
MARKOFF CHAINS AND MARTIN BOUNDARIES

G. A. HUNT

In the latter half of [5] Doob extends to Markoff chains many results he
had previously obtained for Brownian motions. Roughly, his argument
rests on the theory of martingales and on properties of the Martin boundary
established by R. S. Martin and M. Brelot using classical methods, the bridge
between the two groundworks being the equivalence of resolutivity of the
boundary and almost certain convergence of an appropriate Markoff chain.

This paper presents another argument, using only the basic properties
of martingales and Markoff chains, in which the main convergence theorem
of Doob is proved at the beginning by reversing the sense of time in a Markoff
chain. I first intended to write a note giving the simple proof of this con-
vergence by explicit calculation; the subject is so attractive, however, that
I decided upon a brief complete exposition, including some material omitted
from 17 of [7] about which I shall say a word.

In view of the symmetry of past and future in the notion of Markoff chain,
the lack of such symmetry in defining Markoff chains with stationary transi-
tions must puzzle many a probabilist. Now, a slight and momentarily ugly
alteration of the latter definition yields the notion of random chain with
approximately stationary transitions, a notion symmetric in past and future
This symmetry is used in 2 to establish the convergence mentioned above
and in 5 to reduce problems concerning the entrance boundary to ones con-
cerning the exit boundary. The chains themselves are studied in i and in the
first part of 5 in order to furnish the proper background for [5] and [7].
Doob’s convergence theorem, established directly, leads to the proofs in

3 and 4 of the Poisson-Martin representation of excessive functions, the
behavior of excessive functions near the Martin boundary, and the resolutivity
of the Martin boundary. Of course, it is only the arrangement of material
that distinguishes these sections.
Some remarks are deferred until 6, the last section, since most of them

merely explain the departures from the language and definitions of Doob
and Brelot.

Doob’s argument and ours both hold for Brownian motions or, more gen-
erally, for the processes discussed in the third part of [7].

1. Random chains

The space of states is a countable set R which is provided with the discrete
topology as a topological space and with the field of all its subsets as a meas-
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urable space. Except for a moment in 4, functions and measures on this
space are to be positive (nonnegative), perhaps infinite, and the convention
is recalled only in a few important definitions. We sometimes write an in-
tegral, rather than a sum, in order to distinguish measures from functions.
For each r in R let P(r, ds) be a positive measure on R satisfying

(1.1) P(r, R) <- 1, r e R.

The transition function P defines a transformation f -- Pf of functions,

Pf.(r) =- fR P(r, ds)f(s), re R,( 1.2)

as well as a transformation -- P of measures,

(1.3) P.(C) =- fR (dr)P(r, C), C c R.

A positive function h is excessive (relative to P) if it dominates Ph, con-
cordant if it is finite and coincides with Ph. A positive measure i" is excessive
if it dominates P, concordant if it is finite on finite sets and coincides with

Denote by Po(r, ds) the unit mass at the point r, and define recursively

(1.4) Pn+l(r, C) f Pn(r, ds)P(s, C), r e R, C c R,

so that P1 is just P. The kernel G(r, ds) for a potential theory is taken to be

(1.5) G(r, ds) _, Pn(r, ds).
n_O

Both P and G define transformations of functions or measures by formulas
like (1.2) or (1.3). Clearly, Gf and G are excessive if f is a positive function
and a positive measure.
As we shall see in 5, an excessive measure determines the initial behavior

of a Markoff chain .having P for transition function, whereas an excessive
function determines the final behavior of the chain. In order for such a
statement to have the proper scope one needs an enlargement of the notion
of Markoff chain with given transition function, which we proceed to explain.

Let (2, 5, 5)) be a measure space; that is to say, is a Borel field of subsets
of 2, which itself belongs to 5, and 5 is a positive measure on (. Let a and
be measurable functions on 2; the values of a are to be integers or , those
of are to be integers or -}-, and the inequality a -<_ is to hold. Let
x(n, o) be defined as a point of R for almost all and for all integers n satis-
fying a(o) =< n -< (). In order to speak of functions in the ordinary
sense, we extend the definition to all integers, taking x(n, o) to be
a for n < a() and b for n > (o), with a and b distinct obiects not belonging
to R; after the extension the function x(n, denoted later by x(n), is to be
measurable over for each n. The triple (x, a, ), where x stands for the
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function x(., ), is said to be a random chain on R, defined over , if the follow-
ing statement is true"

(1.6) Let An.r be the set in where (x <-_ n <-_ and x(n) r. Then 6){ An.r}
is finite, for every integer n and every r in R.

The measures of the sets where x(n) takes on the value a or b may of course
be infinite. Under (1.6) the space is the union of countably many sets of
finite measure.
A random chain (x, , ) is said to be a Markoff chain if the past and future

are independent once the present is fixed. To be precise, let k, m, n be in-
tegers satisfying k < m < n, let rk, rn be points of R, and let A, A’, A"
be the sets in 2 defined by the conditions

A" a < m < , x(m) r,,

(1.7) A’" a =< k, m=<, x(j) rj for /c =<j =< m,

A"" a =< m, n =< , x(j) rj for m =<j =< n.

Then the relation

(1.8) 6){A’ o A"} 6){A’} 6){A"}

is to hold, provided 6){ A} is not zero.
A Markoff chain (x, a, fl) is said to have P for stationary transition func-

tion, or simply to be a P-chain, if

(1.9) 6){ hn,r f] An+l,s} 6){An,r}P(r, s)

for all r, s in R and all integers n, the sets hn,r being defined as in (1.6). This
definition differs from the usual one only in permitting 2 to have arbitrary
mass and in providing the chain with an initial time a as well as a terminal
time 5.

Consider now a random chain (x, a, 5) and a function measurable over
(B having- m, + m, or integers for values. On the set ’ where a is finite
and satisfies the condition a -< a =< 5, a triple (y, 0, ,) is defined by
the formulas

(1.10) -(o) (0) a(), y(n, oa) x(r(oo) + n, oa), oa ’.

The random time a is said to reduce (x, a, fl) to a P-chain if (y, 0, ,) is a
P-chain defined over 2’. The random chain (x, a, fl) itself is said to be an
approximate P-chain, or to have P for approximate stationary transition
function, if there is a sequence of random times a with these properties:
The values of each a are + m or integers; the an decrease to a almost cer-
tainly (that is to say, except on a set null for 6)); and each an reduces (x,, a, )
to a P-chain.
A narrower definition is preferable in some circumstances. An approximate

P-chain is said to be strongly approximate if it is a Markoff chain and if the
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random times am reducing it to a P-chain may be taken as stopping times for
the chain. We recall that a is a stopping time for the random chain (x, a,/)
if for each integer n the set where
generated by sets of the form Ak,r with/ =< n and r in R.
An approximate P-chain differs trivially from a true P-chain if the initial

time a is finite, because a itself reduces the chain to a P-chain provided con-
dition (1.6) remains valid. For most choices of P, however, there are ap-
proximate P-chains defined over spaces of finite mass which cannot be turned
into true P-chains by any random shift in time.
We shall now investigate the effect of reversing the sense of time. If

(x, a, ) is a random chain, then the triple (x’, a’, ’), defined over the same
probability space by

(1.11)

is also a random chain, which we shall term the reversed chain. The chain
(x, a, ) determines a measure on R by the formula

(1.12) v(C) =- f < x(x(n))(P(do),
a= -<t

with x the characteristic function of the set C; the reversed chain clearly
determines the same measure. In discussing either chain, we may suppose
R to be replaced by the set of points s for which n(s) is strictly positive.

THEOREM 1.1. Let (x, a, ) be an approximate P-chain for which the measure
V in (1.12) is finite on finite sets. Then the reversed chain (x’, a’, ’) is an
approximate Q-chain, with Q(s, dr) defined as

(1.13) Q(s, r)

for v( s) 0 and otherwise arbitrary. Moreover, the reversed chain is strongly
approximate if the original chain is so.

Given a subset D of R, take (o) to be - if x(n, ) lies outside D for
all n, otherwise to be the supremum of the n for which x(n, ) belongs to D;
we speak of r as the time chain (x, a, f) leaves D. It never exceeds f, and it
is almost certainly finite or - if (D) is finite, in particular if D is finite.
We shall prove that -r reduces the reversed chain to a Q-chain.
The quantity L(s) will occur in the computation. It vanishes for s out-

side D, and for s in D it is the probability that y(n) R D for 0 < n =< ,,
with (y, 0, ,) a P-chain defined over a probability space of unit mass and
having y(0) identically s.

Consider first a P-chain of the form (x, 0, f), and let be the distribution
measure of x(0). The measure v can then be written P. Given points
r0, r in R, let A be the set in t defined by the conditions

(1.14) A" k -< r < , x(r- j) r. for 0 -< j -< k,
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and let Am be the part of A where r m. Then 5_ is the union of the Am, and

(1.15) Am} Pm_k(rk)P(rk rk_l) P(rl ro)L(ro).

Summed on m these equations yield

(1.16) (P{A} 7(r)P(r, r_) P(r ro)L(ro).

The last equation holds in fact for an arbitrary approximate P-chain
(x, a, t). To see this, consider the random times a giving the chain its
structure of approximate P-chain, let (xn, 0, n) be the associated true P-
chains defined as in (1.10), and let r and 7 be defined in terms of (xn, 0,/).
Clearly, n increases to 7. Also, for almost all and for n great enough,
a.(o) - r(o) coincides with r() and Xn(rn(OJ) j, o) coincides with
x(r() j, o), provided of course r(o) is finite. Thus we obtain (1.16)
for (x, a, ) by writing the equation for (x, 0, ) and passing to the limit.

Equation (1.16) evidently proves that -r reduces the reversed chain
(x’, a’, ’) to a Q-chain. Moreover, -r is a stopping time for the reversed
chain. One now obtains the second sentence of the theorem on letting D
swell to R through an increasing sequence of finite sets, and the third on
remarking that the definition of Markoff chain is symmetric in past and future.
We have in fact proved a little more than the theorem asserts. First,

regarding (x, a, ) as obtained from (x’, a’, f’) by reversing the sense of time,
we see that the random times al giving (x, a,/) its structure of approximate
P-chain may be taken as stopping times for the chain. Next, Q(s, R) cannot
exceed 1 if 7(s) is strictly positive, because Q serves as approximate stationary
transition function for the reversed chain; thus, taking Q(s, dr) to be an
arbitrary measure of unit mass or less whenever 7(s) vanishes, we may suppose
Q to satisfy the analogue of (1.1). Finally, the measure 7 is excessive relative
to P; this statement follows from the preceding observation, or directly from
the definitions without the hypothesis that 7 is finite on finite sets.

It is easy to see that a positive function on R is excessive relative to P
if and only if the sequence f(x(n)) is a supermartingale for every choice of
(x, a, ) as a P-chain. Here supermartingale means lower semimartingale
in the sense of [3], but with infinite measure space and infinite expectations
permitted, while f(x(n) stands for + if n < a and for zero if n > t. The
f(x(n)) may not form a supermartingale if (x, a, ) is only an approximate
P-chain, but the martingale convergence theorems remain valid, as the next
two propositions show.

PROIOSITION 1.2.
proximate P-chain.
to (o).

Let f be a finite excessive function and (x, a, ) an ap-
Then f(x(n, o) almost certainly converges as n increases

Here and later, convergence means that the sequence reaches its final
value if () is finite, and converges in the usual sense to a finite limit if
(w) is infinite.
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The assertion follows from a standard proposition in martingale theory.
Let reduce the chain to a true P-chain (y, 0, ), and let (y’, O, ,),’) be the
latter chain restricted to the set in the measure space where y(0) belongs to
some given finite set C. Thus (y’, O, ’) is a P-chain defined over a measure
space 2’ of finite mass, which we may suppose to be 1. Over 2’ define ran-
dom variables by taking ()n (OJ) to be f(y’ (n, ) if n -< ’ (0), or zero if
n > .),’(). The then form a positive lower semimartingale, in the usual
sense of the words, so that () almost certainly converges to a finite limit
as n increases. We obtain the proposition on letting C swell to R and then
letting decrease to .
PROPOSITION 1.3. Let f =-- Gg, with g a positive function, and let (x, a, )

be an approximate P-chain. If R g dv is finite, with defined by (1.12), then
f(x(n, o)) almost certainly converges as n decreases to a().

We have already noted that Gg is excessive, since g is positive. The propo-
sition can be extended to more general excessive functions, but the condition
of finiteness then becomes more complicated.

In the proof, again let reduce (x, , ) to a true P-chain (y, 0, ,), defined
on the subset 2" of the measure space, and let be the distribution measure of
y(0) on R. Then

f.f(y(O) )5)(do) fRf d, fR Gg &, <- f, g dv,

because dominates the measure G, as one sees from the definitions. Denote
by the number of downcrossings of the interval [c, d] by the supermartingale
f(y(n)). On making the same reductions as in the preceding proof and then
applying a standard martingale argument, we obtain

(1.17) f. (0)(P(do)-<
d re. f(Y(O) )5)(dw) <-- d f

The inequality on which this is based is a little sharper than the one in [3;
page 316], because we are dealing with a positive supermartingale, but the
proof given in [3] requires only minor changes. Now let a decrease to .
In the limit we obtain the inequality with 2" replaced by the full measure
space 2 and interpreted as the number of downcrossings of [c, d] by the
random sequence f(x(n)), with a --< n -< . Thus, almost certainly the
number of downcrossings is finite for every rational interval [c, d], so that
the sequence almost certainly has a limit as n decreases to a. The finiteness
of the limit also follows from (1.17), written with 2 replacing 2". To see
this, denote by 2 the set on which the upper limit of f(x(n)) is infinite;
the value of at a point of is at least 1 for c and d sufficiently great; so,
taking d to be 2c and letting c increase,, we see from (1.17) that the measure
of 12 must vanish.



MARKOFF CHAINS AND MARTIN BOUNDARIES 319

As an illustration of later arguments, we establish the inequality

(1.18) G(r, s) <= G(s, s),

which holds for all points of R. Consider a true P-chain (x, O, ) starting at
r, that is to say, x(0) is identically r and the underlying measure space 2
has unit mass. Take r() to be the least n for which x(n, ) s, or to be
+ if there is no such n. As remarked after Theorem 1.1, the random time
r reduces the chain to a P-chain (y, 0, /), defined over the set 2’ where is
finite and having y(0) identically s. Now, by the definition of G and r,

G(r, s) f ,
O<=n <__

x(x(n) )(doo)

(1.19)
r<__n__<

x(y(n))((do) P{2’}G(s, s),

where x is the characteristic function of the set reduced to s. Thus, (1.18)
merely states that the mass of T cannot exceed one.
The preceding results will be completed in 5, in which we prove the exist-

ence of approximate P-chains associated with excessive measures.
In the remainder of the paper the field 53 of the underlying measure space

(2, 53, (e) will be assumed complete for the measure (p, and occasionally the
space will be restricted further by requiring the existence of conditional prob-
ability distributions. A random quantity is a function defined up to a null
set on 2 and satisfying some obvious condition of measurability. We shall
often employ the notation and language of probability theory, usually ar-
ranging matters so that the underlying measure space has unit mass. It
should be noted, however, that a conditional expectation { fi;} has a sensible
interpretation even on a space of infinite mass, provided the space is the
union of countably many sets of finite measure which belong to ff and on
which is integrable; this being so, there is seldom a real need for the reduc-
tion to a space of unit mass. We shall also use, without particular mention,
the strong Markoff property; it is treated fully in [1], nd it is nearly trivial
in our applications, since both space and time are countable.

2. The Martin exit boundary
Although we continue to regard R and P as basic, we shall consider with

profit certain related spaces and transition functions first introduced by
Brelot and Feller. Given a positive function h, defined on R and excessive
relative to P, denote by Rh the set where h is finite and strictly positive, and
denote by Ph the function

1 f P(r, ds)h(s), r eR, C c(2.1) P(r, C) - (r) c Ra"
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Clearly, ph is a transition function on Rh since it satisfies the analogue of
(1.1). Also, R and P reduce to R and P if h is a strictly positive constant.
We speak of h-excessive functions or measures, meaning those defined on

R and excessive relative to P. Similarly, an h-chain is a Markoff chain
having Rh for state space and P for transition function. The kernels P
and G are defined as in (1.4) and (1.5) they may also be expressed as

(2.2) 1P (r, ds) (r) P(r, ds)h(s),

1(2.3) G(r, ds) (r) G(r, ds)h(s),

with r and s restricted to R.
A quantity defined in terms of h, Rh, P usually bears h as superscript. The

superscript is often omitted from a quantity when h is a strictly positive
constant, for then 1, R, P may be taken as the reference triple; such quantities
are regarded as absolute, and it is sometimes convenient to express relative
quantities in terms of them, as in the preceding display. Of course, these
conventions only simplify the notation; any triple /, Rk, Pk may be taken
as the absolute in the discussion, the function h occurring in the formulas
then being ]-excessive and P being defined accordingly.
From now on we suppose G(r, s) to be finite for all r and s. (This assump-

tion is made only to simplify the exposition; one can treat persistent states
either by the method of [5] or by altering P slightly.) Then Gh(r, s) is finite
for all r and s in Rh, according to (2.3), and there are no persistent states
for h-chains; consequently, almost all paths of an approximate h-chain meet
a given finite set only finitely many times.
We also fix a reference measure , on R satisfying

(2.4) /(R) < , ,(r) > 0 for r in R,

and from now on we consider only excessive functions that are integrable for,, hence finite everywhere. If h is such a function, h denotes the finite
strictly positive measure h.d, on R. Note that P(r, s) vanishes, hence
G(r, s) also, if s lies in R and r outside R.
The h-excessive function G( s) is integrable for h for every s in R ac-

cording to (1.18). The measure -G, denoted " from now on, is therefore
strictly positive and finite on finite subsets of Rh. We use this measure to
introduce the functions

G(r, s) 1 K(r, s),(2.5) K(r, s) =- (s) h(r)

which are defined on R X R and which satisfy

(2.6) f ,(dr)K(r, s) 1.
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Clearly, the function Kh(r, is bounded by 1/h(r). A probabilistic inter-
pretation of and K will be given later in this section.
We shall now complete the space Rh, following Martin and Doob. First

choose a metric dl on R under which the completion of R is the Alexandroff
compactification of R, and denote by d the restriction of dl to Rh. Next
choose a strictly positive function on R so that ’. (r) is finite, and set

(2.7)
K(r, s) Kh(r, t) l(r)’(dr)

JR K(r, s) K(r, t) l(r),(dr)

for s and in R. The equality of the integrals is a consequence of relation
(2.5) and the vanishing of K(r, s) for s in R and r outside R; it ensures that
d is just the restriction of d2 to Rh. The function d is a finite metric on R,
by (2.6).
A sequence (s) is a Cauchy sequence for d if and only if it tends to infinity

or else is ultimately constant. It is a Cauchy sequence for d if and only if
the K(r, Sn) form a Cauchy sequence of real numbers for each fixed r in R.
This assertion is true only because the function appears in the integral;
fortunately, the alternate description of Cauchy sequences shows the choice
of to be irrelevant.
Now take *R to be the completion of R under the metric d d. Clearly,

*Rh is compact because of the description of convergence in the second metric;
the topology of *R induces the discrete topology on R because of the presence
of the first metric; and Rh is open dense in *R. The Martin exit boundary
(relative to 5,) is by definition the compact set *R Rh, denoted by B.
The definitions have been phrased so that R may be considered a subspace

of the metric space R. Therefore *R and B may be considered subspaces
of *R and B, which are obtained on taking h to be a strictly positive constant.

Let be a point of B. The formula

(2.8) Kh(r, ) =- lims K(r, s), s R,
defines a function K( ) which is h-excessive, as one sees by a passage to
the limit, and which satisfies

(2.9) f., ,(r)K(r, ) 1.

is continuous on the product space Rh X *R, andAs now defined, K(
also

1(2.10) K(r’ ) (r) K(r, ), r e R, e *R,
where K(., ), defined on R, is obtained by taking h to be a strictly positive
constant. Note that K(., ) vanishes on R Rh if e *R.



The equations

(2.11) Gh PhG G GP Po,
where the products denote composition of transformations, show that G( s)
determines the point s, and G(r, the point r. Therefore, a point s of Ra

is determined by Kh( s), and of course by definition a point of Ba is de-
termined by K( ., ). On the other hand, a point of Rh and a point of Ba

may give rise to the same function.
The process of completing R introduces points irrelevant for h-chains,

and we must now single out the pertinent subset of *R.
A finite h-excessive function g is said to be extreme if the equation

g gl W g, with gl and g. both h-excessive, implies that g and g. are con-
stant multiples of g. This notion is really independent of h, provided h is
finite, in the sense that g is extreme if and only if the excessive function defined
as gh on R and as zero on R R is extreme relative to the basic triple
1, R, P. Note also that g is h-concordant if and only if gh, extended trivially,
is concordant.
Denote by B the set of points in B for which the function K( ) is

h-concordant, is extreme as an h-excessive function, and satisfies

(2.12) fRh "h(dr)Ka(r’ ) ------ fR ,(dr)K(r, ) 1.

(The integrals coincide, by (2.5) and a subsequent remark.) According
to the preceding paragraph, B is precisely Be n Bh, and moreover it is a
Borel subset of B. The importance of B is shown by the following theorem.

THEOnEM 2.1. Let h be excessive and integrable for ,, and let (x, a, ) be
an approximate h-chain. Then, almost certainly, either is finite and x()
a point of R, or else is infinite and x(n) converges in the topology of *Rh to
a point of B as n

By definition x() almost certainly is a point of R if is finite; and x(n)
almost certainly approaches the boundary B if is infinite, since there are
no persistent states. Thus, in view of the definition of the topology, we have
only to establish convergence of the sequence of functions K( ., x(n)) as n
increases to/ and to determine the nature of the limit function. Also, by
an argument familiar from 1, it is enough to prove the theorem for one true
h-chain (x, 0, f) such that (P/x(0) r} is strictly positive for each r in R.
We choose an h-chain (x, 0, ) having h for initial distribution measure.

Then not only is 5,h(r) strictly positive for all r in Rh, but the chain is related
to the measure by a formula like (1.12), so that computations become
especially simple. The reversed chain has

P(r, s)(2.13) Q(s, dr) a(dr)
(s)
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for approximate stationary transition function, according to Theorem 1.1,
and the analogue of (1.4) gives

(2.14) Q,(s, dr) ’t’(dr)

Hence the kernel

(2.15) g(s, dr) -- (dr) G(r’ s)

P(r,s)

(dr)K(r, s)

bears the same relation to Q that G bears to P. Therefore, by Proposition
1.3 applied to the reversed chain, H(x(n), r) almost certainly converges as n
increases to . The similar convergence of K(r, x(n)) follows immediately,
by (2.15) and the strict positivity of (r).

For the moment let (x, a,/) be again an arbitrary approximate h-chain.
The preceding paragraphs imply that K(r, x(n)) almost certainly converges
as n increases to . Thus the formula

(2.16) x() =-- limn x(n)

defines a random point of *R, since the limit almost certainly exists in the
topology of *R if is infinite, and the limit is attained if is finite; this defi-
nition agrees with the original meaning of x() for finite. One sees, by a
passage to the limit, that x(f) is measurable relative to the topological Borel
field of *R and the field of the measure space underlying the chain, provided
one allows as we do an exceptional set of measure zero in defining a random
quantity. We shall sometimes speak of x() as the final state of the chain.
Clearly, x() almost certainly belongs to B if is infinite; but we have not
proved it then lies in B. This last step in proving the theorem will be car-
ried out in the middle of the next section; meanwhile we shall develop the
consequences of what has already been established.
We revert to the h-chain (x, 0, f) having , for initial distribution measure.

Denote by # the distribution measure of x() on *R,
(2.17) (C) ({x(f) e C}, C c *R,

h hand by R or , its restriction to R or B. Often, thinking of *R as a sub-
space of *R, we shall consider these measures defined on *R, supposing them
extended by the null measure. The measure , obtained on taking h to be a
strictly positive constant, will be given a special role in order to simplify the
notation; the reader should note that in many formulas the pair 1, h may be
replaced by a more general pair.
Sometimes we shall use for a point of *R not necessarily confined to B,

but we shall continue using r and s for points of R.
The measure K (r, ) (d), denoted temporarily, has a meaning similar

to that of . Indeed, taking r to be the time the h-chain (x, 0, ) with
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initial measure ,h leaves the finite set D, we have

({r >= 0, x(r) six(0)} Gh(x(O), s)L(s)

(2.18) K(x(O), s)(s)L(s)
K(x(0), s){ _>_ 0, x()

by using (1.16) twice, first for (x, 0, ) with x(0) held fast, and then for the
unconditioned chain. As D swells to R the random point x(r) almost cer-
tainly approaches x(), so that its distribution measure approaches in the
sense of weak convergence of measures on the compactum *R. Thus, passing
to the limit gives

(2.19) {x() e C x(0) fc Kh(x(O)’ i)t(d)’ C *R,
hfor every Borel set C in *R. This amounts to saying t is the distribution

measure of the final state of a true h-chain that starts at the point r and is
defined over a measure space of unit mass.

In order to remain in the framework of probability theory one may replace
h by a multiple of itself to make of unit mass. The measure #h then has

uni.t mass also. Without this replacement, has the same mass as , but
the measures K(r, )t(d) continue to have unit mass.

hThere are more explicit expressions of . Taking D to be Rh in (1.16)
gives

(2.20) (P{ < , x() six(O)} G(x(O), s)[1 P(s, R)],
since L(s) then reduces to the factor in square brackets. After replacing
x(0) by r and using (2.3), we obtain

(2.21) h(r)t(s) g(r, s)t(s) G(r, s)[h(s) Ph.(s)],
ha formula for the restriction of t to R. The second equation is valid for all

points of R, because the two members vanish unless r and s lie in Rh.
The restriction to B of course cannot be expressed similarly. However,

(2.22) P(r, ds) -- K(r, )(d), n --, ,
in the sense of weak convergence of measures on *R. The verification is
trivial, since P(r, C) is just the probability that an h-chain starting at r
lasts n steps at least and finds itself in C at the moment n. We shall ordi-
narily use (2.22) in the form

h(2.23) P(r, ds)h(s) -- K(r, )t,(d), n -- ,
which is valid for all r in R.

In deriving (2.19) one can avoid using the topology of *R by turning to
the underlying measure space, as we do in 4 in a similar situation.
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3. The Martin representation
A few more properties of the measures h are needed in completing the

proof of Theorem 2.1. In (2.19) replace C by the whole space *Rh, write r
for x (0), and multiply through by h(r). The result is

(3.1) h(r) f K(r, )(d), r e R,
j,R

according to (2.10). The equation derived in this way for r in R turns out
to be valid on all R, because both members vanish outside R. Comparing
(2.9) with the equation obtained from (3.1) by integrating with respect to
"(dr), we find that (2.12) holds for all in *R, excepting a set null for h.
We shall sometimes write (h) for , as in the next proposition.

PROPOSiTiON 3.1. Let h, hi, h2 be excessive and integrable for
be a positive number. Then

(3.2) (hl + h) (h) + (h),

(3.3)

(3.4) ,(hl) >= p,(h2) /f h h.

The statements follow at once from relations (2.21) and (2.23), integrated
with respect to (dr), and from the first paragraph of this section. A more
instructive proof goes the following way. Choose an hi-chain (x, 0, ) de-
fined over a space and having hi d, for initial distribution measure. Take
2 to be the set-theoretic sum of 1 and 2, take 5 to be the field generated
by the sets in ( or in ., and take ( to be the obvious measure determined
by (1 and (.. Next, define the triple (x, 0, ) over 2 by setting

() (), x(n, o) xi(n, o), e .
This triple is an (h -t- h)-chain with (h
easy computation shows. Equation (3.2) follows immediately from this con-
struction and the meaning of . The other two relations are proved simi-
larly, the second trivially and the third by reduction to (3.2) for concordant
functions.
We shall now complete the proof of Theorem 2.1. Consider again the

h-chain (x, 0, ) defined over 2 and having / for initial measure. By the
very definition of h-chain, the function

(3.5) K(r, ),(d)

is h-concordant as a function of r on Rh. Consequently K( ) is h-con-
cordant for every in B, excepting a set null for .

In proving that K(
to have a conditional distribution relative to x(), so that one may speak of
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the random chain (x, O, ) with x(f) held fast. (The assumption can always
be satisfied by properly choosing the underlying measure space 2, and we
need to consider only one sufficiently general chain.) Let C be any Borel set
in *Rh, and let A be the set in 2 where

(3.6) >- n, x(i) ri for 0 =< i-< n, x() eC.

Using the Markoff property and (2.19) we find

(3.7)
’h(ro)P(ro, rl) fP (rn-, r) K(r, )(d)

"(ro)P(ro, r) P(rn-1, rn) fc K(r, )h(d),

the second equality being justified by (2.1) and (2.10). Consequently, the
conditional probability of A given x() has the expression

(3.8) f(ro)P(ro, rl) P(rn_ r,)K(r x() ),

or, with ] written momentarily for K(., x(f)) and (2.1) used several times,
the equivalent expression

(3.9) ,k(ro)Pk(ro, r) Pk(rn_ rn).

Thus the chain (x, 0, ) with x() held fast is almost certainly a K(., x() )-
chain. This fact, together with the almost certain convergence of x(n) to
x(), implies that the measure associated with the excessive function
K(., x()) almost certainly is the unit mass placed at x().

Consider now any excessive function ]c integrable for ,, and suppose to
be located at a single point of *R. If/c is the sum of two excessive functions
u and v, then and must be concentrated at , according to (3.2), so that
u and v are multiples of ]c, which must therefore be extreme. In particular,
reverting to the chain (x, 0, ), we see that K(., x()) almost certainly is
extreme as an excessive function; consequently K( x()) almost certainly
is extreme as an h-excessive function, by the remark made immediately after
the definition of this notion.
The preceding three paragraphs and the first paragraph of the section show

that x() almost certainly belongs to Ru B. The proof of Theorem 2.1
is now complete.
We have in fact proved a little more than the theorem, for K(., ) was

shown to be extreme for every in *R, excepting a set which is null for every
measure . Let us take h to be K(., s) for some s in R. On comparing
(2.11) with (2.21), taking r to be s, we find that (s) is strictly positive. So
K(., s) is an extreme excessive function for each s in R.
The functions K(-, ) corresponding to points of R u Be are therefore

extreme excessive functions satisfying (2.12), and to distinct points cor-
respond distinct functions because of (2.11), the subsequent remarks, and the
exclusion from Be of points yielding functions that are not concordant.
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THEOREM 3.2. The excessive functions h integrable for . stand in one-one
correspondence with the positive bounded Borel measures , on R t B the cor-
respondence being

(3.10) h f K(., )(d).
tBa

Indeed, , is the measure , concentrated on R t B Moreover, h is concordant
if and only if is concentrated on the boundary B

Cleurly formula (3.10) defines an excessive function h whenever is one of
the measures described, and by (2.11) the function h is concordant if and
only if is concentrated on B. If h is excessive nd integrable, on the other
hand, equation (3.1) and Theorem 2.1 ensure the existence of at least one
representation (3.10), with the measure . Only the unique determination
of by h remains to be proved. All proofs rest on the observation preceding
the theorem, that K(., ) ranges over set of distinct excessive functions as
ranges oer R u B. We shall sketch one proof in the spirit of the paper.
Suppose first that h is K(-, ), with in R u Be. Then must be the

unit mass at , because h is extreme. Hence h is the unit mass at , by (3.1),
and consequently every h-chain almost certainly has for final state.
Now consider a general h, with representation (3.10). We shall construct

an h-chain which exhibits P as h. The underlying space 2 is the set of all
sequences c0 (r0, rl, r), with d a positive integer or -{-, and rn in
R for n finite or in R u Be for n infinite; the Borel field is the obvious one,
generated by sets defined by finitely many conditions on the length d and the
individual terms r. Let A be the set of sequences for which d is not less
than the integer n, the terms r0, r have prescribed values, and the
final term r lies in C. We define (P{ A} by equation (3.7), with h replaced
by P. One easily verifies that this prescription determines a measure (P on (.

Now take (x, 0, f) to be the identity function on 2; that is to say, x(n, ) is
r and fl() is d. Clearly, (x, 0, fl) is an h-chain having for initial measure.
Moreover, the chain has a conditional distribution relative to x(), and the
conditional distribution can be taken without exception to be that of a
K(., x())-chain; these assertions follow immediately from the construction.
In view of the paragraph above, the definition of x() as r is consistent with
the definition (2.16) as the limit of x(n). Matters being so, x() has for
distribution measure by construction and t for distribution measure by
definition; so the two measures coincide.

Let us consider more prticularly the representation of bounded con-
cordant function h. The measure is concentrated on B, and by (3.4) it is
dominated by some multiple of the measure associated with the excessive
function 1. So we may write

(3.11) h f K(., )f(),(d),

with f a version of the Radon-Nikodym derivative of # relative to .
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4. Boundary values
The ultimate behavior of an approximate h-chain is completely summarized

by its final state, in a sense which we proceed to explain.
The sample space for random chains on R is the set of 11 triples (y, c, d),

with c either - or an integer, d either + or an integer not less than c,
and y a function ]c -- y(k) having values in R and defined for integers ]

satisfying c =< ] =< d. The sample space is provided with a field of measurable
sets, generated by the sets defined by a pair of conditions c =< n =< d and
y(n) r, with n a given integer and r point of R. Of course, it is often
advantageous to complete the field under some prescribed measure.

Final and initial sets in the sample space are of especial interest. A final
set C is one which is measurable and which satisfies the following two con-
ditions"

(4.1) The triple (y, c, d) belongs to C if and only if (y*, c 1, d 1) does
so; here y*(]c) y(]c 1).

(4.2) The triple (y, c, d) belongs to C if and only if (y’, c’, d) does so; here
c’ is any integer satisfying c <= c’ <= d, and y’ is the restriction of y.

The first condition expresses the invariance of C under the shift transformation
of the sample space; the second, the irrelevance of all but the ultimate be-
havior of an element of the sample space. Initial sets are defined similarly.
The final sets form a Borel field closely related to h-excessive functions.

Given a positive function f on the sample space, measurable over the final
sets, define a function g on R by setting

(4.3) g(r) {f(x, O, )},
with (x, 0, ) a true h-chain starting at r and defined over a space 2 of unit
mass. (Here we interpret (x, 0, ) us function from 2 to the sample space,
and f(x, O, ) as the composition of functions; later we shall sometimes write
(x, 0, ) for the element (x(0), 0, ()) of the sample space in order to
simplify notation.) The function g is easily seen to be h-excessive, even
h-concordant if f is bounded and vanishes at all elements (y, c, d) for which d
is finite.

Suppose h to be excessive and integrable for the reference measure ,. Given
an approximate h-chain (x, , ), defined over (2, 5, (), we denote by 5 the
least subfield of 5 which is complete under 5 and which contains every set
defined by condition (x, a, ) C, with C final set, nd we denote by qt()
the completed subfield of qt generated by the final state x() of the chain.
The opening sentence of the section my now be expressed more precisely:

PROPOSITION 4.1. If (X, a,/) is an approximate h-chain, with h excessive and
integrable for /, then the fields 6 and 6() coincide.

Clearly 6 includes 6(). On the other hand, a set in 6 on which is
finite must belong to 6(), since it evidently differs only by a null set from
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one defined by conditions on the final state. We are left with proving that a
function is measurable over 6() if it is measurable over 6 and vanishes
where t is finite.
We shall first complete the proof supposing h to be the constant 1 and

(x, 0, ) to be a true 1-chain having , for initial distribution measure. We
also make the following conventions, which involve no further loss of gener-
ality and permit the free use of the language of probability: The measure ,
has unit mass, so also the space 2; the expression x(n, ) stands for b if n
exceeds (), with b an object not in R; and an excessive function has the
value zero at b.

Consider a bounded positive function which is measurable over 6 and
vanishes where tS is finite. There is a concordant function g satisfying

(4.4) (x(n))

as one sees from the. fourth paragraph of the section. This relation deter-
mines g, since x(0) takes on every possible value with strictly positive proba-
bility. Conversely, g determines almost everywhere, since

limn g(x(n)) limn_ g/b x(n)}

(4.5) lim g{ x(0), x(n)}

a{ x(0), x(), ...} ,
the first step being iustified by the Markoff property, the second by martingale
theory, the third by the measurability of over the field generated by all
the x(n ).

If g is bounded concordant, o1 the other hand, then the g(x(n)) form a

bounded martingale and g(x(n)) tends almost certainly to a bounded limit
function satisfying (4.4). Moreover, is measurable over 6 and null
where is finite, because g is concordant.

Let g and be such a pair. According to (2.19) with 1 for h and to (3.11)
with g for h, there is a bounded Borel measurable function f on *R, vanishing
outside B, such that

g(x(n)) g{f(x()) x(n)}.

By martingale theory and the Markoff property again,

f(x()) g{f(x()) Ix(0), x(1),...}

(4.7) limn g{f(x(fl) Ix(O), x(n)}

limn_ g{f(x(fl)) x(n)}.

On comparing the last four equations we find that coincides with f(x()).
So is certainly measurable over 6x(s), and the proposition holds for the
chain (x, 0, fl).
One next establishes the proposition for a true 1-chain starting at a given
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point of R by considering the chain (x, 0, fl) with the initial point held fast;
then for every true 1-chain; then for every approximate 1-chain by approxi-
mating with true 1-chains. Finally, one obtains the full assertion of the
proposition on replacing P by P and R by R.
During the proof it was shown that g(x(n)) almost certainly approaches

(x()). In this statement, too, (x, 0, ) may obviously be replaced by any
approximate 1-chain. The next theorem extends this result.

THEOREM 4.2. Let h be concordant and integrable for ,, let f be the Radon-
Niodym derivative of relative to #, and let (x, , fl) be an approximate
1-chain. Then, as n increases, h(x(n)) almost certainly approaches f(x())
wherever fl is infinite.

It suffices to prove the theorem for the 1-chain (x, O, ) having , for initial
distribution measure; the measure s, one will recall, is the restriction to B
of the distribution measure of the final state of this chain.

Let denote the excessive function 1 W h. The function h/] is bounded
k-concordant and integrable for , so it has a representation

h f K(. )g()(d)

which is the relative version of (3.11) with k replacing 1. Moreover, by the
relative version of the remark preceding the theorem, h (x’ (n))/k (x’ (n))
almost certainly approaches g(x’(’)) wherever ’ is infinite, provided
(x’, 0, fl’) is a -chain. We now make several observations.
One may take (x, 0, ’) to be the set-theoretic sum of (x, 0, ) and some

other chain, as in the proof of Proposition 3.1.
The measure k is the sum of and . Multiplying both members of (4.8)

by ] yields a representation of h that must be the same as (3.11), according
to Theorem 3.2. Since g d -t- g d therefore coincides with f d#s, the
function g must coincide with f/(1 W f) except on a set null for , and with
1 except on a set null for the singular part of relative to s.
The h(x(n) form a positive martingale with finite expectations h d,, pro-

vided one interprets h(x(n) as zero for n greater than . So h(x(n) almost
certainly remains bounded as n increases.
These remarks taken together evidently prove the theorem. Incidentally,

the theorem remains valid for h only excessive and integrable for /. In verifi-
cation, one notes that if k is a finite function of the form

(4.9) k(r) fR K(r, s)(ds),

with a positive measure, then ]c(x(n) approaches zero as n becomes infinite,
because has an interpretation similar to the one given for G in (1.19).
We study next the resolutivity of boundary functions, using the arguments

of Brelot with the simplifications made possible by the results we have already
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obtained. In the remainder of the section functions on *R may be of variable
sign, but of course excessive or concordant functions are understood to be
positive. The reference measure- is fixed, and is the distribution measure
of the final state of a 1-chain (x, 0, ) having , for initial distribution.
Given a function u on R, denote by u* the function on B defined as

(4.10) u*() infv supr u(r),

where U ranges over the neighborhoods of in the topology of *R, and r
ranges over the points of U n R. The function u, is defined similarly as the
inferior limit on approach to the boundary.

PROPOSITION 4.3. If a function u on R satisfies the conditions

(4.11) u, >- O, u >= Pu > --,
then it is positive, and therefore excessive.

Implicit in (4.11) is the hypothesis that Pu is well-defined, being either
+ or finite. In order to argue by contradiction, suppose u were some-
where strictly negative. Then u would attain its minimum at some point r0,

by the first part of (4.11) and the compactness of *R and B. Since u(ro)
dominates Pn u.(r0), as one sees from the second part of (4.11), the measure
Pn(r0, ds) necessarily would have unit mass and would be concentrated on
the set where u takes on its minimum. This set would therefore extend to the
boundary of R, because as n increases Pn(r0, s) approaches zero for each s.
So, finally, u. would take on the strictly negative value u(ro), contradicting
the first part of (4.11).

PROPOSITION 4.4. If tC is excessive, then R k d’ dominates fB k. dtB
We assume j"/ d, to be finite, the alternative being trivial. Consider the

l-chain (x, 0, /) having , for initial distribution measure. The random
variables k(x(n)) form a positive supermartingale with finite expectations,
provided one understands/c(x(n)) to be zero for n exceeding . Thus, after
extending k. to *R so as to vanish on R, we have

(4.12)
g{/c(x(O))} >__ g {lim/(x(n))}.

JB

The last two steps are valid because x(n) almost certainly approaches x()
wherever is infinite and because k. is Borel measurable, being lower semi-
continuous on B.

Given a subset E of *R measurable for #, denote by pE(r) the probability
that a 1-chain starting at r has at least one of its states in E, perhaps the
final one. The function pE so defined on R is clearly excessive, bounded by 1
and constantly 1 on E n R Just as clearly, p + pF dominates PuF, and
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p dominates p if F includes E. If c is strictly positive, there is a neighbor-
hood V of E such that

f (p- p)d, < c.(4.13)

In verifying this assertion, we consider again the l-chain (x, 0,
for initial distribution measure. Suppose V runs through such a sequence
that V R decreases to E a R and t,(V a B) decreases to t,(E a B).
The integral in (4.13) is the probability that some term in x(0),
belongs to V minus the probability that some term belongs to E; it therefore
decreases to zero, by the choice of the sequence of neighborhoods and by the
definition of p,.

The function p is concordant if E is a subset of B. It is countably additive
in E if E is restricted to the subsets of B that are measurable for .. The
function p, plays a special role in subsequent arguments. It is the concordant
approximation of the constant 1, which itself is not usually concordant; in
the present treatment the multiples of p. take the place of the constant func-
tions in the standard treatments of resolutivity.

PnOOSTON 4.5. Let E be a subset of B measurable for ,, let x be the char-
acteristic function of E, and let be a strictly positive number. Then there exist
open neighborhoods V of E and W of B E in *R satisfying

(4.14) (p), >__ x, (p,--pw)* _-< x, f (p-pw--
J

The first two conditions are fulfilled for every choice of V and W since p,
for example, has the constant value 1 on V. The relations pB p -t- pB-
and (4.13) together show that the third condition can also be fulfilled.
We proceed to define resolutivity. Given a function f on B, perhaps not

measurable for t., we say that a function u on R is an upper function for
f if u, dominates f and if u has a form cp, g, with c a finite constant and
g excessive; similarly, v is a lower function if f dominates v* and if v has the
form dp, h, with d a finite constant and h excessive. The difference u v
is excessive, by Proposition 4.3; so every upper function dominates every
lower function. The function f is said to be resolutive if the integral
f(u v)dv can be made arbitrarily small by choosing u and v suitably.
Note that finiteness of the integral implies finiteness of flu Ida/and
because u is bounded below and v is bounded above.

If f is resolutive, the infimum (or lower envelope) of the upper functions
coincides with the supremum of the lower functions; this finite intermediate
function will be denoted by L(f).

If f is resolutive and if }, is a constant, then f is resolutive, and L(,f) is
just ),L(f). If f is the sum of fl and f2, both resolutive, then f also is resolu-
rive, and L(f) coincides with L(fl) + L(f2).
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THEOREM 4.6. An arbitrary function on B is resolutive if and only if it is
measurable integrable for tB. If f is resolutive, then

(4.15) L(f) f K(., )f()#(d),

and L(f) coincides with PL(f).

First suppose f resolutive, with upper and lower functions u and v satis-
fying

u cpg, v dpB-h, ] (u- v) d’ < .
The integral being finite, g is integrable for ,; hence g, is integrable for ,,
by Proposition 4.4; so u, is integrable for ,. Similarly, v* also is integrable
for .. Finally

f, (u,- v*)dt,-< f, (u- v), d,-< f, (u- )d/ ,
by Proposition 4.4 applied to the excessive function u v. The measura-
bility and integrability of f follow on letting decrease, since f lies between
u, and v*.
Next suppose f measurable integrable for ,. If f is the characteristic

function of a set in B, then it is resolutive, by Proposition 4.5, and the as-
sertions concerning L(f) follow from (4.13) and (2.19). By linearity, the
theorem holds if f is a finite linear combination of characteristic functions, and
moreover ] f dt, then lies between f u d, and ] v d, for every choice of upper
function u and lower function v. If f is a countable sum f, each f being
positive and assuming only two values (both finite), we choose positive upper
and lower functions u and v for f so that (u v) d/is less than e, the
v having a finite sum e; on taking u to be u we obtain an upper function
for f, by the remark in the preceding sentence, and on taking v to be
v - + v we obtain a lower function; clearly, f (u v) d, can be made
less than 2 by choosing n suitably, so that f is resolutive; and (4.15) holds
because the right member obviously lies between u and v. Now, every positive
integrable function is such a countable sum. Finally, all assertions concerning
an integrable function are proved by writing it as the difference of two positive
integrable functions.

5. The entrance boundary
Our treatment of the entrance boundary rests on the correspondence be-

tween approximate h-chains and h-excessive measures used in proving Theorem
1.1. It is necessary first to recall some results of potential theory.
Fix a sequence of finite sets Dn that increase to R, and denote Dn n Rh by

D. An h-excessive measure v, finite on finite sets, determines a sequence of
finite measures n with the following properties" The measure is concen-
trated on D. The measure v dominates n Gh, and it coincides with the
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Ghlatter on D. The measures increase to v as n increases. Finally, the
sequence () is coherent in the following sense" Construct an h-chain (x, 0, B),
defined over measure space 2 and having Pn for initial distribution measure,
and let r be the time the chain first meets D, for a given m less than n; that
is to say, r is if x(k) never lies in D, and otherwise it is the least k
for which x(k) belongs to D. Then is the distribution measure of the
random point x(r), which is defined over the part of where r is finite.

These statements, which lie a little outside the scope of the paper, are
proved in [7] for a more complicated situation.
An approximate h-chain (x, a, ) determines an h-excessive measure by the

formula

(5.1) y(C) f x(x(}))(d), C c R,
which is only (1.12) repeated for clarity; here x is the characteristic function
of C, and is the underlying measure space of the chain. Suppose v finite on
finite sets. Then, as noted in the proof of Theorem 1.1, the random times
giving the chain its structure of approximate h-chain may be taken to be the
times the chain meets the sets D. When a is chosen so, the corresponding
true h-chain (x, 0, ) has precisely for intial distribution measure, because
the measure assigned to this chain by formula (5.1) aees with onD and
has the form G, the measure being the distribution measure of x(0) and
hence concentrated onD also. Consequently, determines the chain (x, a, )
in the sense that it determines the structure of an approximating sequence of
true h-chains.

It is more important, in the present discussion, that conversely formula
(5.1) yields every h-excessive measure which is finite on finite sets. We shall
therefore sketch a means of assigning canonically to each such measure v an
approximate h-chain (x, a, ) reluted to v by (5.1). The underlying measure
space is the sample space of 4, with the measure determined by the following
construction. Consider the set C of elements (y, c, d) of the sample space
satisfying the conditions

(5.2) c i, d j, y() r for i j,

with i and j given integers and the r points of R. Choose n so great that
all r belong to D, and construct an h-chain (z, 0, e) defined over a measure
space and having for initial distribution the measure on D mentioned
earlier. Let r be the time this chain meets D, for m not exceeding n; thus,
r certainly vanishes, though the other r may be infinite. Next, define
another random chain (z’, 6’, ) over by setting

Z(5.3) ’ - ’ - , () z(+),

on the set in where r, r_ are infinite but r is finite. We now assign
to the set C in the sample space the measure of the set in where the rela-
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tions

(5.4) ’ <= i, ’ >=j, z’(k) rk for i=< ] =<j,

hold. This prescription does not depend on the choice of n, as one easily sees,
and it determines a finitely additive measure on the sample space. One next
extends the measure to a countably additive measure on the sample space by
a straightforward adaptation of Kolmogoroff’s argument; we shall not present
the details, for the proof should be conducted in a more general setting.
Finally, take (x, a, t) to be the identity function on the sample space pro-
vided with the measure described. By construction this chain is evidently
an approximate h-chain satisfying (5.1). We shall speak of it as the chain
canonically associated with and ph. Usually it is not a Markoff chain, but
it has the property that conditional probability distributions exist.
Suppose two approximate h-chains determine h-excessive measures 1 and ..

Then, clearly, the set-theoretic union of the two chains, as defined in the proof
of Proposition 4.1, is an approximate h-chain determining 1 + .. Similarly,
if is determined by an approximate h-chain, then a positive multiple ), is
determined by the same chain, the measure on the underlying space being the
original one multiplied by h. So relation (5.1) is linear in a definite sense.
We shall now complete Rh in order to obtain an entrance boundary. Fix a

strictly positive reference function g, subject to the requirement that Gg be
finite everywhere, and denote by g the function g/h on R. The function
Gg, denoted by Eh from now on, is finite and strictly positive on R. Intro-
duce the measures

(5.5)

which satisfy

K(r, ds) G(r’ ds) K,(r, ds)h(s),

(5.6) fR K(r, ds)ga(s) 1.

In (5.5) the measure K.(r, ds) is the one obtained on taking h to be a strictly
positive constant. Choose a strictly positive function on R so that ti(s)
is finite, and set

h(5.7) d3(r, s) t g*(r’ t) g(s, t) g(t)(t),

thus defining a metric d on Rh. A sequence of points r is a Cauchy sequence
in this metric if and only if the numbers K(r., s) form a Cauchy sequence
for each s in R. Choose also a metric d on R under which the completion of
R is the Alexandroff compactification of R, and denote by d the restriction
of d to R. Finally, complete R under the metric d - d to obtain a com-
pact metric space R. in which Rh is imbedded as a dense open subspace with
the discrete topology. The Martin entrance boundary (relative to g) is the
compact set R R, denoted by A. Just as in 2, the spaces R and A
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may be considered subspaces of R, and A, which are obtained on taking h
to be a strictly positive constant.

Let p be a point of A. The formula

h(5.8) K,(p, C) - limr_,p K(r, C) re

defines an h-excessive measure K(p, ds) which is finite on finite sets and
satisfies relations similar to (2.9) and (2.10). One now defines extreme
h-excessive measures and the subset A of A, following the treatment in 2
of the dual situation. The dual of Theorem 2.1 then takes the following
form.

THEOREM 5.1. Let (x, a, ) be an approximate h-chain, and v the h-excessive
measure assigned to this chain by (5.1). Suppose ga to be integrable for 7. Then,
almost certainly, either a is finite and x(a) a point of R, or else is infinite and
x(n) converges in the topology of R. to a point of A as n -- .
We shall prove the theorem by reducing it to Theorem 2.1.
Clearly, the values of x(n) almost certainly belong to the set S comprising

the points s for which 7(s) is strictly positive. By Theorem 1.1, reversing the
sense of time turns (x, a,/) into a Q-chain, with

p
(5.9) Q(s, dr) (r, s)=-- v(dr), s S.

Now make the definitions of 2, replacing R, P, / by S, Q, g d. The
kernel

G(r, s)(5.10) H(s, dr) =- v(dr)
(s)

replaces G, and

(5.11) L(s, r) H(s, r) K(r, s)

fs H(s, r)g(s)v(ds)

replaces K(r, s). Consequently, the space *S replacing *R may be taken
to be a compact subspace of R, the boundary set corresponding to B then
becoming a subspace of A as one verifies directly from the definitions.
Matters being so, Theorem 2.1 applied to the reversed chain yields Theorem
5.1 at once.
The argument enables one to state and prove the dual of every result ob-

tained in the preceding sections. In particular, every approximate h-chain
satisfying the hypotheses of Theorem 5.1 has a reasonably defined initial state
x(a), and every h-excessive measure for which g is integrable has a canonical
representation as a linear composite of extreme h-excessive measures; the
second assertion follows from our having proved that every such measure i
related by (5.1) to some approximate h-chain.
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The entrance and exit boundaries can be used to decompose an approxi-
mately stationary chain into simpler chains. Let h be an excessive function,
and 7 an excessive measure; we suppose h(r) and 7(r) to be finite for every
point r, deleting some points of R, if necessary, and replacing P, h, 7 by their
restrictions. Construct the approximate h-chain (x, a, ) canonically associ-
ated with ph and the h-excessive measure h dT. The initial behavior of this
chain is determined by h dT, the final behavior by h; any other approximate
h-chain with the same initial and final behavior can be approximated by true
h-chains structurally similar to the ones approximating (x, a, ). The mass
of the chain is the limit of the integral ] h dn, where the n are chosen as in
the beginning of the section so that n G increases to 7. The mass is therefore
the capacity of R relative to h and 7, as defined in [7]; and it vanishes unless
there is some point at which both h and v are strictly positive. In constructing
the boundaries, choose the reference measure /and the reference function g
to make the integrals h d, and g d7 finite. The initial and final states of
the chain are then defined almost certainly and have a ioint distribution
measure (dp, d) on the product of the spaces R u Ae and R u Be.
We say the chain is simple if h is K(., ) for some in R u Be and v is

K.(p, for some p in R Ae, and we denote by (ep. the corresponding meas-
ure on the sample space of chains on R. Such a chain has p for initial state,
for final state.
Evidently the measure on the sample space corresponding to the more

general chain (x, a, ) can be expressed in terms of z (dp, d) and the
provided the measure z is concentrated on the set of pairs (p, ) for which
(P. has finite mass. So (x, a, fl) may be regarded as a linear composite of
simple chains. The measure z, moreover, may be written explicitly in terms
of the measures occurring in the Martin representations of h and .

6. Complements
Several remarks are collected here that would have interrupted the argu-

ment had they been inserted at the relevant points.

(a) Language. I have followed [7] in terminology, rather than [5], because
the discussion has been limited to positive functions and measures except for
an awkward passage in 4. Doob’s more systematic language is preferable in
treating resolutivity or in stating results most generally.

(b) Approximately stationary chains. The notion of approximately station-
ary chain and the technique of the relative theory illuminate the discussion of
potential theory in [7].
The following examples show the need of some form of approximate h-chains

in studying excessive measures and the entrance boundary. Take R to be the
integers and P(r, s) to be p(r s), with.p a probability distribution on the
integers. The measure 7 which attributes unit mass to each integer certainly
is excessive, but it is related by (5.1) to a true 1-chain only if p is concen-
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trated at a single point different from zero. For simplicity, we shall prove this
assertion only under the additional hypotheses that. rp(r) converges abso-
lutely and has the value 1, so that any approximate 1-chain related to 7 by
(5.1) has underlying space of unit mass and initial and terminal times almost
certainly infinite. Suppose p not concentrated at a single point and x a true
1-chain giving rise to 7. Clearly, Pk(r, s) approaches zero uniformly in r and
s as ]c increases. Now, denoting by qn the distributionmeasure of x(n), we
have

(6.1) q,(s) qn_k(r)P(r, s),

and the right member approaches zero as/ increases, because qn- has unit
mass. So q,(s) vanishes for every n and s, an obvious contradiction.
On the other hand, 7 is related by (5.1) to strongly approximate 1-chains

that can be constructed from the chain canonically associated with 7 and P
by suitably shifting the origin of time on the sample paths.
Dropping the additional hypotheses on p, take p(r) to be c/(1 r) with

c chosen to make p a probability distribution. It is likely that then no
strongly approximate 1-chain stands in the relation (5.1) to 7.

(c) Completing the state space. Our completion of R in defining the exit
boundary differs from the one in [5], first in defining K and next in strengthen-
ing the metric. Our definition of K is easily reduced to Doob’s. Simply
adjoin a new point c to R, take P(r, c) to vanish for all r, and take P(c, s)
to be ,(s) for s in R; here we assume the reference measure to have unit mass.
The K defined by Doob, with c replacing 1 and R u/c} replacing S, then
gives our K upon restriction to R.
The following example justifies strengthening the metric. Take R to be

the set comprising the symbol 1 and all finite strings lkl k with the ki
integers; from lkl ] one passes to the point 1]cl Ion ]Cn+ with strictly
positive probability p.(k+l), where p is a probability distribution on the
integers. In the metric of [5], as one verifies easily, the point lk k/c+1
approaches 1]c as k+l tends to infinity in any manner; furthermore, in
the completion of R under this metric, every point of R is a limit point of the
complement of R. The arguments of Brelot and Martin clearly require some
modification to fit such a situation, whereas they apply as they stand to the
space *R defined in 2.
As a matter of record, Doob had in mind a metric like ours but neglected

part of it in preparing his paper for publication. Of course, only the set
R u Be counts in the end, and on this set the metric d. alone may be prefer-
able to d d ;at any rate, the two determine the same mode of approach
to the boundary.

Except for slightly strengthening the metric, I have repeated Doob’s method
of completing R so as not to bewilder the reader. It is now time to remark
that none of our proofs used the topology essentially and that another method
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of completing R vould serve as well. Change the metric d2 to a stronger
metric d. by replacing the function ti by the constant 1 in (2.7). A sequence
(Sn) is a Cauchy sequence for d if and only if the functions K(., s) form a
Cuchy sequence in the space 21() of functions integmble for . Denote by
R’ the completion of R under the metric d W d, by B’ the complement of
R in R’, by B’ the nlogue of B. As sets, B: nd B may be identified, for
they are in nturl one-one correspondence th the sme set of extreme ex-
cessive functions. Although R’ is not compact, all our results hold with *R
replaced by R’. To see this, consider an rbitrry 1-chain (x, a, ). As we
have proved, lmost certainly the function K(., x(n)) converges pointwise to
K(., x()) as n increases to , lmost certainly x(fl) belongs to R u B, nd
lmost certainly

(6.2) f (dr)g(r, x() 1.

These statements, together with the positivity of the functions, ensure that
K(., x(n)) almost certainly converges to K(., x()) in the norm of (),
that is to say, x(n) converges to x() in the topology of R’.

(d) The reference measure. The reference measure may be chosen so that
countably many prescribed finite excessive functions are integrable for ; and
an arbitrary excessive function is usually treated by disregarding the set
where it is infinite. In many circumstances, therefore, one obtains a satis-
factory exit boundary by choosing appropriately. One would sometimes
prefer to speak of a total exit boundary, however, independent of the reference
measures and forming with R topological space. It does not seem possible
to define such a space by patching together the completions *R for all choices
of reference measures, although it is easy to patch together the partial com-
pletions R u B.

Often the reference measure can be chosen to make every finite excessive
function integrable. If, for example, every point of R can be reached from
one point c in finitely many steps, then 2-Pn(C, ds) is such a measure.
When matters are so, one obtains a satisfactory universal completion by
choosing a single reference measure.
The reference measure serves only to define the excessive measure G. So,

instead of singling out , we could single out some excessive measure that is
finite on finite sets. Definitions and proofs would remain about the same, in
view of the beginning paragraphs of 5.

(e) Resolutivity. We have defined what may be called strong resolutivity.
Weak resolutivity is defined, in contrast, by requiring that for each point r
of R the derence u(r) v(r) can be made small by suitable choice of the
upper function u and lower function v. The two notions agree if every finite
excessive measure is integrable for the reference measure. Weak resolutivity
can be treated in the same manner as strong resolutivity, the family of meas-
ures K(r, ),(d) replacing the single measure ..
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(f) Duality. The argument reducing Theorem 5.1 to Theorem 2.1 differs
slightly from the one found in [5] and [6]. Let (x, a, f) be an approximate
h-chain defined over 12 and related to v by (5.1), and define (xn, a,/n) over
2n by momentarily identifying n with 2 and setting

(6.3) an a + n, + n, x(/) x(/ n).

The set-theoretic sum of all these chains, as n ranges over the integers, is then
a true h-chain having for stationary distribution measure. One customarily
uses such chains in deriving initial properties from final properties; they are
not suitable, however, for establishing the duals of some of the results following
Theorem 2.1.
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