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1. A few years ago Komatu and Nishimiya [4] raised the question of obtain-
ing bounds for the distortion in the spherical metric of normalized univalent
functions in the unit circle, that is, for the quantity [if(z)[ (1 + [f(z)[2)-1
for a given value of z I. The explicit values they obtained were for the most
part not sharp. Quite recently Oikawa [6] obtained the best possible upper
and lower bounds for all values of [z 1, 0 < zl < 1 using the variational
method. None of the preceding authors seems to have realized that the
lower bound has essentially been known for many years. Indeed by the
standard distortion theorem, if zl r, 0 _-< r < 1,

If’(z) - <= (1 + r)a/(1 r),

while by a result of L6wner [5] in a form given by Robinson [7]

If(z) [f’(z) - < r/( r).
By adding these,

(1 + If(z)[2)[f’(z)1- =< ((1 -t- r) -t- r2)/(1 r),
which on inverting gives just the lower bound obtained by Oikawa. As is
well known, equality occurs in this for the slit functions and for them only.
Of much more interest is the fact that the form of solution obtained by

Oikawa has very little dependence on the explicit form of the spherical dis-
tortion. In fact an analogous result applies to expressions of the form
F(lf(z) I, If’(z)I) whenever F satisfies certain fairly simple restrictions to
be discussed in detail below.

2. As usual we denote by S the family of functions f(z) regular and uni-
valent for z < 1 with f(0) 0, f’(0) 1. We begin with discussion of
the functions which play the extreml role in our problems.

THEOREM 1. Let 0 < r < 1, r/(1 - r) <= q <- r/(1 r). Then there
exists a unique function f(z, r, q) in S with f(r, r, q) q mapping[z[ < 1
conformally onto an admissible domain [2; 3, p. 49] with respect to the quadratic
differential for q r,

Q(w, a, q)dw q (w a)dw
aw(w- q)
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where a is determined by

(1) log ((a- q) /a) 1/2- 1
((a q)/a)1/. + 1

and satisfies

a ql1/2

-t- a log 4 la[ logr

a >= -, r/(1 + r) <= q < r,
1a < , r < q < r/(1 --r)

or with respect lo the quadratic differential for q r,

Q(w, q)dw dw
w2(w- q)2"

With f(z, r, q) is associated (except for q r/(1 + r) ’, r/(1 r)) a one-
parameter family offunctions f(z, r, q, X) e S where f(z, r, q, X) is obtained from
f(z, r, q) by a translation of amount X in the Q-melric along the trajectories of
Q(w, a, q)dw (Q(w, q)dw) combined with a rotation of the w-plane through
the angle -X where

(2)
((aIX =< min % q)1/2

[ (r-1 r) sin ]]tan-
2-- (r-t + r) cos

and
1 r_cos +r) (r-- r)

Of course f(z, r, q, 0) =- f(z, r, q).
If f(z) e S with f(rei) q, then

(3) f’(re) <= f’(r, r, q)[,

equality oecurrin9 only if
f(z) eif(ze-i, r, q, X).

In the circle [z < 1 we regard the positive quadratic differential

Q(z, r, 9)dz (z e’*)(z e-i*)
dz

z(z r)(z

where 0 _-< 9 _-< r. The mapping

r f r, (/))1/2 dz,

where the radical is chosen to be positive on the segment 0 < z < r, carries
the upper unit semicircle onto a domain in the -plane bounded by rectilinear
segments of the following nature. Let A, A., A, A*, A be the images of
0, r, 1, e -1. Then for a suitable choice of the lower limit of integration,
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A1 A2 is the real axis with both A1 and A. at the point at infinity and f in-
creasing as we go from A1 toA A A.a isa half-infinite horizontal segment, the
value of af on it being positive with 6f decreasing as we go from A to Aa
A3 A* is a vertical segment with af decreasing as we go from Aa to A* and
with af positive at A*; A* A4 is a vertical segment with af increasing as we go
from A* to A4 A4 A1 is a half-infinite horizontal segment with 6" decreasing
as we go from A4 to A1. Exceptionally, two of Aa, A*, A, may coincide, in
which case the corresponding segment reduces to a point.
Now let the domain bounded by the real axis and the segments A2 Aa,

A3 A, A A1 (i.e., the domain obtained from the preceding by deleting the
slit penetrating to A*) be mapped conformally on the upper half w-plane
with A A2, A3, A*, A going into wl, w2, w3, w*, w4, where wl is the
origin and w3 or w is the point at infinity according as sif is larger at A3 or A4
(these points coinciding at infinity when Aa and Aa coincide). Reflecting
across the segments -1 < z < 1. and w wl wa of the real axes in the z- and
w-planes, we obtain a conformal mapping of z] < 1 onto the w-plane minus
a forked slit. The mapping will be assumed normalized so that dw/dz 1
at z 0. Then we denote w. by q (which is positive) and whichever of wa
and w4 is not the point at infinity by a (provided these points do not coincide).
The corresponding mapping function is denoted provisionally by g(z, r, ).

It is clear that the function g(z, r, ) varies continuously with in the usual
sense of convergence. Moreover

g(z, r, O) z(1 + z) -, g(z, r, r) z(1 z)-;
thus q takes every value between r(1 + r)- and r(1 r)- at least once. If
we extend f as a (non-single-valued) function of w to the whole w-plane by
reflection in the various segments w w, w. wa, wa w, w Wl, we see at once
that -d/": is a quadratic differential on the w-sphere with double poles at 0
and q and, unless A and A4 coincide, a simple pole at the point at infinity
and a simple zero at the point a. Thus the quadratic differential has either
the form (Aa A)

(w- a)dw
v.(w- q).

or (A A)

w(w q)"

Consideration of the fact that g’(0, r, ) 1 shows that q:/a, . -q.
Denoting this quadratic differential generically by Q(w)dw, we see that

g(z, r, q) maps zl < 1 onto an admissible domain with respect to it. Thus
ixif f e S and has f(re) qe x real (corresponding to this value of ), we

are in a position to apply the General Coefficient Theorem [2; 3, p. 51]. In
the notation of that result we have now 6t the w-sphere, A the domain g(E, r, )
where E denotes zl < 1. Let q)(w) be the inverse of g(z, r, ) defined in
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g(E, r, ,). Then the function e-i’f(ei(w)) is an admissible function as-
sociated with A.
The quadratic differential Q(w)dw has double poles P1 at the origin and

P2 at the point q. The corresponding coefficients are
(1) a(1)o --17 e

() a(’) ei(x-)g’(r, r, )/f’(re)a (q-- a)/aor--l,

The fundamental inequality of the General Coefficient Theorem then gives

(R{- log e(x-) -- a
(2) log [ei(X-)g’(r, r, )/f’(re)]} <-_ O.

Since in either case a(:) is real and negative, we have that

If’(re)l <___ g’(r, r, )I.
Moreover equality can occur only when the above admissible function con-
stitutes a translation in the Q-metric (i.e., the metric Q(w) I/2[dw I) along
the trajectories of Q(w)dw"2.
From the latter remark we see that a given value of q can occur for at most

one value of . Thus we may now replace the notation g(z, r, ) by the nota-
tionf(z, r, q). Moreover an elementary calculation shows that the case where
Aa and A4 coincide occurs precisely when q r. Thus we have

a >= , r/(1 + r) <__ q < r,

a <= ---}, r < q <= r/(1 r) .
In order to find the explicit relationship between a and q (for fixed r) we

determine explicitly the extremal function. We have

r-" f (Z ei’)(Z e-i’)[z(z r)(z r-)]-1 dz,

and we choose the constant of integration so that A., A*, At lie on the imagi-
nary axis. Then

" log z + [((r + r-1) 2 COS )(r-1 ’r) -] log [(z r-1)(z r) -1]

+ [((r + r-) 2cos)(r-t r)-]logr.

Here determinations of the logarithms are principal on the segment (0, r).
We have for this the expansion about z 0

log z [((r -t- r-) 2 cos )(r- r)-] log r
(4)

-t- positive powers of z,
and about z r

" --[((r -{- r-) 2 cos )(r-1 r) -1] log (r z) -t- log r

(5) -t-[((r + r-) 2 eos)(r- r) -1] log (1 r)
positive powers of (r- z).
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We now get the similar formulas for w, treating for simplicity first the
case where a > 0. Then

/ qa-l/e(a w)/e[w(q w)]-I dw,

The choice of constant of integration corresponding to that made for z gives

(-) I[aI (a w)/:1 1/2 (a w)’ (a

" log La-i + (a w)
a .,,_q log

a (a- w)/ + (a- ’where the radicals are to be positive and the determinations of the logurithms
principal on the segment (0, q). We have for this the expansion about w 0

(6) logw lg4a+(a-q)1/2a log

+ positive powers of w,

and about w q

log (q- w) + a- log4(a- q)
a a

(7)
a q)/+ log L + (a 2 + positive powers o (q- ).

Agreement of the expansions (5) and (7) shows first that

(8) ((a q)/a)/ [((r - r-1) 2 cos )(r- r)-].

Then the fact that dw/dz 1 at z 0 gives us

=( a 1/2 lull2_ (a_q)il21log r \h- ql log 4a-t-log La + (a- J"
Explicit determination of the similar developments in the case where a < 0
shows that (8) is valid in any case, whereas we have in general

a ((a q)/a) /
log r h log 4 al + log ((a q)/a) 1/2 --{- 1

It remains only to determine for what functions equality can occur in (3).
As we have seen, this is possible only when the mapping given bye-Xf(eO(w))
amourts to a translation in the Q-metric along the trajectories of Q(w)dw.
Such a motion is equivalent to vertical translation in the -plane and my
be made in either sense to the extent of the length of the slit penetrating to
the point A*. This length is found by direct calculation to be

+ tan-1
2 (r- + r) cosa
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where

llr-1 rcos
a

THEOREM 2. Lel 0 < r < 1, q > 0, and let (z, r, q) denote the funclion
z[1 -+- (q-1 (r- _+_ r))z + z2]-. Lel f(z) be meromorphic and univalent

for z < 1 with f(O) O, f’(O) 1. If If(re’) q, 0 real, then

equalily occurring only if
f z eO ze-, r, q

This theorem is readily derived from a well known result on slit mappings,
but for completeness we give its proof here on the same lines as that of Theo-
rem 1.

Indeed (z, r, q) maps zl < onto a domain A(r, q) admissible with re-
spect to the quadratic differential

(w, q)dw
w2(w- q)2"

Denoting by (w) the inverse of (z, r, q) defined in A(r, q), if f(reio) qeix,
x real, we have e-f(eO(w)) an admissible function associated with A(r, q).
We can now apply the General Coeilicient Theorem with (R the w-sphere,
Q(w)dw the quadratic differential Q(w, q)dw, A the domain A(r, q), and
the above admissible function.
The quadratic differential has double poles P1 at the origin and P2 at the

point q. The corresponding coefficients are

() -2 a(2) e(X-) r, r, q) If’ (re).
The fundamental inequality of the General Coefficient Theorem then gives

lq- log e(x-) + q-2 log [e(X-)’(r, r, q)/f’(reO)]} <= O,
OF

If’(re)l >__ ’(r, r, q)[.

The equality statement follows from the final statement in the General
Coefficient Theorem [2, 3] together with the normalization f’(0) 1.

3. We will now give the exact region of values of the pair (If(z) 1, ]f’(z) l)
for f(z) e S.

THEOnEM 3. The region of values of the pair ([ f(z) I, f’(z) I) for f(z) e S
is (where z r, 0 < r < 1) the closed region L(r) of points (q, s) determined
by the inequalilies

(9) r/(1 + r) <= q <= r/(1 --r),
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21 r(10) q
r2

I4 la ql (4 lal) -a/(a-q)

=<s<i=1
1--r2_1

r2

qr,

q-r

where a is determined by equation (1). The boundary of L(r) consists of two
arcs (with common end points) Fl(r) corresponding to the lower bound in (10)
and Fe(r) corresponding to the upper bound in (10). A boundary point (q, s)
on I’l(r) occurs only for the functions ei(ze-io, r, q); a boundary point (q, s)
on Fe(r) occurs only for the functions eief(ze-, r, q, X) where X satisfies the
bound (2).

Indeed we verify immediately that (z, r, q) is in S for r/(1 -- r) <=
q =< r/(1 r)e, andthat

’(r, r, q) qe( 1 re)/re.

On the other hand, comparing the expansions (5) and (7) and the correspond-
ing ones for a < 0, we find for q r

log f’(r,r,q) --log (1 r2) (a/(a-- q)) log4 ai -t-log41a-- ql,

or

If’(r,r,q) 4 la ql (4 lal)-a/(a-q)

1 r

while directly for q r

If’(r, r, r) 1/(1 re).

Thus from Theorem 1 and Theorem 2 we obtain the bounds (10) together
with the corresponding equality statements. It is verified immediately that
f’(r, r, q) is continuous at q r; thus the boundary segments are arcs as
stated.
Now it follows by a standard argument due to GrStzsch [1; 3, p. 94] that

the region of values of the pair ([ f(re) l, If’(re) I), 0 real, is the closed region
defined by the inequalities (9), (10).
The bounds (10) were given by Robinson [7], the lower bound as here, the

upper bound in a different formal expression which necessitated the use of
different formulae according as q < r or q r. He did not obtain the ex-
tremal functions or characterize the region of values, although, of course, as
we have just seen and as is usual in most similar problems, the latter is straight-
forward once the inequalities are obtained.

4. The result of the preceding section reduces the determination of bounds
for a quantity of the form F(f(z) [, If’(z)I) to a problem in calculus. For
the record we state this in the form of a theorem.
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THEOREM 4. For any function F(q, s) defined on L(r) we have for lz < 1

min(q,)L(r) F(q, s) <= F(] f(z) ], f’(z) [) -<_ maX(q,s)L(r)F(q, s).

If the function F has more restrictive properties we can make more precise
statements.

COROLLARY 1. If the function F(q, s) is defined on L(r) and has no extreme
vatue at an interior point of L(r), then

miIl(q,s),r(r)Urer) F(q, s) F(I f(z I, If’(z) I) maX(q,,)r,(r)ur2r)F(q, s).

Equality can occur at most at points of Fl(r) o F(r).

Further analysis of the occurrence of an extremum on F(r) or F:(r) can
be made on the basis of sharper properties of F. We will not elaborate this
here.
As an illustration we will solve explicitly the problem treated by Komatu,

Nishimiya and Oikawa. In it the function F(q, s) is s/(1 -- q). It is clear
that the minimum occurs on F(r), the maximum on F:(r). For the mini-
mum we have the minimum of (1 r)q/r(l -- q) on the interval
[r/(1 - r) ’, r/(1 r)]. Since this flmction of q is strictly increasing, the
minimum value is evidently (1 r)[r -- (1 -- r)4]-.
To deal with the maximum problem we observe that for q r

__d log F(q, f’(r, r, q)])
dq

1
q-- a . q- a log41al

1 -F q"

where da/dq is determined from the equation

(da) 2a(a--q)(12) qq-- a log41al
q

obtained by differentiating (1). Substituting from (12) in (11) we obtain

d
log F(q, [f’(r, r, q)I)

dq
(13)

1
_

2a 2q q- q 2a
q- a q(a q) 1+ q q(q- a)(1 + q)"

This last term is evidently positive if q < r, and also for q > r but sufficiently
close to r. From(12) we see that a/q increases with q. Writing (13) in the
form

logF(q, f’(r,r,q) ) 1 q 2a/q
dq (q- a)(1 + q:)’

we see thut F(q, f’ (r, r, q)) increnses with q until we possibly meet a point
where a -(q q), then decreases. Thus if this value of a is possible, the
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maximum occurs there, otherwise for q r/(1 r)2. Since as q increases,
a/q increases and 1 q2 decreases, such a solution exists only if r exceeds the
smallest positive root r0 of the equation

1 1( r r )4 2 (1 r) (1 r)
that is, of

r 4r5-l- 7r 10r A- 7r2- 4r-f- 1 0.

It is seen at once that this is the only such root in the interval (0, 1).
Summarizing these statements we obtain Oikawt’s result.

COnOLLARY 2. If ro denotes the smallest positive root of the equation

r 4r5-4- 7r4- 10r-4- 7r2- 4r + 1 0,
then

1 r reio 1 r< if’( )l <
r A- (1 -t- r) 1 -k If(re) 12 r -4- (1 r) 4’

<- M(r),

2q q2 1
where

log M(r) log
1 r q2 -t- 1

and q q(r) is the function defined by

O<r<ro

ro<rl

log 2(q q),

/q2 11)1/2 (q--1)(14) log r q2-4- log 2(qa- q) -f- log
(q -f- 1)1/2 1/2

(qe-{- 1)/- (q-- 1)/2

For the lower bound, equality occurs only for the functions z(1 + e-ez)-2 at the
point re, 0 real. For the upper bound, 0 r <= to, equality occurs only for
the functions z(1 e-iez) -2 at the point re, 0 real. For the ’upper bound,
ro r 1, equality occurs only for the .(unctions eef(ze-, r, q, X) at the point
re real, q determined from (14), and X satisfying the inequality (2).

5. The following remark must certainly be known although the author
cannot recall its occurrence in the literature.

Remark. In most explicit extrcmal problems treated by the method of the
extremal metric and the variational method, one is led to a solution deter-
mined by a quadratic differential. In the present instance we see, however,
that the function F may readily bc chosen in Theorem 4 so that maximizing or
minimizing functions f do not correspond to quadratic differentials. This
correspondence occurs only when in some sense the problem has a measure of
linearity. It is just to such problems that the General Coefficient Theorem
applies.
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