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Introduction

Recently, E. H. Brown proved that the homology of a fibre space can be
computed from a chain complex which is the tensor product of the chains of
the base and those of the fibre, the differential operator being a relatively
simple modification of the one for the corresponding product space; cf. [6].
Brown proves his theorem for fibre spaces in the sense of Hurewicz, and

uses the associated techniques.
A recent paper, [5], shows that, for all purposes of homotopy theory, the

chain complex of any fibre space in the sense of Serre can be replaced by a
"twisted cartesian product". Thus it seemed immediately that the context
of semisimplicial complexes and twisted cartesian products was a natural one
for Brown’s theorem; and in fact it was found that both his theorem and the
proof he gave for it could be adapted to this context. The present paper is
devoted to this adaptation.
The following remark may be of interest" The existence of some differential

for the homology of the total space on the tensor product of base chains by
fibre chains follows almost immediately from an (unpublished) lemma of H.
Cartan, the proof of which is simple. By its very generality, however, this
lemma does not seem to enable one to determine the very special form of the
differential given by Brown.
The last section of this paper gives a somewhat generalized version of a

theorem of Hurewicz and Fadell [7]; this theorem can be proved more directly
in the present context by using the map f of Eilenberg and Mac Lane (cf.
Section 5 below) for a direct comparison of the spectral sequence of the
tensor product (with the "usual" differential) and the twisted cartesian
product.
The formulation of the algebraic material in Section 2, in particular the use

of the differential operator in Horn (A, C), follows a suggestion of J. C.
Moore.

I am greatly indebted to E. H. Brown for letting me see a manuscript of
his paper.

1. Algebraic preliminaries
We fix, once and for all, a commutative ring A with unit; "module" will

mean "A-module". If A, B are modules, we write A (R) B, Horn (A, B) for
A (R)B, Hom(A, B).
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A sequence {An} of modules, i.e., the assignment to each integer n of a
module An, is called a graduated module A; a e A means a e An for some n,
called the dimension of a; n dim a. If A, B are graduated modules, the
graduated module A (R) B is defined by

(A (R) B)n +=nA (R) B
a homomorphism f {fk} :A -- B is a sequence of homomorphisms

f:A B+
for a fixed n, called the dimension of f; Horn (A, B) is the graduated module
whose n-dimensional component is the module of n-dimensional homo-
morphisms f A -- B.

Let f e Horn (A, B), g e Horn (C, D), and let A, B, C, D be graduated.
We define

by
f(R) geHom (A (R) C,B (R)D)

(f (R) g) (a (R) c) (-1) tP(fa (R) gc)

if dimg t, dima p.
A graduated differential module is a graduated module A with a homo-

morphism d:A A such that dd 0 and dA, A_I.
If A, B are graduated differential modules, we turn A (R) B into a gradu-

ated differential module by the usual definition which, in our notation, can
be written

d=d(R) 1+1 (R)d.

Similarly we turn Hom (A, B) into a differential module by the definition

(df) (a) g(f(a) at- (- 1)8+lf(g(a)

if dim f s. In order to avoid ambiguities, the composition of f and d will
be written d f. Thus df d f -4- fd; we do not write the composition sign
where no ambiguity can arise.
A graduated module C will be called an algebra if it has an associa$ive product, i.e., a homomorphism of dimension zero

:C @ C--C
such that

(1 (R) q) ( (R) 1):C (R) C (R) C--C.

The algebra C will be said to operate on a graduated module B if there
is an operation r, i.e., a homomorphism of dimension zero

r:C (R) B---.B
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such that the following diagram commutes"

C(R)C(R)B (R)1 C(R)B

T
C(R)B B,

T( (R) i) (1 (R) ).

An algebra is a module operating on itself.
A graduated module A will be called a coalgebra if it has an associative co-

product h, i.e., a homomorphism of dimension zero :A -- A (R) A such that

( (R) 1) (1 (R)):A--A (R) A (R) A.

If C, A are differential modules, and if , h are admissible, i.e., if de Cd,
Cd de, then we call C, A a differential algebra and coalgebra, respectively.

If B is a differential module, we shall also require of the operation r that
dr rd.

2. Cap and cup products
Let A be a differential coalgebra with coproduct b, and let C, B be differ-

ential modules. We define

0:Hom(A,C) (R) A (R) B--.A (R) C(R) B
by

O(f(R) a (R) b) (1 (R)f(R) 1)(b (R) 1)(a (R) b).

2.1 LEMMA. dO Od.

Proof. Suppose dimf s, and writex a (R) b.

Od(f (R) a (R) b) O(df (R) x) + (-1)80(f (R) dx)

(1 (R) df (R) 1)(b (R) 1)(x) q- (-1)8(1 (R)f (R) 1)( (R) 1)(d (R) 1 - 1 (R) d)(x)

(1 (R) d (R) 1)(1 (R)f(R) 1)( (R) 1)(x)

-(-1)8+1(1 (R) f (R) 1)(1 (R) d (R) 1)( (R) 1)(x)

+ (-1)8(1 (R) f (R) 1)(b (R) 1)(d (R) 1 -t- 1 (R) d)(x).

We now use the evident identities

(, (R) 1)(1 (R) d) (1 (R) 1 (R) d)(# (R) 1),

(# (R) 1)(d (R) 1) (1 (R) d (R) 1 -t-d (R) 1 (R) 1)(# (R) 1),
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and our expression becomes

(1 (R) d (R) 1)(1 (R) f (R) 1)( (R) 1)(x)

+ (--1)s(1 (R)f(R) 1)(1 (R) 1 (R) d+ d (R) 1 (R) 1)(b (R) 1)(x)

(1 (R) d (R) 1 + 1 (R) 1 (R) d-t-d (R) 1 (R) 1)(1 (R)f(R) 1)( (R) 1)(x)

--d(1 (R) f (R) 1)( (R) 1)(x)

dO(f(R) a (R) b).

Next, suppose further that C is a differential algebra with product e, and
that it operates on B with operation r.

We define, for f Horn (A, C), a e A, b B,

fn(a (R) b) (1 (R) r)O(f(R) a (R) b).

The homomorphism f n’A (R) B -- A (R) B has the dimension of f and, due
to 2.1, is easily seen to satisfy

(1) d(f x) df x + (-1)y dx

if dimf sandxeA (R) B.
Now, let f, geHom(A, C). We defineft geHom(A, C) by

(f J g) (a) (f (R) g)(a)
and easily deduce

(2) d(f t g) df t g -t- (-1)yu dg.

In the case where B, C have zero differential, (1) and (2) are classical.

Then2.2 LEMMA. Let f, g Horn (A, C), x A (R) B.

(3) (fug) x-fn (gx).

Proof.
f(gx) (1 (R) T)O(f(R)gx)

(4)

(5)

(1 (R) r)(1 (R) f (R) 1)( (R) 1)(gn x)

(1 (R) r)(l(R)f(R) 1)((R) 1)(1(R) r)

(1 (R) g (R) 1)(b (R) 1)(x).

(f t g) (x) (1 r)O(f g @ x)

(1 @ )(1 @ lug 1)( 1)(x)

(1 r)(1 (f @ g) @ 1)( @ 1)(x)

(1 @ )(1 @@ 1)(1 @f@g 1)

( @ )( 1)(x).
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In expression (4) we use the evident formula

((R))(1(R)) ((R)1(R))((R)1(R))

and then the formulas

(1 (R)f(R) 1)(1 (R) 1 (R) r) (1 (R) 1 (R) r)(1 (R)f(R) 1 (R) 1),

( (R) 1 (R) 1)(1 (R) g (R) 1) (1 (R) 1 (R) g (R) 1)( (R) 1 (R) 1);

thus (4) becomes

(1 (R) r)(1 (R) 1 (R) r)(1 (R)f(R) 1 (R) 1)

(1 (R) 1 (R) g (R) 1)( (R) 1 (R) 1)( (R) 1)(x)

(1 (R) r)(1 (R) 1 (R) )(1 (R)f(R) g (R) 1)( (R) 1 (R) 1)( (R) 1)(x)’

and this is equal to (5) due to the associativity relation for b and the relation
( (R) 1) r(1 (R) r).
Let a’A - A’ be a map of coalgebras, ,’C --* C’ a map of algebras, and

B:B --+ B’ a homomorphism such that

((R)) =,
where r"C’ (R) B’ --. B’ is an operation of C’ on B’.

In this context, let f e Horn (A, C), f’ e Horn (A’, C’) satisfy

f’o-.f.
Then a straightforward verification shows that

(6) (a (R) )[f n (a (R) b)] f’ n ( (R) )(a (R) b).

3. Twisting cochains

Let the situation be as above, and let f Hom (A, C) be -1-dimensional,
i.e., fA C,_
We define the -1-dimensional homomorphism

d]’A (R)B--A (R)B
by

d x dx -l- f n x,
then

d d(x) dj(dx - f n x)

ddx+d(fnx) -fndx+fn (fnx)

dfx-fndx+fndx+ (fuf) ax

(df + f u f)(x).
Hence we have

3.1 LEMMA. df dj 0 if df - f u f O.

xeA(R)B;
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In this case we call f a twisting cochain and ds the differential twisted by f.
If f {fk} (i.e., fk is the component A -- C-1 of f), then the relation for
twisting cochain can be written

d f -f_l d - p+q= fp o fq O.

In our application of this theory we shall be entirely concerned with the
case where A, C have nonnegative graduation, i.e., when A Ci 0 for
i<0.

In that case (recall that dim f -1), f 0 for i =< 0, and the relation
for a twisting cochain is

(1) d of, + f,_ld + n=----t ftf-- 0 (n >= 1).

Finally, in our applications A, B, and C will be augmented; i.e., there will
be given homomorphisms

v:A0, B0, Co -- A

such that 7 d 0, 7 7, 7 7, 7r 7, where the last equations assume
that in the tensor product A (R) B we define an augmentation by

7(a (R) b) (Ta)(Tb), a eAo, b eBo.
If this, in particular, is to be an augmentation for ds, we must have
7 (dx + f n x) 0 when dim x 1; this will certainly be the case if f satisfies

(2) ,f 0.

In the case of augmented complexes we shall always require (2) as well as
(1) for a twisting cochain.
We define an increasing filtration on A (R) B by

Fv(A (R) B) =0A(R) U.

Now it is easily seen (since f0 0) that the operation f n decreases filtration
by at least one. We shall denote by E,q(A (R) B) the spectral sequence
derived from A (R) B, the differential d, and the above filtration. Then the
term E will be independent of f, and we get

3.2 LEMMA. If A is A-free, then E.q A (R) Hq(B).

Let us now be in the situation of Section 2, formula (6), with A A’,
a identity, and f a twisting cochain. Then it is easily verified that fr is a
twisting cochain for A (R) B’.
From a classical spectral sequence argument and 3.2 we now get

3.3 LEMMA. If A is A-free and is a chain equivalence, then 1 (R) is a chain
equivalence (the differentials being d, ds, respectively).

t. Acyclic models
We shall use the method of acyclic models. For reasons explained in 7.5

we use the simple theory, due to Eilenberg and Mac Lane [1], in which de-
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generacy plays no part; in fact, we shall use the method of [2] with trivial
degeneracy.
By d we denote the category of differential graded (with nonnegative

graduation) augmented A-modules (DGA modules); cf. Section 2.
Let ( be any category, ; a subset of the objects of a, the "models"; if

A is any object, let S(A) denote the set of maps u’M A where M
Let K’a d be a covariant functor; if u’M --+ A, u S(A ), we denote

by K(M, u) the ordered pair (K(M), u), regarded as an object of d.
We define the functor /-a -- d by R(A) "usA)K(M, u) and

iff:A B is amap of a, (f)(x, u) (x, fu) for xeK(M). Finally,
we define the transformation of functors F’K - K by

r(A)(x, u) K(u)x, xeK(M).

4.1 DEFINITION. We say that K is representable (in the category with
models (a, )) if there is a transformation of functors x’K -+/ such that
Fx identity.

If K: a -- d is a functor, we denote by K: a -- , the category of A-
modules, its i-dimensional part; similarly if K, L:a d are functors, and
’K - L a transformation, i"K -- L will denote the evident restriction.
We quote the main theorem on acyclic models (cf. [1]) in exactly the case

that we shall use:

4.2 PROPOSITION. Let K, L: ( d be functors. Let K be representable,
and HqL(M) O for q > O and M

(i) Let 0:K0 L0, 1:K1 ---+ LI be given such that vo v, d o d;
then there is an extension K ---+ L of

(ii) Let , b be any two extensions of 0:K0 -- Lo. Then , b are chain-
homotopic.

We shall also use the following addendum to 4.2.
Suppose K, L are functors with filtration, i.e., functors into the category of

DGA modules with increasing filtration, and suppose the following condition
is satisfied"

4.3 CONDITION. If X K(A) has filtration p, then x(A) (x) e/(A)
has nonzero components only in terms K(M, u) with the property that
L(u)L(M) c L(A) consists entirely of elements of filtration -< p.

4.4 Addendum to 4.2. If 4.3 is satisfied, then and the homotopy between
and k are filtration-preserving.

This is immediate from the proof of 4.2; cf. [1].
Under these conditions induces transformations

, "ErK --> ErL (r >= O)
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between the spectral sequences of K, L; and

e when r >= 1.

5. Complexes
The words "complex", "map" will denote "complete semisimplicial com-

plex", "semisimplicial map", respectively; cf. [3] or [4]. We shall denote the
face and degeneracy operators by 3i, si.

Let X be a complex; by A(X) we denote the normalized chain complex
with coefficients in A; if X, Y are complexes, we denote by X X Y their
cartesian product; cf. [3]. We recall the chain equivalences

f:A(X X Y) -- A(X) (R) A(Y),

V:A(X) (R) A(Y)-+ A(X X Y)

introduced by Eilenberg and Mac Lane; cf. [8].
Let X be a complex; we define the diagonal map :X -- X X X

by fix (x, x). It is well known and easily seen that

f :A(X) --+ A(X) (R) A(X)

is a coproduct for the DGA module A(X).
A group complex F is one for which there is given a map : F X F --, F

which turns F into a group for each n => 0. In this case we define

(R)
by V.

It is easily seen that is a product for the DGA algebra A(F).
Let F be as before, and Y a complex. is said to operate on Y if there is

given an operation of on Y, i.e., a map :F X Y -- Y such that the fol-
lowing diagram commutes"

XFX Y ,Xl XY
I_

XY Y.

We shall write
In this case the definition

r rV :A(F) (R) A(Y) -- A(Y)

defines an operation in the sense of Section 2; indeed we obtain a case of the

We use the convention of denoting a map X Y and the induced homomorphism
&(X) A(Y) by the same symbol.
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entire situation of that section if we write A A(X), B A(Y), C A(F)
and adopt the definitions of the present section.

6. The category
6.1 DEFINITION. Let X be a complex, and F a group complex. By an

(X, F)-twisting function we mean a set of functions "X --, rn_l (n > 0)
such that

00 (x) [(00 x)]-l(0 x),

0i (x) (0i+1 x), i > 0,

s (x) (s+l x), i => 0,

(sox) 1.

6.2 DEFINITION. The category ( has as objects triples (X, F, ) where X
is a complex, F a group complex, and an (X, F)-twisting function. A map
of 5

(a, b, O)’(X, F, ) (X’, F’, ’)
consists of

(i) a map a’X X’,
(iN) a homomorphic map b’F -- F’,

(iii) a dimension-preserving function

O"X -- F’,
these data to satisfy the following axioms"

(1) b-- ’a,

(2) 00 00 if i > 0,

O(Oo x).b(x) ti’(ax) .0o O(x).

The identity map on (X, F, ) is (ix, ly, e), where e assigns the unit of F’n
to every element of X.

Composition is defined as follows" Let (a, b, 0) be as before, and
(a’, b’, O’)’(X’, F’, ’) ---, (X", P", "). We define

(a’, b’, O’)(a, b, O) (a’a, b’b, 0"),

where O*’X F" is defined by

O*(x) O’(ax).b’O(x).

The associative law is easily verified.

6.3 DEFINITION. 6)0 C (P is the subcategory whose objects (X, P, ) are
such that X has only one zero-dimensionM element, et0 is the category of
complexes with only one zero-dimensionM element.
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We now describe a covariant functor

due to Kan; cf. [4].
:a0 -- (Po

(x) (x, x, ),
where GX is the group complex defined as follows:

(i)
(ii)
(iii)

(GX)n is a group with a generator {x} for each element x Xn+l.
For every x X,, (GX), has a relation {So x} 1.
The face and degeneracy operators are defined by

0,{x} {0+ x},

,{x} {+ x},

00{ X} {00 X}--I{ 01 X}.
Finally, K is defined by

x {x}.

Now, let a:X X’ be a map. We define

(a) (a, G(a), e):(X, GX, :) -- (X’, GX’, iK)
as follows:

G(a){x} {ax}, ex 1.

The main property of this construction will be found in Proposition 7.2.

6.4. Let be an (X, P)-twisting function.

G:G(X) P
is defined by

by

G{x} i(x).

We define

f:GZ --, r
Suppose f:Z ---> X is a map.

i>O

Then a homomorphic map

f G G(f).

7. The category

c(vy) (bv)(cy) (V e F,, y e Y,).

A map (a, b, 0, c):(X, F, , Y) ---+ (X’, F’, ’, Y’) consists of a
map (a, b, 0):(X, r, ) --, (X’, F’, ’) of (p and a map c: Y --, Y’ such that

7.1 DEFINITION. An object of ( is a quadruple (X, F, , Y) where
(X, F, ) is an object of (P and Y is a complex on which F operates.

This is the category of "regular twisted cartesian products" (RTCP)
(cf. [51).
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In this definition the RTCP of [5] makes no explicit appearance; we intro-
duce it through a functor ]: 6t -- a, the category of complexes and maps,
as follows:

[X, r,, Y] E
is a complex defined by

E X X Y,

Oi(x, y) (Oi x, O y),

Oo(X, y) (OoX, (x).Oo y),

while the map

is defined by

s(x, y) (s x, s y),

[a, b, O, c]’[X, F, ti, Y] IX’, F’, i’, Y’I

(x, y) ---> (ax, (x).by).

i>=0,

The various identities assure that this is a map. We also introduce the
"fibre map" p’E -- X by p(x, y) x. Then clearly

p’[a, b, , c] ap.

Let (X, P, , Y) be an object of , and Z a complex.
tion of P on Y X Z by ,(y, z) (,y, z) and define

We define the opera-

(X, F,, Y) X Z (X, F,, Y X Z);

and if g’Z -- Z’ is a map,

(a,b, 0, c) X g (a,b, 0, c X g).

It is easily seen that

[(X, F, , Y) X Z] IX, F, , Y] X Z,

[(a, b, 0, c) X g] [a, b, 0, c] X g.

By (0 we denote the subcategory of 6t with objects (X, I’, , Y) such that
X has only one zero-dimensional element.
We now return to the construction 9 of Section 5. Let the group complex

G(X) operate on itself by multiplication; thus we can form the object
(X, G(X), :, G(X)) of 6t0. Then we have the fundamental result of Kan.

7.2 PROPOSITION. IX, G(X), :, G(X)] is contractible.

We use this proposition to introduce into our category the models we are
going to use. Let A be the usual n-dimensional model of semisimplicial
theory. By denote the complex obtained by identifying all zero-dimen-
sional elements of A. We now define

(/n, Gn, g, Gn) X Am

(n, Gn, K, Gn X Am).
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Since [n, Gn, K, Gn X Am] [n, Gn, K, Gn] Am, and since A is
contractible, 7.2 gives at once

7.3 LEMMA. [Mn,m] is contractible.

We now introduce two functors K, L" 50 -- d (cf. Section 4).

K(X, r, , Y) h[x, r, , Y],

the normalized chain complex with the usual differential, and

K(a, b, 0, c) A[a, b, , c].

From 7.3 we have immediately

7.4 PROPOSITION. H K(M,.m) 0 for q > O.

7.5 PROPOSITION. K is representable.

Proof. Here we meet a technical diffculty; we can easily prove the repre-
sentability of K, the functor defined like K but using the unnormalized chain
complex; we then deduce the representability of K by the method of Lemma
6.3 in [1].

Several alternatives suggest themselves" We could use the unnormalized
complex; but then the theory of filtration of L (see below) is not so simple;
or we could use the more elaborate theory of [2], introducing a category with
models and degeneracy. This is complicated, but possible. The trouble
however then is that acyclicity in our present sense becomes insufficient; we
need contracting chain homotopies that are natural in a certain sense. In
the case of K this is not difficult, but in the case of L the necessary verifica-
tions would be very formidable, due to the indirect way in which its acyclicity
on models is proved. The present method seems to be the simplest.
We prove, then, the representability of K" Let (x, y)e X X Y.,

A (X, F, , Y). We define :(A) (x, y) ((, 1 X tin), U) e/(M,, u),
where tin denotes the n-dimensional generator of Am, its image in , and

u (, 2, e, c)’M, -- Ais the map defined as follows" 2" -+ X is the map defined by 2n X;

"GX -- 1" is the map defined in terms of 2 and as in 6.4; e’ --+ F assigns
to every element the unit of F; and

c’G7x X h’- Y
is defined by

c(g, ) ( g).a (g e G,
where " A -- Y is defined by i y.
The necessary verifications are easy.

7.6 DEFINITION. A twisting cochain F on the category 5’ is a function F
which assigns to every object (X, F, ) a twisting cochain

F(X, F, )’A(X) -- A(F)
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(cf. Section 3) in such a way that if (a, b, O):(X, F, ) -- (X’, F’, ’) is a
map, then the diagram

is commutative.

A(X) F(X, r, A(r)

A(X’) F(X’, r’, h(r’)

In defining a twisting cochain we shall usually define (with an abuse of
notation!) a function F:X -- A(F) which is zero on degenerate simplexes.
Now let F be a twisting cochain on the category (P0. We define the func-

tor
L L:0- d9

as follows: L,(X, F, , Y) A(X) (R) A(Y), with the differential ds where
f F(X, F, );

L,(a, b, 0, c) A(a) (R) A(c).

The fact that this map commutes with d follows from the condition of 7.6
and formula (3) in Section 2.

7.7 PROPOSITION. L L is representable.

Proof. Again (cf. 7.5) we prove the representability of Ly, obtained by
using the tensor product of the unnormalized chain complexes, and then ap-
ply the method of Lemma 6.3 in [1].

Let x Xp y Yq We define

(A)(x (R) y) ($P (R) 1 X q, U) e L(M,, u),
where

and

is defined by

u (2, 2, e, c):Mp,q --> A,

c: GT’xA -- Y
c(g X o’) 2(g).o- (geGp, aeAq);

cf. 7.5 for the notations.
We now give filtrations to L and K. Ly is filtered by using the filtration

on the tensor product explained in Section 3, i.e.,

F(A(X) (R) A(Y)) =<pAi(X) (R) A(Y).

K is filtered, as usual, by letting (x, y) e [X, r, , Y] have filtration =< p if x
is the degeneration of an at most p-dimensional element.
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7.8 PROPOSITION.
by the property 4.3.

The representations of 7.5 and 7.7 are mutually related

This follows immediately from the occurrence of the map 2 in both repre-
sentations.

8. The main theorem

8.1 PROPOSITION.
following properties"

There exists a twisting cochain on the category 6)0 with the

(i)
(ii)

FI(X, r, )(x) 1 -(x) (x X).
If ((x) l e Pq_l if dim x q < n, then Fq(X, r, O for q < n.

Proof. Direct verification shows that the given F1 and

F(x) --l(x)-0 (OoX)

will satisfy both conditions.
We now suppose that F has been defined for i < q > 2.

satisfy
d Fq -Fq_l o d -F u F_I

(x X)

Then Fq is to

q, say.

It is easily verified that d Vq O.
Consider the object (q, GTq, ) (cf. 6.3). It is easily seen (e.g. by con-

sidering its realization) that the homotopy groups of q above 1 are all zero;
hence the homotopy groups of G (its "loop space", cf. [4]) above v0 are all
zero. Hence, if q denotes again the generating element of
q(q) e Aq_2(GTq), being a cycle, is a boundary; i.e., there is c Aq_(GTq)
such that dc q( q)
We now prove the existence of Fq on objects of type (X, GX, K). Let

x e Xq. This defines a map (x): -+ X, and hence G(x):G(q) -+ G(X).
If (X) denotes the unnormalized chain complex of X, any chain g q(X)
thus induces, by linear extension, a chain map

G(g) :7G(Txq) -- 7G(X).

Now we define (cf. p. 195 of [1]) a homomorphism

:(x) X(x)
by

(x) (1 s00)(1 s 02)’"(1 sq_ Oq)x, x eXq,

so that v(x) 0 if x is degenerate. Now, for x Xq, we define

Fq(x)
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Clearly Fq(x) 0 if x is degenerate. Now

dFq(x) dG(vx}c G(x} dc

a(,x}() (()

(x)

since, by the inductive hypothesis, q is zero on degenerate elements.
Finally, consider (X, F, ). Fq is defined, by the above, on (X, G(X), ).

We now define
F(X, r, ) G F(X, GX, ) (cf. 6.4).

Notation. From now on, F will denote twisting cochain stisfying the
properties of 8.1.

8.2 LEMMA. HqL(n, en, ) 0 ff q > O.

As remarked before, H{(G) 0 if i > 0; slso by the same rgument,
Ho(G) A(), the group ring of r r(). Now (cf. Section 9) r is
generated by elements [x], one for ech x
DGA slgebrs in which sll elements hve grsdution 0, we define

h" A(G

by letting h be zero on elements of dim > 0, and putting h Ix] if x e.
Ho(G) has generators in 1-1 correspondence with the elements of , and
hence h is u chain equivalence. Hence, by using 3.3, the tensor product
h(n) AG() with twisting function F is chain-equivalent to
h() @ A()with twisting function hF.
A direct computation immediately shows that

d(x @ ) :O x @ + (-1)qOq x @ [0g-lxl,
and this is exactly the boundary formula for the universal covering complex
of n (cf. Section 9), which is contractible since all higher homotopy groups
of n vanish.

8.3 LEMMA. For any twisting cochain F on o, Ly(M,) and
L(, G, ) are chain-equivalent.

Proof. Since A is contractible, it is easy to write down a chain equiva-
lence

From this and 3.3 the result is immediate. 8.2 and 8.3 give

8.4 PROPOSITION. Hq L(M,) 0 if q > O.

We now come to the main theorem of this paper.

The sign (-1)q originates in our definition of the cap product.
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8.5 THEOREM. There are filtration-preserving chain maps ’LF K,
K LF and b, are chain-homotopic to the identity by filtration-preserving

chain homotopies.

Proof. Letting x eX, y e Y, we define i(X, F, , Y),
i (X, F, , Y) for i 0, 1 as follows:

0(x0 (R) y0) (x0, y0),

l(xo (R) yl) (So Xo, yl),

1(xl (R) yo) (x So(-l(&).yo) ),

0(x0, y0) (x0 (R) y0),

The necessary verifications are straightforward.
from 7.7, 7.4, 7.5, 8.2, 7.8, 4.2, and 4.4.

The theorem now follows

8.6 COROLLARY. induces isomorphisms

r.ErLF ErK,

r:Er Lr Er K, for r >- 1,

where Er, Er denote the homology or cohomology spectral sequences.

?. Yhe niversl coverin9 spce
We give brief indications how a theory of the universal covering space can

be given in the semisimplicial context, purely to complete the proof of 8.2.
A complete theory of covering spaces could easily be developed by the same
method.

In the theory of twisted cartesian products there are two alternatives-
One can give preferred treatment to 00, as we have done, in accordance with
[5]; or one can give preferred treatment to the last face operator, as is done
in [4]; in the present section we adopt the latter view; this seeming incon-
sistency is required by the form of the formula that one is led to in 8.2; in
some sense neither of the two methods seems to be quite self-contained.

Let X be a complex with a single vertex o. In [4], it is proved that rl(X, o)
is the group with a generator {x} for every x e X and a relation {00 }/0. }
{01a} for every a e X. We denote by Ix] the element of (x, o)
represented by
We now define the universal covering complex of X as follows"

X X, Xr,

o,(x, v) (0 x, v),

o(x, v) (o x, [o-x]),
i <n, xeX,, ,

s(x, v) (s x, v).
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The c.s.s, relations are easily verified, as is the fact that the boundary in X
is given exactly by the formula of 8.2.
We can regard X as a RTCP as follows" Let S(r) be the complex obtained

by regarding the elements of r as zero-dimensional elements. Then X is
isomorphic to [X, S(), (, S()], where ( is given by

n--1(x) s_-..s0[00 x].
We now examine the homotopy sequence of [X, S(), , S()] and obtain"
Since vi(S()) 0 when i > 0, i() vi(X) for i > 1; also rl(x) --v0(S(r) ), as can be verified, is exactly given by Ix] --+ Ix], i.e., is an isomorph-
ism; whence rl(-) 0.
Thus . has exactly the properties of the universal covering space.

10. Cohomology and the theorem of Hurewicz-Fadell
Let us return to the algebraic situation of Section 2, and consider the case

of cohomology. Let G be any graded A-module. We define a pairing

by
Hom(B,G) (R) C r Hom(B,G)

r(g (R) c)(b) gr(c (R) b), ceC, beB, geHom(B,G),

where r on the right denotes the given pairing C (R) B -- B, as in Section 2.
Using this pairing, and given h e Horn (A, Horn (B, G)), f e Horn (A, C),

we can define
h u f e Horn (A, Horn (B, G)

by h u f r(h (R) f),,, as in Section 2.
By applying the natural isomorphism

Horn (A, Hom (B, G)) Horn (A (R) B, G)

it is then easy to verify that

(1) (h u f)(x) h(f n x), x e A (R) B.

A straightforward verification proves that

(2) d(h u f) dh u f -- (-1)h u dr,

and that if g e Hom (A, C), then

(3) hu (lug) (huf) ug.

In these formulas we have used the definition (dh)x (-1)’+lh(dx) for
the "coboundary" as in Section 1, i.e., we have regarded G as a differential
group with zero differential.
Now, let f be a twisting cochain, as in Section 3. The "coboundary" df

dual to df is given by

(4) (ds h)z (- 1)’+h(d, x).
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A simple calculation then shows

(5) ds h dh + 1 p+lh t f.
Applying this to Theorem 8.5 we thus get a formula for the differential

that "computes" the cohomology of a RTCP. Usually G has no graduation;
then we put G Go, G 0, i > 0. What is usually called an n-cochain
is -n-dimensional in our notation.
We now come to the theorem of Hurewicz-Fadell (cf. [7]), which is an

application of condition (ii) in 8.1. From now on, we suppose that A, B, C
are A-free, as they are in the application, and that A is a principal ideal ring.

10.1 DEFINITIONS. A twisting cochain f such that f 0 for i _-< n __> 1
will be called n-trivial.
A (X, F)-twisting function such that (x) 1 e F_lfor x eX, i -< n >__ 1,

will be called n-trivial.

From 8.1 (ii) we have at once

10.2 PROPOSITION. If is n-trivial, so is F(X, F, ).

Examples. (1) If (X) 0 for i < n, then we can, without changing
the homotopy type of (X, F, , Y), replace X by a complex for which X is
the degeneration of a single vertex for i < n; cf [5]. This is the case of the
theorem of Hurewicz-Fadell. becomes n-trivial.

(2) More generally, suppose (cf. [5], in particular Lemm IV. 2.6) that in
(X, F, , Y), F can be reduced so that F lfori < n. Then clearly
becomes n-trivial.

Let f be n-trivial, n >_- 1, and let xeA (R)B have filtration p. Then
f x has filtration at most p n; thus in this case

(d ds)Fp(A (R) B) Fp_n_(A (R) B).

Hence by a simple lemma on spectral sequences, the spectral sequences in-
duced by d and d are isomorphic up to En+; the spectral sequence for d,
however, as is well known, has the property dr 0 if r -->_ 2, E E if r >= 2,
and similarly for cohomology.
Hence we have

10.3 THEOREM. If f is n-trivial, n >--_ 1, then

E(A (R) B) E(A (R) B) H.(A, H.(B)),

Er(A (R) B,G) E(A (R) B,G) H*(A,H*(B,G)), 2 <= r <= n- 1.

If we continue in the same situation, it is easily seen that dn+ and d+
depend on f+ only and are, indeed, induced by the homomorphisms

x -- f+ a x, x e A (R) B,

h - 1)+h u f+, h e Horn (A (R) B, G), dim h p.



310 v.K.A.M. GUGENHEIM

Now formula (1) in Section 3 shows that fn+l e Horn (A, C) satisfies "f,,+ (dR)
is a boundary in C"; hence f induces a cocycle

/e Hom (A, H(C)).

Let k e Hn+I(A, Hn(C)) be its cohomology class. Then 10.3 gives

10.4 THEOREM. If f is n-trivial, n >-_. 1, then d"+1, d,+ are given by

dR+ix k fl x, X H.(A, H.(B) ),

dn+i h (--1)P+lh U k, he H’(A, H*(B, G) ).

We finish by giving a new interpretation to k. If f is n-trivial, we can
(cf. example (2) above) replace C by o= Ci; every element c e C, is a
cycle and represents [c] e H(C); we can thus define the fundamental cocycle

" An(C, Hn(C) by ,c [c].
Next, consider the "associated principal bundle", i.e., in our algebraic

situation the tensor product A (R) C with twisting cochain F. We regard, e Am(A (R) C, H(C)) by the usual method, i.e., 1 (R) c) [c] if 1 denotes
the 0-dimensional generator of A, and (a (R) c) 0 otherwise. Similarly,
we identifya eAwitha (R) 1 eA (R) C.
Now let a e A+.

(uf)(a (R) 1) 3’(fn (a (R) 1))

"r(1 (R) f(a)

[j’(a)]- ]c(a (R) 1),

where we have used the fact that the coproduct satisfies

ba 1 (R) a + a (R) 1 + = ai (R) an+l-i

where dim a i, dim aj j.
Hence-uf= k, or,uk k. Hence by 10.4

dR+iV (-1)n+lk.
We translate this back into geometric language"

10.5 THEOREM. Let (X, F, , Y) be a bundle in which F has been re-
duced to a group for which F 1, i < n >_- 0; and let .f e Hn F Hn( F
be the cohomology class of the fundamental cocycle. Then we have for the
spectral sequences associated with this bundle:

E;.q H(X, Hq( Y) ),

while
E,q HP(X, Hq( Y) ), 2=<r=<n+l,

dn+l’Hp(X, Hq(Y)) H__(A, Hq+(Y)),

d,+I’HP(X, Hq( Y) H’+’+I(A, Hq-’( y)
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are given by
dn+lx k f] x,

dn+l h (- 1 )n+lh U k,

where k H’+I X, H F is the transgression of (-1)n+l. in the associated
principal bundle, the products n and u being defined by using the operation
of F on Y.
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