq 1$, and

$$w_1(y, \theta) = |(y/|y|, \theta)| + (2i/\pi)(y/|y|, \theta) \log |(y, \theta)|.$$

The correct interpretation of this if y = 0 or if $(y, \theta) = 0$ is obvious. The number α is called the index of the stable distribution. Formula (1) is due to Lévy [5]. If $\alpha < 2$, then φ is integrable, so any stable distribution of index $\alpha < 2$ has a bounded continuous density. From now on we will consider only the nonnormal stable distributions.

If F is stable of index α , then for every k > 0

$$F(\{x: |x| > r\})/F(\{x: |x| > kr\}) \to k^{\alpha} \text{ as } r \to \infty.$$

This is a consequence of Theorem 4.2 of [8], and it implies that if p > 0, then

$$\int_{R_N} |x|^p F(dx) < \infty$$

if and only if $p < \alpha$.

Received May 15, 1959.

¹ This author was supported in part by the Office of Naval Research.

Let $\{X(t); t \ge 0\}$ be a stable process in R_N of index $\alpha < 2$ defined over some basic probability space Ω of points ω ; that is, a process with stationary independent increments, such that for each t > s the characteristic function of X(t) - X(s) is $e^{(t-s)\log\varphi(y)}$ with φ given by (1). We assume that X(0) = 0and that in (1) we have a = 0 and $\lambda = 1$. It follows that if $\alpha \neq 1$ and rand t are positive, then $r^{1/\alpha}X(t)$ has the same distribution as X(rt). In the case $\alpha = 1$, rX(t) has the same distribution as $X(tr) + t(r \log r) a$, where a is the point in R_N with coordinates

$$a_j = \int_{S_N} \frac{2}{\pi} \theta_j \mu(d\theta).$$

We will assume that the process has been normalized to have right-continuous sample functions.

Now let β be a positive real number, and E a subset of R_N . For each $\varepsilon > 0$ set $\Lambda_{\varepsilon}^{\beta}(E) = \inf \sum_{i=1}^{\infty} (\operatorname{diam} E_i)^{\beta}$ where $\{E_i : i \ge 1\}$ is a cover of E by subsets of R_N all of diameter not exceeding ε , and the infimum is taken over all such covers. We would get the same number if we restricted the E_i 's to be open sets or closed sets or, in the case of the real line, closed intervals. Let $\Lambda^{\beta}(E) = \lim_{\varepsilon \to 0} \Lambda_{\varepsilon}^{\beta}(E)$. Λ^{β} is called the Hausdorff β -dimensional outer measure on R_N . It is a metric outer measure, and so the Borel sets are always measurable. If E is a Borel set with $\Lambda^{\beta}(E) = M \le \infty$, and if 0 < h < M, then there is a closed set F contained in E such that $\Lambda^{\beta}(F) = h$. This fact, actually for analytic E, is proved by Davies in [2], and it implies that Λ^{β} restricted to the Borel sets is inner regular. In general Λ^{β} is not outer regular. It is also true that

$$\sup \{\beta \colon \Lambda^{\beta}(E) = \infty\} = \inf \{\beta \colon \Lambda^{\beta}(E) = 0\}.$$

This common value is called the Hausdorff-Besicovitch dimension of E, and is denoted by dim E.

We need two more facts. First of all, a Borel subset E of R_N is said to have positive β -capacity $(C_{\beta}(E) > 0)$ if there is a probability measure m, concentrated on E, such that

(2)
$$\int_{E}\int_{E}|x-y|^{-\beta}m(dx)m(dx) < \infty.$$

A theorem of Frostman [3, p. 86] states that if E is closed and $\Lambda^{\beta}(E) > 0$, then $C_{\beta}(E) > 0$. Secondly we need the following fact which is implicit in [7]: If f is a measurable function from [0, 1] to R_N and E is a Borel subset of [0, 1], and if there is probability measure m on [0, 1] with m(E) = 1 such that

$$\int_{E}\int_{E}|f(s) - f(t)|^{-\beta} m(ds)m(dt) < \infty,$$

then $\Lambda^{\beta}[f(E)] > 0$.

3. Dimension theorem

In what follows, E will be a Borel subset of [0, 1] of dimension γ , and α will be the index of our process $\{X(t); t \geq 0\}$ taking values in R_N . If N = 1, we will always assume $\alpha \gamma \leq 1$. We denote by $X(E, \omega)$ the range of the function $X(t, \omega)$ as t varies over E. We will almost always delete the ω in expressions involving the sample functions. Our theorem is that if dim $E = \gamma$, then dim $X(E, \omega) = \alpha \gamma$ for almost all ω . We proceed in steps.

(i)
$$P\{\dim X(E) \ge \alpha \gamma\} = 1.$$

Proof. Assume $\alpha \neq 1$. Let β be positive and strictly less than $\alpha\gamma$, but otherwise arbitrary. Then $\beta/\alpha < \gamma$, so $\Lambda^{\beta/\alpha}(E) = \infty$, and according to Davies' theorem there is a closed set F contained in E such that $\Lambda^{\beta/\alpha}(F) > 0$. Then $C_{\beta/\alpha}(F) > 0$ by Frostman's theorem. Let m be a probability measure concentrated on F such that (2) holds with β replaced by β/α . Now

$$\begin{aligned} \varepsilon |X(t) - X(s)|^{-\beta} &= \varepsilon |X(t-s)|^{-\beta} \\ &= |t-s|^{-\beta/\alpha} \varepsilon |X(1)|^{-\beta} = c |t-s|^{-\beta/\alpha} \end{aligned}$$

with $0 < c < \infty$ (recall that $\alpha \gamma \leq 1$ if N = 1 and that X(1) has a continuous density). Integrating this relation over $F \times F$ with respect to $m \times m$ and using Fubini's theorem, we find that

(3)
$$\int_{F} \int_{F} |X(t,\omega) - X(s,\omega)|^{-\beta} m(dt)m(ds) < \infty$$

for almost all ω . Then as noted above, $P\{\Lambda^{\beta}(X(F)) > 0\} = 1$ and so $P\{\Lambda^{\beta}(X(E)) > 0\} = 1$. The necessary modification of this argument in case $\alpha = 1$ is obvious. Since $\beta < \alpha \gamma$ was arbitrary, the proof is complete.

(ii) If $\gamma < 1$, then $P\{\dim X(E) \leq \alpha \gamma\} = 1$.

Proof. Assume $\alpha \neq 1$. Choose $\beta > \gamma$ with $\beta \alpha < \alpha$, but β otherwise arbitrary. For each n let $\{E_{in}; i \geq 1\}$ be a cover of E by closed intervals such that $\sum_{i=1}^{\infty} (\operatorname{diam} E_{in})^{\beta} \to 0$ as $n \to \infty$. This can be done since $\Lambda^{\beta}(E) = 0$. Now for each n, $\{X(E_{in}, \omega); i \geq 1\}$ is a cover of $X(E, \omega)$, and moreover $[\operatorname{diam} X(E_{in})]^{\beta\alpha}$ is distributed as

$$(\operatorname{diam} E_{in})^{\beta} [\operatorname{diam} X([0, 1])]^{\beta \alpha}.$$

Assuming for the moment that $\mathcal{E}(\operatorname{diam} X([0, 1]))^{\alpha\beta} < \infty$, we have

(4)
$$\mathcal{E}\sum_{i=1}^{\infty} \left[\operatorname{diam} X(E_{in})\right]^{\beta\alpha} = \sum_{i=1}^{\infty} \left(\operatorname{diam} E_{in}\right)^{\beta} \mathcal{E}\left[\operatorname{diam} X([0, 1])\right]^{\beta\alpha}$$

The right side of (4) goes to 0 as $n \to \infty$, and so for a subsequence of *n*'s approaching ∞ (which is all we need) $\sum_{i=1}^{\infty} [\text{diam } X(E_{in}, \omega)]^{\beta\alpha} \to 0$ for almost all ω . Since β was arbitrary, this implies $P\{\text{dim } X(E) \leq \alpha\gamma\} = 1$. Concerning the finiteness of the expected value above: pick a number M such that for every $t \leq 1$, $P\{|X(t) - X(1)| \geq M\} \leq \frac{1}{2}$. This can be

done since almost all sample functions of our process are bounded on bounded *t*-intervals. A standard argument then shows that for every $\lambda > M$

$$P\{\sup_{t\leq 1} | X(t) | \geq 2\lambda\} \leq 2 P\{| X(1) | \geq \lambda\},\$$

and so for all $\lambda > M$

$$P\{\text{diam } X[0, 1] \ge 4\lambda\} \le 2 P\{|X(1)| \ge \lambda\}.$$

We observed in Section 2 that $\varepsilon |X(1)|^{\beta\alpha} < \infty$, and so the expected value in question is finite. Again, the necessary modification of the proof if $\alpha = 1$ is easily found, and we omit the details.

(iii) If $\gamma = 1$, then $P\{\dim X(E) \leq \alpha\} = 1$.

Proof. We may as well assume E = [0, 1]. We first remark that if $\alpha \leq 1$, then an argument involving the variation of the sample functions, as used in [7], gives the result, and if N = 1, these are the only values of α worth considering. But for the other cases, this argument is not available. We proceed with the proof in general.

First assume $\alpha \neq 1$. Choose $\beta > 1$, but otherwise arbitrary, and for each $\varepsilon > 0$ define as follows:

$$T_{1\varepsilon} = \inf \{t > 0 \colon | X(t) | > \varepsilon^{1/\alpha} \},$$

$$T_{k+1,\varepsilon} = \inf \{t > 0 \colon | X(t + T_{1\varepsilon} + \dots + T_{k\varepsilon}) - X(T_{1\varepsilon} + \dots + T_{k\varepsilon}) | > \varepsilon^{1/\alpha} \}$$

for all $k \ge 1$. Our process has right-continuous paths and stationary independent increments, and so it follows from the extended Markov property of such processes (see [4, Sections 1-3]) that $T_{1\epsilon}$, $T_{2\epsilon}$... is a sequence of mutually independent and identically distributed random variables. Now

$$P\{T_{1\varepsilon} < a\} = P\{\sup_{t < a} | X(t) | > \varepsilon^{1/\alpha}\}$$

= $P\{\sup_{t < a} \varepsilon^{-1/\alpha} | X(t) | > 1\} = P\{\sup_{t < a} | X(t\varepsilon^{-1}) | > 1\}$
= $P\{\sup_{t < a\varepsilon^{-1}} | X(t) | > 1\} = P\{T_{11} < a\varepsilon^{-1}\},$

so $T_{k\varepsilon}$ has the same distribution as εT_{k1} (T_{k1} is defined as above with $\varepsilon = 1$). Let N_{ε} be the smallest value of n such that $T_{1\varepsilon} + \cdots + T_{n\varepsilon} > 1$. If $S(0, \varepsilon)$ denotes the solid closed sphere with center at 0 and radius $\varepsilon^{1/\alpha}$, and $S(k, \varepsilon)$ denotes a similar sphere with center at $X(T_{1\varepsilon} + \cdots + T_{k\varepsilon})$, then $S(0, \varepsilon), \cdots, S(N_{\varepsilon} - 1, \varepsilon)$ is a cover of X[0, 1] by sets of diameter $2\varepsilon^{1/\alpha}$, and

$$\sum_{k=0}^{N_{\varepsilon}-1} (\text{diam } S(k, \varepsilon))^{\alpha\beta} = 2^{\alpha\beta} \varepsilon^{\beta} N_{\varepsilon}.$$

Given any x > 0

$$P\{\varepsilon^{\beta}N_{\varepsilon} \leq x\} = P\{T_{1\varepsilon} + \dots + T_{[x\varepsilon^{-\beta}],\varepsilon} > 1\}$$
$$= P\{\varepsilon T_{11} + \dots + \varepsilon T_{[x\varepsilon^{-\beta}],1} > 1\}.$$

If we write ε as $x^{1/\beta}/k^{1/\beta}$, this probability is

$$P\{x^{1/\beta}(T_{11} + \cdots + T_{k1})/k^{1/\beta} > 1\},\$$

and, since $\beta > 1$, by the law of large numbers this probability approaches 1 as $k \to \infty$ ($\varepsilon \to 0$). We have shown then that $\varepsilon^{\beta}N_{\varepsilon} \to 0$ in probability as $\varepsilon \to 0$. Hence a subsequence approaches 0 with probability 1, and thus $P\{\Lambda^{\beta\alpha}(X[0, 1]) = 0\} = 1$. Since $\beta > 1$ was arbitrary, the proof is complete, at least if $\alpha \neq 1$.

We will indicate the changes required if $\alpha = 1$. Assume now $\alpha = 1$. We observed earlier that for each positive r and t, rX(t) has the same distribution as $X(rt) + tr \log r \cdot a$ where a is a point in R_N . Moreover the process $\{X(rt) + tr \log r \cdot a; t \ge 0\}$ has stationary independent increments and hence is probabilistically the same as the process $\{rX(t); t \ge 0\}$. Given any $\beta > 1$, pick $\delta > 0$ but such that $\beta - \beta \delta > 1$. Now $\varepsilon^{\delta} |\log \varepsilon| \to 0$ as $\varepsilon \to 0$, and hence there is an $\varepsilon_0 > 0$ such that $|\log \varepsilon||a| + 1 < \varepsilon^{-\delta}$ for all $\varepsilon \le \varepsilon_0$. Given any $\varepsilon > 0$ let

$$T_{1\varepsilon} = \inf \{t > 0 \colon |X(t)| > \varepsilon^{1-\delta}\},\$$

and define $T_{2\varepsilon}$, $T_{3\varepsilon}$, \cdots inductively as we did above. Then $T_{1\varepsilon}$, $T_{2\varepsilon}$, \cdots are independent and identically distributed. Now given any $\varepsilon \leq \varepsilon_0$ (above) and $c \leq \varepsilon$ we have

$$P\{T_{1\varepsilon} < c\} = P\{\sup_{t < \varepsilon} | X(t) | > \varepsilon^{1-\delta}\}$$

= $P\{\sup_{t < \varepsilon} \varepsilon^{-1} | X(t) | > \varepsilon^{-\delta}\}$
= $P\{\sup_{t < \varepsilon} | X(t\varepsilon^{-1}) - t\varepsilon^{-1} \log \varepsilon \cdot a | > \varepsilon^{-\delta}\}$
= $P\{\sup_{r < c\varepsilon^{-1}} | X(r) - r \log \varepsilon \cdot a | > \varepsilon^{-\delta}\}.$

Since $c/\varepsilon \leq 1$ and $\varepsilon \leq \varepsilon_0$, it follows that $r|\log \varepsilon||a| + 1 < \varepsilon^{-\delta}$, and so the last displayed expression above does not exceed

 $P\{\sup_{r < c\varepsilon^{-1}} | X(r) | > 1\} = P\{T_{11} < c\varepsilon^{-1}\}.$

Let

$$R_k = T_{k1}$$
 if $T_{k1} \le 1$,
= 1 if $T_{k1} > 1$.

Then R_1 , R_2 , \cdots are independent and identically distributed, and for each $\varepsilon > 0$ and each x, $P\{\varepsilon R_k \leq x\} \geq P\{T_{k\varepsilon} \leq x\}$. From here the proof proceeds as in the case $\alpha \neq 1$. We let N_{ε} denote the smallest n for which

$$T_{1\varepsilon} + \cdots + T_{n\varepsilon} > 1,$$

cover X[0, 1] with N_{ε} closed spheres each of diameter $2\varepsilon^{1-\delta}$, and thus get a cover by sets, the sum of whose diameters raised to the β power is $2^{\beta}\varepsilon^{\beta-\beta\delta}N_{\varepsilon}$. Then for any x > 0

$$P\{\varepsilon^{\beta-\beta\delta}N_{\varepsilon} \leq x\} = P\{T_{1\varepsilon} + \cdots + T_{[x\varepsilon^{\beta\delta}-\beta],\varepsilon} > 1\}$$
$$\geq P\{\varepsilon R_{1} + \cdots + \varepsilon R_{[x\varepsilon^{\beta\delta}-\beta]} > 1\},\$$

 $\mathbf{374}$

and since $\beta - \beta \delta > 1$, this probability approaches 1 as $\varepsilon \to 0$. Thus the proof is complete. Let us summarize the results of this section.

THEOREM. If dim $E = \gamma$, then $P\{\dim X(E) = \alpha\gamma\} = 1$.

References

- 1. R. M. BLUMENTHAL AND R. K. GETOOR, Some theorems on stable processes, Trans. Amer. Math. Soc., vol. 95 (1960), pp. 263-273.
- 2. R. O. DAVIES, Subsets of finite measure in analytic sets, Indag. Math., vol. 14 (1952), pp. 488-489.
- O. FROSTMAN, Potential d'équilibre et capacité des ensembles avec quelques applications à la théorie des fonctions. Meddelanden från Lunds Universitets Mathematiska Seminarium, Band 3, 1935.
- 4. G. A. HUNT, Some theorems concerning Brownian motion, Trans. Amer. Math. Soc., vol. 81 (1956), pp. 294-319.
- 5. P. LÉVY, Théorie de l'addition des variables aléatoires, Paris, 1937.
- H. P. MCKEAN, JR., Hausdorff-Besicovitch dimension of Brownian motion paths, Duke Math. J., vol. 22 (1955), pp. 229-234.
- 7. ——, Sample functions of stable processes, Ann. of Math. (2), vol. 61 (1955), pp. 564-579.
- E. L. RVAČEVA, On domains of attraction of multidimensional distributions, Učenye Zapiski L'vovskogo Gosudarstvennogo Universiteta, Ser. Mekh. Mat., vol. 29 (1954), no. 6, pp. 5-44. (Russian)

UNIVERSITY OF WASHINGTON SEATTLE, WASHINGTON