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Introduction

Let U be a finite-dimensional algebra with unit element over a field K.
Let {e}i-1 be a maximal set of nonisomorphic primitive idempotents of 2,
and let {c;j}7 i1 be the Cartan invariants of . This paper gives relation-
ships among the Cartan invariants of an algebra with a unique minimal
faithful representation (a UMFR algebra). Similar relationships are given
for an algebra belonging to certain subclasses of the class of UMFR algebras.
These results will generalize those obtained by R. M. Thrall [6] for one of
the subclasses. The enumeration of these subclasses will be that used in an
earlier paper [7] in which some properties of the subclasses were studied.

§1 contains the definitions and notations for the paper including the defi-
nitions of certain sets of integers associated with each of the integers
i =1, -+, n and certain decomposition numbers associated with the prim-
itive ideals e; of A and their socles. §2 gives relationships among these
sets of integers and decomposition numbers when the associated left ideal
e, is weakly subordinate. §3 gives relationships among certain of the
Cartan invariants of any algebra ¥ in which there are weakly subordinate
left ideals. §2’ and §3’ give the corresponding results for right ideals. §4
gives the relationships that hold for the Cartan invariants of a UMFR al-
gebra and gives similar results for the various subclasses. §5 restates the
results in terms of the Cartan matrix C(N) = (¢;;).

1. Definitions and notations

Let A be a finite-dimensional algebra with unit element over a field K.
When referring to ideals of 2 or to A-modules, the term ¢somorphic will mean
isomorphic when considered as -modules. If e and f are idempotents,
then e and f are tsomorphic if and only if e = Af (or equivalently e = fIU).
Let

(1) 1 =201 2 e

be a decomposition of the unit element of I into the sum of mutually orthog-
onal primitive idempotents such that e;; = eu; if and only if ¢ = A. Let

A = Z;;l Z{—l——l 916,‘,‘ and A = Z;'l=1 Z§;1 €5 A
be the corresponding decompositions of A into the direct sums of primitive
left ideals and primitive right ideals, respectively. Let e; denote e; for
Received September 29, 1958.
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i =1, -+, n. Then theset {e}i: is a maximal set of nonisomorphic primi-
tive idempotents, and every primitive left ideal of %[ is isomorphic to one
of the %e;, and every primitive right ideal of 9 is isomorphic to one of the
€; QI

Let B; be the indecomposable representation of 9 which has e, as its
representation module, and let 1; be the indecomposable representation of A
with e; 3 as representation module. Let $; be the irreducible representation
of A with module e;/MNe; , where N is the radical of A. F, is equivalent to
the representation with module e; A/e; M. The B; are the nonequivalent
components of the left regular representation, and the U; are the nonequiv-
alent components of the right regular representation. Every irreducible
representation of ¥ is equivalent to one of the §;. (See [2], [3], and [5].)

Let ¢;; be the number of irreducible constituents of LB; which are equivalent
to §;, and let &;; be the number of irreducible constituents of 1; which are
equivalent to §;. It is known [1, p. 106] that ¢;; = ¢&;;. The integers
c:; are known as the Cartan tnvariants of U, and the matrix C(A) = (¢;;) is
the Cartan matriz of . The Cartan invariant ¢;; can be characterized in a
number of additional ways: the number of constituents of any composition
series of e; which are isomorphic to %e;/Je; ; the number of constituents
of any composition series of e; % which are isomorphic to e; U/e;N; the
composition length of e; e; as an e¢; Ye;-module (see [1, p. 106]).

For any primitive ideal &, the socle &(&) of & is the sum of all minimal
subideals of & (see [4, p. 63], [7, §5]). For each e; let

S(Aes) = D i1 204 Qs

be a decomposition of &(%e;) into the direct sum of minimal subideals of
Ne; such that ¥ p; =2 Ner/Nex for all j and k. For each e; A let

@(&' QI) = le;& Z?‘;’& mi,kj

be a decomposition of S(e; ) into the direct sum of minimal subideals of
e; A such that N, 4y = e, /e N for all 7 and k.

DerFintTioN. Let = = {k|ga 5 0} and Il; = {k|ga # 0}. If Z;is a
set with only one element, denote it by (%), and if II, has one only element,
denote it by 7 (7).

If a primitive left ideal e is dual to a primitive right ideal f, then e
and f9 are dominant ideals. An algebra in which every primitive ideal is
dominant is a quasi-Frobenius algebra. Assume 9e; is dual to e; A. Then
e; has a unique minimal subideal which is S(9le;) and whose representation
of 9 is equivalent to ;. Dually, e; A has a unique subideal whose repre-
sentation is equivalent to ;. Thus, =; = {5} and II; = {3}, and s0 o(3) = j
and 7(j) = 7. If e, and ¢; A are dual, then the representations of A that
they generate are equivalent. In terms of the Cartan invariants this im-
plies that for all k
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(2) Cit = Cotb = Cho(y DA Crj = Cjx = Cx(ik -

DermnirioN. Let £ = {7 ] e; A is dominant} and II = {7 | Ye; is dominant}.
(Since an algebra % need not have dominant ideals, these sets may be empty.)

2. Weakly subordinate left ideals

An ideal § (left or right) is subordinate to an ideal & if there exists a sub-
ideal 3* of &’ such that & = 3*. An ideal & is weakly subordinate to a set
of ideals {3} i if there exists a set of ideals {3}7-; with each §; a subideal
of some &, such that & is isomorphic to some submodule of the direct sum

1 3; If an ideal is weakly subordinate to a set of ideals, then it is
weakly subordinate to a set of mutually nonisomorphic ideals {7, Theorem 1].
An ideal & is subordinate to a set of ideals if it is subordinate to an ideal of
9 which is their direct sum.

Consider the case of a primitive left ideal & weakly subordinate to a set of
dominant ideals. Then & is isomorphic to one of the Ye;, z = 1, --- | n,
and both & and the set of dominant ideals may be chosen from among the
Ne;, 7 =1, -+, n. If We; is weakly subordinate to a set of dominant ideals,
let ®; be the subset of the integers 1, ---, n such that e, is weakly sub-
ordinate to {ex | k ¢ ®;} and is not weakly subordinate to {ex | & ¢ X} where
X is any proper subset of ®;. In this notation e, is weakly subordinate to
{Uex, | k e®;} if and only if e, is isomorphic to a submodule MF of the left
A-module

(3) sz = Zked)i Z?L’ﬁ %Iek ,

where for each k e ®; , hy is the smallest possible integer. By setting Ay = 0
for all k ¢®,, the summation in (3) can be extended so that

(4> M = Z;@Lz };2‘1 ey .

TueoreEMm 1. e, 2s weakly subordinate to a set of dominant ideals if and
only if Z; < Z. If Ue; vs weakly subordinate to a set of dominant ideals
{Ue; | k €D}, then

() z; = {o(k) [ k e,
(6) P, = {1!'(](3) | ke Ei}.

Proof. The first statement is merely a rephrasing of an earlier result [7,
Theorem 4].

Assume that Ne; is weakly subordinate to {ex | k e ®;}, a set of dominant
ideals. Since Ye; =2 M7, where MF is a submodule of M, given by (3),
every minimal subideal of e; is isomorphic to a minimal subideal of one of
the Nex, k e®; (see proof of [7, Theorem 4]). For ke®;, e, is dual to
esay A, and thus the minimal subideal of e, is isomorphic to e, w/Nesu -
Thus, Z; C {o(k) | ke®;}. From the minimality of ®; it follows that

(o(k) |k e®) C 5,
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and, therefore, (5) is proved. (6) follows from (5) and from the fact that
m(o(k)) = kfork e¢®;.

CoroLLARY. Let Ue; be weakly subordinate to a set of dominant ideals.
3; has a single element 7, i.e., Z; = {j}, of and only if e; is weakly subordinate
lo the single dominant ideal Nex¢j) .

Note that the g;; are defined for any ¢ and j, but the h;; are defined only
for those ¢ such that 9e; is weakly subordinate to a set of dominant ideals.
If 7 is such that e, is weakly subordinate, then for every j

(7) gi; = hix¢y and  hi; = Gio( -

Hence, the number &, of times e, appears as a component of IN; is exactly
the number ¢« of components &;.,¢; in &S(e;).

2’. Weakly subordinate right ideals

The case in which & is a primitive right ideal weakly subordinate to a set
of dominant ideals is exactly dual to the left ideal case. The definitions
and results will merely be stated.

If e; 9 is weakly subordinate to a set of dominant ideals, let ¥, be the set
of integers such that ¢; 9 is weakly subordinate to {e; A | k& ¢ ¥} but not to
{er A | ke X}, where X is any proper subset of ¥;. Thus, e; ¥ is weakly
subordinate to {ex A | k e ¥} if and only if e; A is isomorphic to a submodule
M¥ of the right A-module

(3,) 973@ = Zke\l/,' Zgﬂi (273 2[

By setting Zs = 0 for all k ¢ ¥, , the summation in (3’) can be extended so
that

&) o = 2oy Skt g, 91

TaroreEM 1’. e; A is weakly subordinate to a set of dominant ideals if and
only if I; < M. If e; A is weakly subordinate to a set of dominant ideals
f{er A | ke T}, then

(%) I = {x(k) | keWy,
(6") ¥, = {a(k) | k eIL}.

CoroLLARY. Let e; A be weakly subordinate to a set of dominant ideals.
Then 11; has a single element k, i.e., II; = {k}, iof and only if e; A is weakly
subordinate to the single dominant ideal e,u) .

As before, the relationships among the §;; and %;; are

(7) Gis = hioy and  Kij = Firep) -
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3. Cartan invariants for left ideals

DermniTion. If e; is weakly subordinate to {ex |k e®;}, then let d;
be the number of irreducible constituents equivalent to §; of the representa-
tion whose module is /M7 .

Tarorem 2. If e; is weakly subordinate to the set of dominant ideals
{Uer | k e}, then foranyj =1, --- ,n

(8) Lo ¢i; + dij = D rew; har G ;
(9) 2. Cij S D ety ik Cij;
(10) 3. ¢i; = D _kew; hax Cxj for all § if and only if 5 € 1.

Proof. 1. Since §; appears ci; times in e, (or, more precisely, §&; appears
cx; times as an irreducible constituent in the representation B generated by
Ne.), F; appears hax ci; times in My = vtk e, . Thus, since

9)}@' = Zke@i ’SD’&i,k )

X7 appears Y _kes; ha cx; times in M, . Since MY = Ye, , F; appears ¢;j times
in MT . Since d;; is the number of times that §; appears in 9./ My, it
follows that ¢;; + di; = Zketb,; Rir Crj -

2. Since for all ¢ and j, d;; = 0, (9) follows from (8).

3. If ¢ij = D kew; hax cxjfor all j, then dy; = O forallj. Thus, M:/Mi = 0,
and hence M7 = P, . But, since Ae; is a primitive ideal, it cannot be iso-
morphic to a sum of more than one primitive ideal. Therefore, IM; is a single
ideal ey, and Ae; =2 e, , which implies ¢ = k. Thus, 7 eIl, ie., Ae; is
dominant. The converse of (10) is immediate.

In each of the following special cases a set of relations similar to (8), (9),
and (10) can be obtained as corollaries to Theorem 2. However, only the
formulas corresponding to (8) will be explicitly stated.

CoroLLARY. If e; is subordinate to {Nex |k e®s}, Uer dominant, then
ci; + di; = Zk,q,t. cki, j=1,---, n. If Ye; 2s weakly subordinate to a
single dominant ideal Ney, then c¢;; + dij = haccrj, 3 =1, -+, n. If e
is subordinate to a single dominant ideal ey, then c;; + dij = crj, § = 1,

<, N

3’. Cartan invariants for right ideals

If e; 9 is weakly subordinate to {ex | k € ¥}, then let d;; be the number of
irreducible constituents equivalent to §; of the representation whose module
is My/MF. If, in the preceding section, c;; is replaced by &;, di; by dij,
hi; by hi; , etc., then the results hold for a primitive right ideal e; % weakly
subordinate to {e; A |k e ¥;}. For example, (8) of Theorem 2 becomes
G + dij = Zkem Frar s -
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However, for every ¢ and j, &; = c¢;; [1, p. 106]. But it is not true in

general that A;; = hj; or d;; = dj;. For example, let % be the algebra of all
matrices of the form

[V, 0]

o V.|

o 0 0] a 0 0

where

V1= g OLzO and V2= o a10 s

[eZ e 4 S < Qg o5 o

and the «; are elements of the field K. Let z; denote the matrix in which
=1 and a; = 0 for j # 4. Then {2} form a basis of %, and {]iz
are a maximal set of nonisomorphic primitive idempotents. Then, with
respect to this maximal set, the numbers ¢;; , d;;, etc., can be easily calcu-
lated. It is seen that dy = 1 while dis = 0, and hy = 1 while Ay = 0.
By using the numbers d;; and h;; along with the Cartan invariants ¢;; the
results for right ideals are as given below.

TaeoreM 2. If e; A s weakly subordinate to a set of dominant ideals
{ex A | ke W}, then for any 7 =1,---, n

(8) 1. ¢j+di; = Zke\lfi g ¢n
(9) 2. ¢ii £ D ke, hacin
(10") 3. ¢ji = D rew; hax i for all § if and only if 7 e =.

As in §3, only the formulas corresponding to (8') of Theorem 2’ will be
stated in the corollary.

CoroLrArY. If e; U 1s subordinate to {ex A | k e ¥}, ex A dominant, then
cji + dij = Zke\y Ciry, J=1,---, n. If e; A 28 weakly subordinate to a
single dominant ideal e ¥, then ¢ii +di = hacip,j=1,-,n If ¥
18 subordinate to a single dominant ideal ey U, then c;; + JU =cp,) =1,

-, M

4. Cartan invariants of UMFR algebras

In a previous paper [7] properties of various subclasses of UMFR algebras
(algebras with unique minimal faithful representations) have been studied.
The definitions of some of these classes will be repeated here, and the Cartan
invariants of algebras in these classes will be studied in this section.

1. Ais UMFR if and only if every primitive ideal (left or right) is weakly
subordinate to a set of dominant ideals of .

This characterization of the UMFR algebras was given by Thrall [0,
Theorem 5]. It has been shown that the dominant ideals may be chosen
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mutually nonisomorphic [7, Theorem 1]. In the language of Theorems 1
and 1/, another characterization of the UMFR algebras can be obtained:
A is UMFR if and only if for every 7, ; C 2 and II; C II.

2. Uis type A if and only if every primitive ideal is subordinate to a set
of dominant ideals, i.e., is subordinate to an ideal which is the direct sum of
dominant ideals. The dominant ideals in the set cannot necessarily be
chosen nonisomorphic.

If A is a UMFR algebra, then 9 is type A if and only if for all ¢ and £,

(11) hie £ fr and ha £ fi (hence, also ga < fray and fa < foy),

where fi , given by (1), is the number of primitive idempotents isomorphic
to e, in any decomposition of the unit element [7, Theorem 5].

3. UAis type AC if and only if every primitive ideal is subordinate to a set
of mutually nonisomorphic dominant ideals of .

4. 9 is type B if and only if every primitive ideal is weakly subordinate
to a dominant ideal of U.

5. Ais type AB if and only if every primitive ideal of ¥ is subordinate to a
set of isomorphic dominant ideals of U, i.e., is subordinate to an ideal of A
which is the direct sum of isomorphic dominant ideals of .

6. A is type ABC if and only if every primitive ideal is subordinate to a
dominant ideal of 2.

From the corollaries to Theorems 1 and 1’ it follows that if 9 is a UMFR
algebra, then ¥ is type B if and only if, for every 7, 2; and II; are sets with
one element. Thus, for an algebra of type B two functions can be defined.

DeriNiTion.  If U is type B, then define functions ¢ and = from {1, - - - , n}
into itself as follows: ¢:¢ — o(2); w:2 — w(7); where ¢(2) and w(z) are the
unique elements of Z; and II;, respectively.

This generalizes the functions ¢ and = defined by Thrall [6] for algebras of
type ABC.

TaroreMm 3. If A is a UMFR algebra, then for every ¢ and j

(12) Cij = le;l Gik Cik »
with equality holding for all j #f and only of © e1I; and
(13) Cij = Zl?z-l Gk Cri

with equality holding for all © if and only if j e 2.

_Proof. By (9), (7), (2), and (5) it follows that ci; < D ked; bk Cij =

ked; Jio(k) Chj = Zke<1> Jioty Ciatky = D kez; Jit Cii - Since gge = 0 for kg Ty,
the final summation can be extended, and thus ¢;; £ D tw1gucix. The
condition for equality follows immediately from (10).

The proof of (13) is dual to that of (12) and uses Theorem 2’ with suitable
changes in subseripts.
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CororrarY 1. If U s type A, then for each 7 and j
(14) Cii S Donews fr Ori = 2 kez; frao Cit
(15) Cii S Dew; frCit = D _kent; fo Chi -

Proof. The first part of (14) follows from (9) and (11), and the second
part follows from (12) and (11) summing only over £;. The proof of (15)
is dual to that of (14).

Although the summations in Corollary 1 could be extended to run from 1
to n, the resulting inequalities would in general be less accurate estimates
for ¢;; since fi = 1 for all <. Similarly, the estimates in Corollary 1 may be
less accurate than those in Theorem 3, but (14) and (15) involve only the
cii’s and the f;’s.

CoroLrLARrY 2. If U s type AC, then for every i and j

(16) Cii = Zke}); Cik s
with equality holding for all 7 +f and only if 7 e 11; and
17) Cij = Zkeﬁi Chi 5

with equality holding for all ¢ if and only if j € Z.

Proof. (16) can be proved either from Theorem 3 or by use of Theorem 1
and the corollary to Theorem 2. The proof of (17) is dual.

Note that for algebras of type AC, (16) and (17) give relationships among
the ¢;; alone.

CororLLARY 3. If U is type B, then for every ¢ and j
(18) Cij = ot Cioti) »
with equality for all j of and only if 2 € II; and
(19) Cij = Jin(i) Cx(ii
with equality for all © <f and only if j € Z.

Proof. From Theorem 3 and the corollary to Theorem 2, it follows that
Cij £ Giowy Cjoky , Where e, is the dominant ideal to which %e; is weakly
subordinate. But, if Ae; is weakly subordinate to ¥e; , 0(2) = ¢(k). Thus,
(18) is proved. The proof of (19) is dual.

CorOLLARY 4. If U s type AB, then for every ¢ and j
(20) Cij = frwtiy Ciotiy
(21) Cii = Jor(i) Criivi -

Proof. Corollary 4 follows immediately from Corollary 3 and (11).
As noted concerning Corollary 1, the estimates (20) and (21) may be less
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accurate than (18) and (19), but only the ¢;;’s and f;’s are involved in (20)
and (21).

CoroLLARY 5. If N is type ABC, then for every ¢ and j

(22) Cij = Cioti) »
with equality for all j if and only of 7 ¢ I1; and
(23) Cij = Cr(j)is

with equality for all © if and only if j € =.

Proof. The proof is immediate from Corollaries 2 and 3.

Inequalities (22) and (23) were proved for ABC algebras by Thrall [6,
Theorem 3]. Theorem 3 and its corollaries generalize these results to the
UMFR algebras and its subclasses.

5. Cartan matrices of UMFR algebras

Since the various summations in Theorems 2 and 3 can be extended to run
from 1 to n, it is possible to restate these results in matrix form. In addition
to the Cartan matrix C(¥A) = (c¢i;), define D(A) = (ds;), H(A) = (hij)
and G(QI) = (gu).

TaeoreM 4. If A ¢s a UMFR algebra, then
(24) C(A) + D(A) = HERHC(A) = GRHCAY,
(25) C(A) = HENHC(A) = GANCAY,
with equality if and only of A is a quasi-Frobenius algebra.

If U is quasi-Frobenius, the G() and H(Y) are permutation matrices.
The matrix C(2)’ is the transpose of C(2), and the relation “=<” is defined
elementwise.

The relationship between the matrices H(9() and G(¥) is given by a matrix
T(%I) = (tij) where

1 if del,s(z) =5 or 2¢ll,4 = j,
tij =
0 if 7ell,s(¢) =5 or <¢ll, % 5 7.

Then the relationship is G(A)T(A) = H(NA).
_A similar set of matrix relations for C(YN) can be obtained in terms of
D(A) = (di;), H(A) = (hi;) and G(A) = (§i;)-

Taeorem 4'. If A is a UMFR algebra, then
(24") C(A) + DAY = C(AHA) = CA)'GAY,
(25") C(A) = CAHN) = C(AYG),

with equality ©f and only iof A is a quasi-Frobenius algebra.

I
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