ON THE DENSITY OF SETS OF INTEGERS POSSESSING ADDITIVE BASES

BY
Basil Gordon and L. A. Rubel

Let $K=\left\{k_{0}, k_{1}, k_{2}, \cdots\right\}$ be an infinite set of positive integers with $k_{0}<k_{1}<k_{2}<\cdots$. Let S be the set of all integers which can be expressed as the sum of distinct elements of K. It is convenient to regard 0 (the empty sum) as belonging to S. In the special case where every element of S has a unique representation as the sum of distinct elements of K, Wintner [2] has called S a π-set with basis K. For example, the set of all nonnegative integers forms a π-set whose basis consists of the powers of 2 .

The relationship between a π-set and its basis can be expressed analytically by the formula

$$
\sum_{n=0}^{\infty} c_{n} x^{n}=\prod_{n=0}^{\infty}\left(1+x^{k_{n}}\right) \quad(|x|<1)
$$

where c_{n} is the characteristic function of S, i.e., $c_{n}=1$ or 0 according as n is or is not in S.

Wintner in [2] investigated the question of when a π-set has a density, i.e., when

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left(c_{0}+c_{1}+\cdots+c_{n}\right) / n=\theta \tag{1}
\end{equation*}
$$

exists. He proved that if

$$
\begin{equation*}
\lim _{n \rightarrow \infty} 2^{n} / k_{n}=\theta \tag{2}
\end{equation*}
$$

exists, then S has density θ. In the present paper it is shown that (2) is necessary, as well as sufficient, for the existence of a density except possibly in the special case $\theta=0$. Wintner's question of whether or not every π-set has a density can then easily be answered in the negative.

We remark that our methods apply to the more general case where the k_{n} are positive real numbers not assumed to be integers and where S is not assumed to be a π-set, provided that multiplicities are counted properly.

Theorem. Suppose (1) holds with $\theta>0$. Then (2) follows.
Proof. Any element $m \in S$ with $m<k_{n}$ can only involve k_{0}, k_{1}, \cdots, k_{n-1} in its representation as a sum of basis elements. There are only 2^{n} possible sums that can be formed from $k_{0}, k_{1}, \cdots, k_{n-1}$. Hence

$$
c_{0}+c_{1}+\cdots+c_{k_{n}} \leqq 2^{n}+1
$$

Dividing by k_{n} and letting $n \rightarrow \infty$, we find that $\lim \inf _{n \rightarrow \infty} 2^{n} / k_{n} \geqq \theta$. Hence, for any $\theta^{\prime}<\theta$, we have $k_{n} \leqq 2^{n} / \theta^{\prime}=\rho^{\prime} 2^{n}$ for $n>n\left(\theta^{\prime}\right)$. Write, for

[^0]$m>n\left(\theta^{\prime}\right)$,
\[

$$
\begin{aligned}
\prod_{n=0}^{\infty}\left(1+x^{k_{n}}\right) & =\left(1+x^{k_{m}}\right) \prod_{n=0}^{n\left(\theta^{\prime}\right)}\left(1+x^{k_{n}}\right) \prod_{n>n} \prod_{\left(\theta^{\prime}\right), n \neq m}\left(1+x^{k_{n}}\right) \\
& \geqq\left(1+x^{k_{m}}\right) \prod_{n=0}^{n\left(\theta^{\prime}\right)}\left(1+x^{k_{n}}\right) \prod_{n>n}\left(1+x^{\left.\rho^{\prime}\right)}, n \neq m\right. \\
& =\frac{\left.1+x^{k_{m}}\right)}{1+x^{\rho_{m}} 2^{m}} \frac{\prod_{n=0}^{n\left(\theta^{\prime}\right)}\left(1+x^{k_{n}}\right)}{\prod_{n=0}^{n\left(\theta^{\prime}\right)}\left(1+x^{\rho^{\prime} 2^{n}}\right)} \prod_{n=0}^{\infty}\left(1+x^{\rho^{\prime} 2^{n}}\right)
\end{aligned}
$$
\]

Applying Euler's famous identity,

$$
\prod_{n=0}^{\infty}\left(1+y^{2^{n}}\right)=1 /(1-y)
$$

we get

$$
(1-x) \prod_{n=0}^{\infty}\left(1+x^{k_{n}}\right) \geqq \frac{1-x}{1-x^{\rho^{\prime}}} \frac{1+x^{k_{m}}}{1+x^{\rho^{\prime} 2^{m}}} \prod_{n=0}^{n\left(\theta^{\prime}\right)}\left(\frac{1+x^{k_{n}}}{1+x^{\rho^{\prime} 2^{n}}}\right)
$$

and finally,

$$
(1-x) \sum_{n=0}^{\infty} c_{n} x^{n} \geqq \theta^{\prime} \frac{1+x^{k_{m}}}{1+x^{\rho^{\prime} 2^{m}}} \prod_{n=0}^{n\left(\theta^{\prime}\right)}\left(\frac{1+x^{k_{n}}}{1+x^{\rho^{\prime} 2^{n}}}\right)
$$

If now there are infinitely many m for which $k^{m}<2^{m} / \theta^{\prime \prime}=\rho^{\prime \prime} 2^{m}$ where $\theta^{\prime \prime}>\theta$, i.e., $\rho^{\prime \prime}<\rho=1 / \theta$, then for these values of m,

$$
\begin{equation*}
(1-x) \sum_{n=0}^{\infty} c_{n} x^{n} \geqq \theta^{\prime} \frac{1+x^{\rho^{\prime \prime} 2^{m}}}{1+x^{\rho^{\prime} 2^{m}}} \prod_{n=0}^{n\left(\theta^{\prime}\right)}\left(\frac{1+x^{k_{n}}}{1+x^{\rho^{\prime} 2^{n}}}\right) \tag{3}
\end{equation*}
$$

As is well known [1, §7.5], (1) implies that the left-hand side of (3) tends to θ as $x \rightarrow 1$. By putting $x=x_{m}=2^{-1 / 2^{m}}$ in (3) and letting $m \rightarrow \infty$, it follows that

$$
\theta \geqq \theta^{\prime} \frac{1+\left(\frac{1}{2}\right)^{\rho^{\prime \prime}}}{1+\left(\frac{1}{2}\right)^{\rho^{\prime}}}
$$

Since $\theta^{\prime}<\theta$ is arbitrary, and $\theta \neq 0$, we have

$$
1 \geqq \frac{1+\left(\frac{1}{2}\right)^{\rho^{\prime \prime}}}{1+\left(\frac{1}{2}\right)^{\rho}}
$$

which is impossible for $\rho^{\prime \prime}<\rho$. This completes the proof.
Whether or not the theorem is true without the hypothesis $\theta>0$ is an open question.

We now turn to the construction of some π-sets, including some which do not have a density. Let $k_{0}, k_{1}, \cdots, k_{\tau-1}$ be positive integers with

$$
k_{0}<k_{1}<\cdots<k_{\tau-1}
$$

Suppose that the 2^{τ} sums which can be formed by adding these integers are all distinct, and denote them by $\sigma_{1}, \cdots, \sigma_{2^{r}}$. Let M be an integer such that $\sigma_{i} \not \equiv \sigma_{j}(\bmod M)$ for $i \neq j$, and such that $k_{0} M>k_{\tau-1}$. Then define
k_{n} for all n by the formula $k_{n}=M^{q} k_{r}$, where $n=q \tau+r$, and $0 \leqq r<\tau$. It is easily verified that the resulting set $K=\left\{k_{n}\right\}$ is the basis of a π-set S.

For example, let $k_{0}=2, k_{1}=3$. Then $\sigma_{1}=0, \sigma_{2}=2, \sigma_{3}=3, \sigma_{4}=5$. The σ_{i} are incongruent $(\bmod 4)$, and so M can be taken equal to 4 . The resulting basis is $K=\{2,3,8,12,32,48, \cdots\}$, where in general $k_{2 i}=2 \cdot 4^{i}$ and $k_{2 i+1}=3 \cdot 4^{i}$. In this case

$$
\frac{1}{2}=\lim \inf _{n \rightarrow \infty} 2^{n} / k_{n}<\lim \sup _{n \rightarrow \infty} 2^{n} / k_{n}=\frac{2}{3}
$$

and by our theorem, S cannot have a density unless it has density zero, since $\lim 2^{n} / k_{n}$ fails to exist. It is easy to prove that S does not have density zero, hence any density whatever, either directly or in the following manner. By a simple modification of the proof of our theorem, it can be proved that, if

$$
\theta_{1}=\lim \inf 2^{n} / k_{n} \quad \text { and } \quad \theta_{2}=\lim \sup 2^{n} / k_{n}
$$

then

$$
\lim \sup _{x \rightarrow 1-}(1-x) \sum_{n=0}^{\infty} c_{n} x^{n} \geqq \theta_{1} \frac{1+r^{1 / \theta_{2}}}{1+r^{1 / \theta_{1}}}
$$

for any r in the open interval $(0,1)$. If S had density zero, we would have $\lim (1-x) \sum c_{n} x^{n}=0$, which is impossible since $\theta_{1}=\frac{1}{2}$ and $\theta_{2}=\frac{2}{3}$.

More generally, for the π-sets of this special type,

$$
2^{n} / k_{n}=2^{q \tau+r} / M^{q} k_{r}
$$

It is impossible that $M<2^{\tau}$, since $\sigma_{i} \equiv \sigma_{j}(\bmod M)$ would then hold for some $i \neq j$ by Dirichlet's box principle. If $M>2^{\tau}$, then $2^{n} / k_{n} \rightarrow 0$, and so S has density 0 by Wintner's theorem. If $M=2^{\tau}$, then $2^{n} / k_{n}=2^{r} / k_{r}$, and hence $2^{n} / k_{n} \rightarrow \theta$ if and only if $k_{r}=2^{r} / \theta$ for $r=0,1, \cdots, \tau-1$. In this case S consists of all multiples of $1 / \theta$, a particularly simple example. All other such π-sets with $M=2^{\tau}$ fail to have a density.

References

1. E. C. Titchmarsh, The theory of functions, $2^{\text {nd }}$ ed., London, Oxford University Press, 1939.
2. A. Wintner, On restricted partitions with a basis of uniqueness, Revista de la Unión Matemática Argentina, vol. 13 (1948), pp.99-105.

University of California
Los Angeles, California
Redstone Arsenal
Huntsville, Alabama
University of Illinois
Urbana, Illinois

[^0]: Received May 14, 1959.

