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In 1937 H. Freudenthal proved that every metrizable compact space X
is homeomorphic with the inverse limit of an inverse sequence of compact
polyhedra P, whose dimension dim P __< dim X ([3], Satz 1, p. 229). In
this paper we ourselves propose to generalize Freudenthal’s theorem to the
case of Hausdorff compact spaces. Throughout the paper dimension is
taken in the sense of finite open coverings and is denoted by dim.

It is well known that Hausdorff compact spaces can be characterized as
inverse limits of inverse systems (over general directed sets) of compact
polyhedra (see [2], Theorem 10.1, p. 284). This fact, together with Freuden-
thal’s theorem, leads naturally to the conjecture that every compact Haus-
dorf space X is homeomorphic with the limit of an inverse system of com-
pact polyhedra P,, subjected to the additional requirement dim P, _<_ dim X.
However, this conjecture is shown false in Section 5 of this paper, where we
produce examples of 1-dimensional Hausdorff compact spaces which are not
expressible as limits of polyhedra P, with dim P, __< 1.

Nevertheless, in Section 3 we show that every Hausdorff compact space X
is an inverse limit of metrizable compacta X, with dim X, -< dim X (Theorem
1). Combining this result with the theorem of Freudenthal we conclude
that every Hausdorff compact space X is a double iterated inverse limit of
polyhedra P,, satisfying dim P. _-< dim X.

Section 4 is devoted to another generalization of Freudenthal’s theorem.
This time we prove that every nonmetrizable Hausdorff compact space X
can be obtained as the inverse limit of a well-ordered system of Hausdorff
compact spaces X,, where dim X, __< dim X, and in addition the weight
w(X,) of every X, is strictly smaller than the weight w(X) of X (Theorem 3).
The proofs of Theorems 1 and 3 depend on establishing the existence of a

factorization of mappings f:X --+ Y through a compact space Q, satisfying
dim Q =< dim X, w(Q) <= w(Y). The first results of this kind are proved in
Section 2 (Lemmas 3 and 4); the question is resumed in Section 3. From one
of our factorization theorems follows a recent result of E. Sklyarenko on the
compactification of normal spaces (Corollary 3).
The author wishes to express his gratitude to Dr. Branko Griinbaura for

many helpful discussions concerning this paper.

Received February 19, 1959.
Actually, Freudenthal proved a stronger statement, giving additional informa-

tion concerning the nature of the bonding maps that appear in the sequence. In par-
ticular, all the maps can be assumed to be onto.

The definition of weight is given in Section 1.
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1. Preliminaries

1. All spaces in this paper are topological Hausdorff spaces. By a poly-
hedron we understand a triangulable compactum. Whenever f and g are
two mappings into a metric space with metric d, then we denote
Sup (d(f(x), g(x))) by d(f, g). l(S) denotes the cardinal number of the
set S.
By a covering we always mean a finite open covering u {U}. To every

covering u belongs the corresponding nerve N(u); dimension of a covering
u is the dimension of the nerve N(u). We denote by IN(u) the geometric
realization of N(u). Coverings are ordered by the relation u < v, which
means that v refines u. A space X is said to have (covering) dimension
dim X =< n if the set of coverings u of dimension __< n is cofinal in the set of
all coverings (with respect to < ). If Y c X is a closed subset, then
dim Y -< dimX.
Whenever u < v, there is at least one natural projection

pu’i N(v) -* IN(u)I,

induced by a simplicial mapping pu," N(v) -- N(u) (see [2], Definition 2.8,
p. 234). To every mapping ’X ---> IN(u) I, belongs a system of continuous
real-valued functions , where (x) is the barycentric coordinate of the
point (x) corresponding to the vertex U e N(u). A mapping is said to
be canonical with respect to the covering u if the set Ix x e X, (x)
is contained in U. Every covering of a normal space admits canonical
mappings (see [2], Theorem 118, p. 286).

2. The weight of a space X is the least cardinal which is the cardinal
number of a basis of open sets for the topology of X; we denote the weight
of X by w(X). If w(X) is finite, then X is a finite set of points; w(X) <=
means that X satisfies the second axiom of countability. If w(x) is infinite,
then it is an aleph, w(X) (x).

If is any ordinal, let 18 denote the Cartesian product II I, of copies
I, 1 of the unit segment [0, 1], where a ranges through the set of all ordi-
nals a < . For infinite/, w(18) is the cardinal/() belonging to the ordinal
B, i.e., k({ala < }). Let I(x) denote 18, with (x), where 0(x) is
the initial ordinal number belonging to R(x) w(X). In other words, I
is a product of segments I,, where a ranges through a set of cardinality
w(X). A well-known theorem of A. Tychonoff asserts that every completely

3We recall that, for Hausdorff compact spaces X and finite (covering) dimension,
dim X coincides with the cohomological dimension (with integer coefficients) (see e.g.
[1], Theorem 5.1, p. 31).

Observe that the nerves of coverings of a space X together with the corresponding
projections do not form an inverse system, because the projections are not unique.
Notice also that the canonical mappings are not unique.
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regular space X can be homeomorphically imbedded in Iw(x) ([10], Proposi-
tion 2, p. 550).

3. A compact (Hausdorff) space X* is said to be the Cech compactifica-
tion of a space X provided X is a dense subset of X* and every map f:X I
admits an extension f*’X* --* I. Every completely regular space X admits
a unique Cech compactification. Every map f of a completely regular space
X into a compact space Y admits an extension f*" X* --. Y (see 8, Chapter X
of [2]). If X is normal, then dim X dim X* (see e.g. [1], Corollary 6.3,
p. 35 and [5], Proposition 5, p. 84).

4. Let (A, <) be a directed set and{X,,r,,},a < a’, , ’A, an
inverse system of spaces (r is the identity). We denote by lim X the
associated inverse limit, and by r the natural projections of lim X into X
A basis for the topology of lim X, is given by sets of the form (r)-l(U),
where a e A and U ranges through a basis for X. If all X are Hausdorff
compact spaces, then so is lim X.

If kl and k. are infinite cardinals and k(A) <= kl while w(X) =< k2 for
all a e A, then clearly

(1) w(lim X) <- Max (k,

If all X are compact, then every covering u of lira X can be refined by
a covering of the form /(r)-(U)}, where
covering of X. Consequently, if all X are Hausdorff compact spaces of
dimension dimX <- n, then

(2) dim (lira X) =< n.

If the directed set A is the set of positive integers, then we speak of an
inverse sequence IX, r;}, i 1, 2, ;its limit is metrizable and compact.

5. An ordinal is said to be of the first kind if it has an immediate prede-
cessor 1. The remaining ordinals, 0 are said to be of the second
kind or limit ordinals.

Let 3" be any ordinal of the second kind. Then the set { < 3"I of all
ordinals strictly smaller than 3’ is a well-ordered set. We associate to every
< 3’ the cube I (see 1, 2). Let ro, :I’ --+ I, < ’, be the mapping

which does not change the first coordinates
while it sends the remaining coordinates into 0. If < ’ < V’, then clearly
roo,, ro, r,o,,. Hence, we have an inverse system I, r,}, < 3’. The
limit of this system is readily seen to be I; the corresponding projections
rs" I __+ 18, are the maps r. A particular case is the case of the Hilbert
cube I, where 3" o. I is the limit of finite-dimensional cubes
I,i 1,2,

These notions are discussed in detail in Chapter VIII of [2].
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2. Lemmas on factorization of maps
1. LEMMA l. Let X be a (Hausdorff) compact space, P a (compact) poly-

hedron with a given metric d, r > 0 a real number, and f:X P a mapping.
Then there exists a (compact) polyhedron Q with

(1) dim Q =< dim X;

furthermore, there exist a map g’X Q, which is onto, and a map p’Q ---+ P,
such that

(2) d(f, p g) <= r.

p g denotes as usual the composite mapping.

Proof. Let K be triangulation of P of mesh not greater than r. Let a
be the vertices of K, and let St a be the open star of K around the vertex a.
{St a} is an open covering for P, and so is u {f-(St a:)} for X. Let v
be a refinement of u of dimension not greater than dim X. Consider the
nerve N(v), and let g"X --+ N(v)l be a canonical mapping belonging to v
(see , 1). Let P’l N(v)l -- K be a simplicial mapping sending each vertex
V-e v of N(v) into vertex a, having the property thut V. f-(St a).
It is readily seen that the (open) simplex (r(g’(x)) of N(v), which carries
g’ (x), is mapped by p into a face of the (open) simplex (r(f(x)), which carries
f(x) in K.

In order to obtain a mapping g for which g(X) will be a subcomplex of
N(v), we first consider an open simplex of N(v), of the highest dimension,
hving the property that a is not entirely covered by g’(X). We choose a
point in a, not belonging to g’(X) and compose g’ with mapping, which is
the identity outside a, while in a it is the projection from the selected point
into the boundary of a. Repeting this procedure, we arrive at a mapping
g’X ---+ N(v)l, for which g(X) is a subcomplex of N(v) and thus Q g(X)
is polyhedron. Clearly, the (open) simplex a(g(x)) carrying g(x) is a
face of r(g’(x)) and therefore is mapped by p again into face of (r(f(x)).
Hence, both f(x) and p g(x) lie in the closure of (r(f(x)), and the distance
d(f(x), p g(x)) is bounded by the mesh of K. This proves (2).

LEMMA 2. Let X be a (Hausdorff) compact space, P i 1, n, a finite
collection of (compact) polyhedra with given metrics d, r > 0 real numbers,
and f’X ----> P mappings, i 1, n. Then there exists a (compact) poly-
hedron Q with

(3) dim Q =< dim X;

furthermore, there exist a map g’X Q, which is onto, and mappings p: Q ---+ Pi
such that

(4) d(f, pg) <-_ r, i 1,..., n.

Proof. Let P be the Cartesian product P P1 X X Pn, and let
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f’X ---+ P be the mapping f fl X f. Let d be the metric in P given
by d(x, y) dl(xl, y) - q- dn(xn, yn), where x (x, Xn) and
y (yl,-.., y);noticethat di(xi, yi) <- d(x, y),i 1,.-. n. Now
apply Lemm 1 with r min (r, r). One obtains polyhedron Q
stisfying (3) and maps g’X Q and p’Q ---+ P stisfying g(X) Q and
(2). However, p splits into maps pi’Q -- P, satisfying

d(f, pg) <- d(f, p g) <= r <= r, i-- 1,...,n.

2. LEMMA 3. Let X be a (Hausdorff) compact space, I the Hilbert cube,
and f:X -- I a mapping. Then there exists an inverse sequence {Qi, qst of
(compact) polyhedra Q satisfying

(5) dim Q _<_ dim X;

furthermore, there exist a mapping g’X Q lim Q, which is onto, and a
mapping p’Q --> I’, such that

(6) f= pg.

2.1. We know that I lim {I, zs} (see 1, 5).
I and a sequence of real numbers r > 0 satisfying

Choose a metric d on

(7) limr 0, i- ,
and such that every subset Ms c I of diameter diam (Ms) --< 2rs is mapped

i--jby ris, i j, into a subset of I of diameter not greater than 2 ri we write
this condition in symbols as follows"

(8) diam (Ms) <= 2rs diam (ris(Ms)) <_- 2-ri, i < j.

Now we shall construct, by induction, a sequence of real numbers s > 0, and
a sequence of polyhedra Q with metrics d and dimensions dim Q -< dim X.
Furthermore, we shall construct sequences of maps g:X -- Q and
q’Q---> Q, pi’Q I, i 1, 2,..., i < j (see Figure 1) in such
manner that g are mappings onto and

(9) d(g q.+ g+) -< 1/2 s

(10) d(rif, pg) <- 1/2 r,

and in addition, for every set N Q,

(11) diam (N) =< si =, diam (p(N)) <= 1/2r,

(12) diam (Ns) -<- s. diam (qs(N) <-_ 2 s, i < j.
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X

Q1 q Q qe-T Q (-- f

1 I0

Figure 1.

We start the inductive construction by applying Lemma 1 to X, I, } rl,
and f; we obtain Qx, g, and p in accordance with (10). Next we deter-
mine s in accordance with (11), using uniform continuity of p. Assume
now that we have already determined Q, s, g, p, and q,, for i
k > 1, i’ < i. Then apply Lemma2 (withn 2) to X, I, Q_, } r,
} s_, f, and g_. One obtains Q, g, p, and q_. q, i < k, is de-
fined as the composite q,+l"- q-l, (q denotes the identity). Finally,
s is determined in accordance with (11) and (12).

2.2. First we prove, by induction on j i, that

(13) d(g, qgi) s, i j.

By assumption of induction d+(g+, q+, g) s+, and thus (by (12))
d(q,+ g+, q g) } s. This relation and (9) yield (13); moreover, (9)
guarantees that (13) is true forj- i 1. Applying (12)to (13) we obtain- i<j<.(14) d(q g q g)

Consider now the mappings g’X Q, defined by

(15) g limq g

relation (14) guarantees the existence of g. Notice that, for j , (13)
goes over into

(6) a,(g, g) s.

The polyhedra Q and maps q form an inverse sequence hving a metrizable
compact Q as its limit; let q’Q Q denote the corresponding projections.
It follows from (15) that

(17) g q g,
so that g induce a mapping g’X Q, defined by

(18) g qg.
In order to prove that g(X) Q, it suffices to show that g(X) is dense

in Q, because X is compact. Let y Q, and let U be an open set of Q con-
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taining y; we can assume that U (q)-i (U), where Ui is an e-neighborhood
of Q around the point q(y). Choose j so large that 2 s < e, and con-
sider the point qJ(y) e Qi. Since g- is a mapping onto, there is an x X such
that gi(x) qi(y). By (16), dj(gj(z), gJ(x) <= st, and therefore (see (12))
d(qjgi(x), qgi(x)) -< 2-sj < e. Since qg(x) q(y), while
qj gi(x) qg(x), we conclude that qg(x) U and g(x) e U.

2.3. Observe that (16) and (11) imply d(p g, p g) -_< 1/2 r. This rela-
tion combined with (10) yields

(19) d(vf, p g <= r
Applying (8) to (19) we obtain

(20) d( -, -1, p g =< 1/2 r_l.

Combining (19) and (20) (replacing i in (20) by i + 1) we obtain

(21) d(pg g+l)r,+l p+ < - r.

Now we can prove (by induction on j i) that

(22) d(p g, . p gJ) _< 2r i =< j.

g+lBy assumption of induction d(p+ T’i-l,j pi gi) <= 2ri+1, and thus (by
+ gi(8)) d(,+ p+ g ri pi N r. Combining this relation with (21)

one obtains (22) moreover, (21) guarantees that (22) is true for j i 1.
Applying (8) to (22) we obtain

(23) d(ipig,pg) 2 r, i <j .
This relation und (18) guarantee the existence of mappings p’Q P,

defined by

(24)

Clearly, p

(25)

q’.p lim._ r p

ri p, so that p induce a mapping p’Q -- P, defined by

p =rp.

Notice that, for j --
(26)

(22) goes over into

d(p q, p) <-_ 2ri

2.4. In order to show that p and g verify (6), choose a fixed x e X and a
fixed e > 0. Since f(x) lim (Jf)(x), (pg)(x) lira (pg)(x), and
lira r 0 (see (25) and (7)), there is an i such that each of the numbers
d(f(x), (f) (x) ), d( (pg)(x), (pg)(x) ), and 3ri is not greater than e/3.
Considering the points f(x), (f)(x), (pg)(x) (p qg)(x), (pg)(x),
and (pg) (x), and taking into account (19) and (26), we conclude that
d(f(x), (pg)(x) <= e. This proves (6).



COVERING DIMENSION AND INVERSE LIMITS OF SPACES 285

3. An easy consequence of Lemma 3 is

LEMMA 4. Let X be a (Hausdorff) compact space, let Pi, i 1,..., n,
be a finite collection of metrizable compact spaces, and fi’X -- Pi, i 1, n,
a collection of mappings. Then there exist a metrizable compact space Q and
and mappings g’X -- Q, p’Q --. P, i 1, n, such that g is onto and

(27) dim Q =< dim X,

(28) f pig, i 1, n.

Proof. If n 1, the assertion is an immediate consequence of Lemma 3.
Indeed, consider P1 as being homeomorphically imbedded in the Hilbert
cube i0, and apply Lemma 3. It follows from (5) that Q satisfies (27)
(see 1, 4).
The case n > 1 reduces to the case n 1 by considering the product space

P Pl X X Pn and the mapping f fl X X f,’X -- P and apply-
ing the lemma (case n 1) to this situation. The mapping p’Q -- P
splits into maps pi’Q --+ P, and (6) implies (28).

4. The theorem of Freudenthal (see footnote 1) is actually contained in
Lemma 3. Indeed, let X be a metrizable compact space, and let f:X -+ I
be a homeomorphic imbedding. Then f can be factored through Q, which is
the limit of polyhedra Q of dimension dim Q =< dim X. However, g is a
homeomorphism between X and Q, because g(X) Q and p g f.

3. Expansion into inverse systems of metrizable
compacta. Factorization theorems

1. In this section we ourselves propose to prove these two theorems"

THEOREM 1. Every (Hausdorff) compact space X is homeomorphic with
the inverse limit of an inverse system of metrizable compacta Qb, pb’} with
dim Q __< dim X; b ranges through a directed set B of cardinality I(B) <= w(X).
THEOREM 2. Let X and P be two (Hausdorff) compact spaces and f:X ---+ P

a mapping. Then there exist a (Hausdorff) compact space Q and mappings
g’X -- Q, p’Q P such that g is onto and

( dim Q -< dim X,

,(2) w(Q) <- w(P)

(3) f p g.

If P is metrizable, i.e., w(P) <= 0, then the statement of Theorem 2 re-
.duces to case n 1 of Lemma 4.

w(X) denotes the weight of X (see 1, 2). Notice that if dim X is finite
und X lim Qb, then one can always choose a cofinal subsystem ranging over B’ C B
in such a way that dimQb’ dimX, bfeB’.
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The proofs for both theorems are based on this

LEMMA 5. Let X be a (Hausdorff) compact space, o an initial ordinal num-
ber, I the corresponding cube (see 1, 2), and f’X ---. I a mapping. Then
there exists an inverse system Qb, pb,}, b B, where Q are metrizable compacta
with dim Q -< dim X and to(B) . Furthermore, there exist a mapping
g’X -- Q lim Q which is onto, and a mapping p’Q -- I, such that f p g.

2. Proof of Lemma 5. Let A be the set of all ordinals a strictly smaller
than o in this proof we disregard the order of A and consider A merely as
a set. I is the Cartesian product IX I,, a e A, of copies I, of the segment
I [0, 1]. Let f’X -- I be the composite of f and of the proiec-
tion IT -- I. Let B (B, < be the set of all nonempty finite subsets
of A, ordered by inclusion c, and let B c B consist of all subsets of A having
precisely i -t- 1 (different) elements. We can identify A with B0 in the ob-
vious way. (B, < is a directed set containing A as the set of initial ele-
ments of B (b0 e B is initial if it has no predecessors in B other than b0 itself).
Clearly, B tJ Bi, i 0, 1,.... Every element b eB has only finitely
many predecessors. The cardinal k(B) t(A) .
Now we shall define, by induction on i, for every b e B, a metrizable com-

pact space Qb such that whenever b e B and i > 0, then dim Qb __< dim X.
Furthermore, we shall define mappings g’X -- Qb, which are onto, and
mappings p,’Q, - Q, b < b’, in such a way that 1Qb, p’] will be an in-
verse system and that

(4) g p, g,, b < b’.

We start by setting Q I,, aeA B0 and g f. Assume that
Q, gb, pb, have already been defined (in accordance with our requirements)
for all b, b’ e B, i < k,/ > 0. Take any b e Bk and consider all its immediate
predecessors b(1), b(n); there are finitely many of these, and they all
belong to Bk_l. Apply Lemma 4 to X, all Q(j), and all g(j)’X Q().
One obtains a metrizable compact space Q with dim Q =< dim X and a
mapping gb’X -- Q, which is onto; moreover, one obtains maps

p().. Q, -- Q()satisfying

(5) g(.) pb(),b g.

If b B and i < ] 1, we choose a b(j) B_I such that b < b(j) and
define p,,,, by composing p(), with p,.() this last mapping is by assump-
tion of induction already defined, pb, is independent of the choice of b(j),
because gb is a mapping onto, and we have (4) and (5).

Let Q be the limit of the inverse system {Q, p’l obtained in this way,
and let p’Q --) Q be the corresponding projections. By (4), the maps
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g’X -- Q induce a mapping g’X -- Q, defined by

(6) g pg, b B.

Since all g are mappings onto, so is g. Finally, if b a e B0, then (6) goes
over into

(7) f,- pg,
proving that p", a A, define a mapping p’Q -- I II Is, satisfying
f p g. B0 can now be removed from B without affecting the limit Q.

Remarl. The directed set B, which appears in Lemma 5, has a special
structure. It is the set of all finite subsets of A having at least two elements;
A is ny set of cardinality

3. Proof of Theorem 1. We can assume that the weight of X is infinite
and thus w(X) t,(x). Let f:X -- I(x) be a homeomorphic imbedding
of X (see , 2). Apply Lemma 5 and observe that g’X -- Q lim Q is a
homeomorphism, because f p g is a homeomorphism and g(X) Q. The
above remark also applies to Theorem 1, with r r(X).

If we combine Theorem 1 with the theorem of Freudenthal (2, 4), then
we obtain

COnOLLtnY 1. Every (Hausdorff) compact space X is homeomorphic with a
double iterated inverse limit lim (lim P) of (compact) polyhedra P satis-
fying dim P _-< dim X; i ranges through positive integers.

4. Proof of Theorem 2. By the theorem of Tychonoff (see , 2) we can
consider P as being a subset of I(), and therefore f:X -- I(). Assuming
that w(P) is infinite, we apply Lemma 5 and obtain a factorization of f
through Q limQ, beB. (1) follows from dimQ -< dimX. On the
other hand, w(Q) <__ o for all b eB, and /c(B) w(P) >- o, so that
w(Q) <= w(P) (see , 4).

Using properties of the (ech compactification, we can derive from Theorem
2 a factorization theorem for normal spaces"

COnOLLRY 2. Let X be a (Hausdorff) normal space, P a (Hausdorff)
compact space, and f’X P a mapping. Then there exist a (Hausdorff) com-
pact space Q and mappings g’X ---> Q, p’Q ---> P such that g(X) is dense in
Q and 1 ), (2), and (3) hold.

Proof. Let X* be the (ech compactification of X, and let f*’X* --+ P be
an extension of f. Applying Theorem 2 to this situation, one obtains Q and
maps g* X* Q, p’Q--P such that f* pg*. Let g g*lX. Since
g* is onto and X is dense in X*, it follows that g(X) is dense in Q and that
(3) holds. Moreover, we have (2) and dimQ <= dimX* dimX (see
1,3).
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From Corollary 2 follows immediately

COROLLARY 3. Every (Hausdorff) normal space X admits a compactifica-
tion X’ such that diln X’ __< dim X and w(X’) <- w(X).

Proof. Let P I*(x), and let f be a homeomorphic imbedding of X into
Iw(x) (see 1, 2). Apply Corollary 2 to obtain a compact space X’ Q and
a factorization f p g. Since f is a homeomorphic imbedding, it follows.
that g is a homeomorphic imbedding of X into X’. Moreover, g(X) is
dense in X’, and dim X’ =< dim X, w(X’) <= w(Iw(x)) w(X).

This result has been recently obtained by E. Sklyarenko [9].
Another immediate consequence of Theorem 2 (needed in the sequel) is

COROLLARY 4. Let X and Pi, i 1,.-., n, be a finite collection of
(Hausdorff) compact spaces, and let fi’X --+ P be maps; we assume that w(P)
is infinite at least for one i. Then there exist a (Hausdorff) compact space Q
and mappings g’X ---+ Q, p’Q ---+ P, i 1, n, such that g is onto and
dim Q =< dim X, w(Q) <= Max (w(P1), w(P,)),f pg, i 1, ..., n.

To prove this statement it suffices to consider P P1 )< )< P and
f fl X X f and apply Theorem 2.

4. Expansion of compact spaces into well-ordered
inverse systems

1. In this section we prove

THEOREM 3. Every nonmetrizable (Hausdorff) compact space X is homeo-
morphic with the inverse limit of an inverse system {X, p,}, where ranges
through all the ordinals < O(x) while X are (Hausdorff) compact spaces
satisfying

(1)

(2)

Moreover,

dim X -< dim X,

w(x) < w(x).

(3) w(X) <= k,(fl) s,
If fl is of the second kind, then

(4) X lim {X,, P--’I,
p,’X--+ X, being the corresponding projections.

Proof. Consider the cube I, where r r(X).
inverse system {18, r,}, 1 _-< < o.

I" is the limit of the
Let f:X -- I be a homeomorphic

See 1, 2.
k(/) denotes the cardinal of the set {ala < }.
See , 5.



COVERING DIMENSION AND INVERSE LIMITS OF SPACES 289

imbedding denoted also byf (see 1, 2) and let fS:X --+ 18 be the composite
mapping sf, where rs:I -- 18 is the corresponding projection. We shall
construct, by transfinite induction, for every __< 0r a compact space Xs, a
mapping gs:X --> Xs, which is onto for > 1, and a mapping qs: X8 -+ 18;
furthermore, for / < ’ __< 0r we shall construct maps P88’ :Xs, -+ X8 in
such a way that

(7) f8 q g.

Furthermore, if f > 1 is of the first kind, we require (1) and

(s) w(x) __< Max (w(X_,), ,()),

while for of the second kind we require (4), the projections X - X. being
ps
We start the construction by setting XI 11, gl fl and taking the iden-

tity for ql. Now assume that X., gs, ps, s, qs have been already defined
for a , in accordance with all our requirements. If is of the second kind,
define X by (4), and define pss"X - X as the corresponding projection
(lim Xs) -- X clearly, ps pss, ps,, as required by (5). gs, a < ,
induce a mapping gs:X ---> (lim Xs) (see (6)), defined by

(9) gs ps g

The fact that all g are onto and (6) guarantee that g is also. Now observe
that 18 lira I", ,vss,/, a < , the projections being s (see 1, 5). By
definition, f, and thus s., rsf Therefore, (6) and (7)
imply q. pss, g s, f" rss, f" rss, qs, gs,. Since gs, is onto, we
obtain q.p.s, .., qs, This shows that mappings qs’Xs -+ I induce a
mapping q: (lira X.) - (lira IS), defined by

(10) . q qs ps

To show that q satisfies (7) it suffices to show that sf s q g,, for
all a < . However, r.f f" and (7) (for a < ), (9), and (10) imply
f q.g. q.p.g .qg.
Assume now that is of the first kind, i.e., that 1 exists. Then we

can apply Corollary 4 to compact spaces X, X_, and I and to mappings
g-l:X X_ f:X I; we obtain a compact space X satisfying (1) and
(8). We obtain also maps g, p_,, and q in accordance with (6) and
(7). We define p,, for ’ < 1, by p, p,,_p_,. This com-
pletes the construction.

Notice that f ff q g is by assumption a homeomorphic imbedding,
while g:X X is a mapping onto. Therefore, g establishes a homeo-
morphism between X and X. lim {X, p,}, < w. That (1) holds
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for all is now proved by transfinite induction. By assumption of our con-
struction, (1) is true for all > 1 of the first kind. On the other hand, if
/ is of the second kind, then we have (4), and thus the assumption dim X __<
dim X, for all a < , implies (1) for B (see 1, 4). To complete the proof
of Theorem 3, it remains only to prove (3) and (2). We prove (3) by
transfinite induction on . Since w(Ii) 0, i 1, 2, it follows from
(8) that w(Xi) <- o, and thusw(X0) 0 =/(o0), becauseX lim Xi.
Assume now that (3) is true for 0 =< a < . If is of the first kind, then
(3) follows from (8), because w(X_l) <= t( 1.) -< /(t). If t is of the
second kind, then we have (4), and we know that w(X) <=
Applying (1) of 1, 4 we obtain (3) in this case too. (2) is an immediate
consequence of (3). Indeed, oT is an initial ordinal, and thus < oT implies
() < , w(X).

5. Inverse systems of polyhedra
1. Let Fr V denote the frontier of V; if V is open then Fr V IP V.

The inductive dimension of a space X, denoted as ind X, is defined by in-
duction as follows, ind X -1 if the space is vacuous, ind X =< n if for
every x e X and open set U X, x e U, there exists an open set V, x e V U,
such that indFrV -<_ n 1. It is readily seen that dimX 0 implies
ind X 0. For separable metric space ind X and dim X coincide.

LEMMA 6. Let {X,, p,,,}, a e A, be an inverse system of metrizable com-
pacta X, having the property that each X, can be homeomorphically imbedded
in a polyhedron P, of dimension dim P, __< 1. Then X lim X, satisfies

(1) indX =< 1.

The proof depends on the following proposition.
Let P be a polyhedron of dimension n, let C be a closed subset of P and

U n open subset of C. Then dim (Fr U) =< n 1. This statement is
easily derived from the fact that the boundary of an open set in the Euclidean
n-space has dimension not greater than n 1 (see [4], Theorem IV 3, p. 44).

Proof of Lemma6. LetxeX limX, ndlet U be an open set of X,
x e U. Choose an open set V, x e V c U of the form V (p)-(V), where
V is an open set of X containing x p(x). Let V, (p,)-(V),
and let F, X,\V,. Clearly, p,,, maps V,,, P,,, and F,, into V,,
P,, and F,, respectively, a’ < a", while p’ maps V, P, and F X\V
into V,, 12,, and F,, respectively. Since IP, n F, Fr V, and
P n F Fr V, we conclude that {Fr V,, p, ,,}, a < a’ A, is an inverse sys-
tem whose limit lim Fr V, contains Fr V. By assumption of the lemma
and by the above proposition we know that dim Fr V, =< 0, and thus (by
1, 4)

dim (Fr V) -< dim (lim Fr V,) _-< 0.

This implies that ind (Fr V) 0 and proves that ind X =< 1.
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2. In 1949 A. Lunc [7] and then 0. V. Lokucievskii [6] established the
existence of Hausdorff compact spaces X having dim X 1 and ind X 2.
In a recent paper P. VopSnka [11] has extended this result by constructing
Hausdorff compact spaces X with dim X m, ind X n, for arbitrary
integers satisfying 0 < m < n. These results, together with Lemma 6, prove

THEOREM 4. There exist 1-dimensional (Hausdorff) compact spaces X,
which cannot be obtained as inverse limits of inverse systems {P, p,}, where
all P are (compact) polyhedra of dimension dim P __< 1. In particular, this
is the case whenever dim X 1, but ind X > 1.1
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