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1. The limiting theorems for the Galton-Watson branching process have
been discovered in recent years. An account of this work and references to
the literature are given in Harris [3]. A discussion of the elementary aspects
of the branching process is given in Feller [1, Chapter XII].
The problem for the case where extinction does not occur with probability

1, may be formulated mathematically as follows. The probability p. >_- 0
that one object forms j objects is given, and

..jp m > 1.

The generating function associated with {p} is

f(s) _, p s, sl <= 1.

Note that f(1) 1 and f’(1) m. If the random variable z has as its
generating function f(s), where

(1.1) f(s) f(s), f,+l(s) f(f,(s)),

then fn(1) 1, and the expectation of zn is given by

S(z,) It,, (1) m’.

The variable z represents the number of objects after n generations. If the
renormalized random variables

Wn Zn/m
are considered, and if

G,(u) Prob (w _<_ u),
then

(1.2) 4,(s) e dG,(u) E(e-.wn)

is given for n >_- 0 by

(1.3) ,+l(s) f(4,(s/m)), R1 s _>- 0,

where 0(s) e-8. (Note that here -s is used where Harris uses s.)
Note also that (0) 1 and eta(0) -1, which is equivalent to

(1.4) I_ dG,(u)--1, I_ u dG,(u)- 1.
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If the further assumption is made that

that is, that the second moment exists, then it has been shown that

(1.6) limn-.n(S) --(S), R1 s __>- 0,
exists. Moreover ’(0) 1. This is equivalent to the existence of

(1.7) limn Gn(u) G(u),

(1.8) dG(u) 1,

(1.9) ] u dG(u) 1.
J0

In other words, Zn/mn-- Wn converges in distribution to the random
variable w with distribution function G, and by (1.9) E[w] 1. Harris [2]
also showed that for u > O, dG/du exists and is continuous (except in the
trivial case where m is an integer and pm 1, so that f(s) s and
,n(S) e-).

It was remarked by Doob that for (1.6), (1.7), and (1.8) to hold, the
existence of the second moment (1.5) is not necessary. However, as will be
shown below, if only the first moment m exists, then it is possible for (1.9) to
fail, that is, for E(w) < 1, and indeed for E(w) 0. That is, it is possible
for G(u) 1, u > 0. In this case then w 0 with probability 1.

It is the purpose of this article to show that the existence of the second
moment can be replaced by a much weaker requirement which will assure
that all the limit properties mentioned above hold, including E(w) 1, i.e.,
’(0) -1. Let 5’(t) be a continuous monotone nondecreasing function of
for ->_ 1, and let

(110) f dt
t3,(t)

Then the existence of the second moment can be replaced by the weaker
requirement

(1.11)
and all the limit results stated above remain valid. (Examples of 5’(t) are, (1 -P log t) 1+, (1 -t- log t)[log log (e + t)]l+.)

It will be more convenient to assume an even less restrictive form than
(1.11), namely, for some constant C,
(1.12) j_,jp <- C/.),(n),
which is obviously implied by (1.11).

Further it will be shown that if

dt
t,(t)
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then the situation E(w) 0 may actually arise even though (1.12) holds.
Hence the requirement (1.10) and (1.12), which is only slightly more stringent
than the existence of the first moment, is indispensable for E(w) 1. Inci-
dentally the existence of dG/du for u > 0 will be demonstrated without the
assumption of the existence of the second moment by a modification in the
argument of Harris [2].
The case m < 1 can also be treated by the method that follows.

2. THEOREM 2.1. If m > 1, and (1.12) and (1.10) hold, then

(2.1) limnn(s) (s), R1 s >= 0,

exists, where Cn(S) is defined in (1.3) and

(2.2) (s) f((s/m) ).

Moreover (0) 1 and ’ (0) 1 in the sense that

(2.3) lims0 (1 (s))/s 1, R1 s >= 0.

Moreover (2.2), (0) 1, and (2.3) determine (s) uniquely even if s is re-
placed by the real variable

This theorem will be proved by means of the following lemmas.

LEMMA 2.1. The formulas (1.12) and (1.10) imply the existence of a con-
tinuous nondecreasing function a(), 0 <- < c, (0) O, such that

a()(2.4)
J0

(2.5) I(1 --f(e-))/(r

Proof of Lemma 2.1. It is convenient to introduce (t) C/’(t). Since
(1.10) implies ,( , f( 0. Also (t) is continuous and non-
increasing for 1 -< <

(2.6)

and

(2.7)

and by (1.10) and (1.12)

dt < ,

j_njpj -<- (n).

With no restriction it can be assumed that has a continuous derivative;
indeed, replace it by -1 (y) dy.
From the definition of m and f follows for z > 0

m- (1- f(e-))/r "jljpj(1- (1- e-)/j)
since

0 < 1 --(1 e-)/x< min (x,1) for0 < x < ,
(2.8) Im-- (1 f(e-))/al <- J + J.
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for 0 < < 1, where

(2.9) J _,_l/jp <= (1/a)

and
J o-,</fp

If S kp, then

J2 <uj(S S+) <ujS -<u (J 1)S
(2.10) fl,
For0 z 1, let

lla

a(a) (1/) + a(1) + (t) dr,

and let a(a) a(1) for > 1. Then by (2.8), (2.9), and (2.10), it follows
that (2.5) holds. Moreover a is continuous, and

1a’(z) --%1 ’(1/) + (1) + , (t) dt--(1/).

Since ’ 0,

() (/),

and (1) (1/). It follows that a’() 0. Hence a is nondecresing,
and a(0) 0. Moreover,

a() d d + (1) + (t) dt da.

Setting a 1/u gives

I(1/) d= (U)u du,

(t) dt d (t) dt dr.

Hence (2.4) holds, and the lemma is proved.

LEMMA 2.2. Let (2.4) and (2.5) hold. Let o() e-, and let

(2.]1) +,() f((/)), o < .
Then over anyfinite interval of 0 < n converges uniformly to a limit

(). Moreover (0) 1,

(2.12) () f(gp(a/m)),

and

(2.13) lim,_.0+ (1 ())/ 1.
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Proof of Lemma 2.2. By induction, 0 -< Cn(a) =< 1. Since f’(s) <= in

for Is =< 1,
4J,+1(() (() f(4J,(q/m) f(4J-(q/m)

yields by the theorem of the mean

(2.14) ()n-l-l(O") n(ff) ml ]Jn(ff/m) iCin-l(ff/m) I*
Clearly

(l(ff) (O(O’) f(e-’/’) e-" m Em l f e-"/’

/m -t-l-a- e-"

Since 1 a- e-’l -< a2,
() -0() -< (lm)(/m) + g.

If (a) a(a) -4-" ma, then has all the properties of a, and

[()- 0() _<_ (/)(/).

Hence denoting from here on by a, we have

(2.15) ,(o-)- o(<,.) < (<,-/)<(<,-/).

Using (2.14) and (2.15) yields

Hence for k > 0

Cn+,(<’) >.(<,) --< (<,/) 7-- <(o/"+).
Since a is nondecreasing and m > 1,

-(/+) =< .(/m’+),
Thus

(/m/) <_ (/m/) . j--l<t<j.=

Let be replaced by the variable u, where

u r/m+ dt du/(u log m)
Thus

Hence

(2.16)

a(o’/m"+’) dt
1 f’/" a(u) du.

log m u

,.+(-) .(,) --< du.
m log m u

This proves the uniform convergence of n(a) over any finite interval of a

as n -- , and (2.12) follows from (2.11). Since (0) 1, it follows that
(0) 1.
From (2.16) follows with n 0

1 4)(a) 1 4o( 1 fo a(u)_ du.
m log m u
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Letting ]c -- gives

o" o"
< 1 fo a(u)__ du.
mlogm u

Now letting -- 0-t- gives (2.13).

Proof of Theorem 2.1. With Cn(s) defined in terms of f by the recursion
formula (1.3) and 0(s) e-s, it follows by induction that

dpn(8) _--0 pn,j e-js/m,

where the pn.j >- 0. Since (0) 1, (0) 1,

=0 p, 1, = p. 1.

Hence all)n(8), R1 s _-> 0, is the Laplace-Stieltjes transform of a step function
G,(u) which increases at u j/m" by Pn,j. Thus G,(u) O, u < O, and
Gn() 1, and

(2.17) 4,() e dG,(), R1 e >- 0.

By the Helly selection theorem it would follow, if the Gn(u) did not converge
as n -- , that there would be at least two subsequences each converging to
distinct limits, G and 0. These would have distinct transforms, (s) and
5(s). But by Lemma 2.2, () () 0. Since and 5 are analytic for
R1 s > 0, this implies that , and hence that Gn(U) must converge to a
limit G(u). Hence by (2.17), (s) converges to (s) for R1 s -> 0.
From (2.13) and

rh(a) e dG(u)

follows readily that

and this in turn yields (2.3).
convergence of (s).

u dG(u) 1,

The equation (2.2) follows from (1.3) and the

To prove that () is uniquely determined by (2.12), (2.13), and (0) 1,
observe that (2.13) implies

b(a) 1 a -t- ao(1)

for small a > 0. Let () also satisfy these conditions. Then if

r(a) >-_ 0, and r(a) --, 0 as a -. 0+. From

(mr) (ma) f($(a)) f((a))

and]f’l <= m follows
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or

(2.18) r(ma) __< r(), a >- 0.

Since r(z) -- 0 as --, 0+ and m > 1, (2.18) implies that r(a) 0, which
proves that (2.12), (2.13), and (0) 1 determine () uniquely.

3. It will be shown here that if the conditions (1.10) and (1.12) are
weakened, then the case (s) 1 can arise, that is, E(w) 0. It will be
more convenient to work with (t) C/.(t) as was done in the proof of
Lemma 2.1. Let (t) be continuous and decreasing for >__ 1. Let

(3.1) dt

Further let ’(t) exist, ’(t) < 0, and let f’(t) be increasing. (Examples of
such (t) are [log (1 + t)]-l, [log (e - t) log log (e + t)]-l, etc.) Then it
will be shown that there exist p. __> 0, j ->_ 0, and a constant v > 0 such that

(3.2) 7"7 p 1, 7jp m > 1,.

(3.3) j>=njPj <-- v(n),

and such that (s) --* 1 as n --. , R1 s _>_ 0.

]EMMA 3.1. With (t) as described above satisfying (3.1), there exist pj}
satisfying (3.2) and (3.3) and a continuous increasing function b( a) 0 <= (r <_ 1,
b O O, such that

(3.4) m- (1 -f(a))/(1 a) => b(1 a), 0 _-< a =< 1,

and

(3.5) :

where as usual f(s) p s.
Proof of Lemma 3.1. Let p0 pl 0, and let

pi --(v’(j - 1))/j, j>=2,

where v is chosen so that p. 1. That this can be done follows from

jjpj --v ;" [Y(j -t- 1) <__ --v [Y(t) dt vf(n),

which proves (3.3). Clearly
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m
1 f(o-) _, N(j -}- 1) I1

V
_-> v .>/(x_) N (j -t- 1 L 1

>__ --1/2v N(3 + t)dt
(1--o’)

2

Let
b(a) 1/2v(3 -+- 2/),

Then the above is (3.4), and by letting l/t,

b(z). dz 1/2v (3 -}- 2/)- 1/2v

-V))j

(1 -j

0-<-<1.

B(3 - 2t) dt

by (3.1). Hence (3.5) is proved.
By letting b0(a) e and, as in (1.3),

t}n-FI(tT f(rk.(./m)),

it follows from the theory of martingales, as Doob has pointed out, that
(a) converges to a limit(a) for a >- 0. Sincef’ and f" > 0, an easy induc-
tion shows that ’:(a) > 0 for 0 < a < . Let

(3.6) X() (1 ())/, 0 < cr < .
Then Xn(0) 1 since --4’ (0) 1. Also

4,n(O’) +
Because r > 0,

(1 4(a))/a > -4’(a).

Hence X’(a) < 0, and so X(a) is a decreasing function. Since 4() < 1,
for a > 0, X(a) > 0. Since ’(0) -1, it follows that

lim0+ (1--4())/(= Jo u dG(u) <= 1.

Assume that

(3.7) lim,o+ 1 4(a))/a c > 0.

Then there exists 1 > 0 such that

(1 (o’1))/ffl > -2c3
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Since (n(a) -’ ((a), there exists no > 0 such that

or n(a) >- c/2 for n >_- no. Since X.(a) is decreasing

(3.8) Xn(a) ->_ 1/2c, n >-no,
If the function A (a) is defined by

(3.9) f(a) 1 -t- (a 1)m -t- (1 a)A(1 a),

then becausef" > O, A(a) > O, 0 <= a < 1.

f((/m))+()

m [1 (a/m)]
a

or

n >= no,

From (3.6) nd (3.9) follows

1 h,(a/m) All (a/m)]
o"

If we let n -- , this integral diverges by (3.5).
n -- in (3.10) gives

limh(a) 0,

Xn+l(a) n(a/m)[1 m-lA( (a/m)X,(a/m) )].

By (3.4), A (a) >_- b(a). Hence

Xn+l(a) -<_ Xn(a/m)[1 m-b((alm)Xn(a/m))].
Since b is increasing, it follows from (3.8) that if a -< a and n -> no,

Xn+(z) --< X(/m)[1 m-b(cr/2m)].
Hence

Xn+(a) =< Xn(a/m) exp [--m-b(ca/2m)].
For n 1 in place of n and aim in place of a,

X(z/m) _<_ X_t(z/m) exp [-m-b(cr/2m)], etc.

Hence for 0 _-< a _-< al

(3.10) Xn+(a) <- Xno(a/m’+l-n) exp [--m-l’_--o b(ca/(2mk+) )].

Since b is increasing,
n-n

’2: b(ca/(2mk+ >= b(ca/(2m‘+ ) dt.

Let u ca/ 2m +l ). Then
1-t- 1 log (ca/2u)

log m
and

n-nO

(2m+1
(2m) b(u) /b(ca/ )) dt . du , log m.

dO ca/(2mn--no+l /

Since Xno(a) --<_ 1, letting
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which contradicts (3.8) and hence (3.7). Thus c 0 in (3.7), and this
implies

u dG(u) =0,

which in turn implies that (s) --- 1 and E(w) 0.

4. To prove that G(u), the limiting distribution of w limn wn, has
continuous derivative for u > 0, and further that G(0+) a, where a is
the least nonnegative solution of f(a) , the procedure of Harris [2] can be
used with one modification, which will now be discussed. More precisely it
will be shown Gr(u) is continuous for u > 0 except in the trivial case when
p- 0 for all j except one. In this case m must be an integer, and pm 1.
It follows trivially that (s) e for all n, and hence here G(u) is a step
function with a unit jump at u 1.
The only place where Harris [2] makes use of the existence of the second

moment is to prove that I(s) cannot be 1 near s 0 for R1 s >- 0 except
at s 0 itself. It will be shown that this follows from the existence of the
first moment. Actually this property is needed, not for (s), but for a closely
related function h(s) which will now be defined.
With a defined as the least nonnegative solution of f() , it follows

since m > 1 that a < 1. Let

(4.1) ](s) (f[s(1 a) + a] a)/(1 a).

Then it is clear that ]c is a probability generating function and ](0) 0,
k(1) 1, and ]r(1) m. (If f(0) 0, then f.) Moreover

LEMMA 4.1. There exists a function al(a), with the same properties as

of Lemma 2.1, which is related to k(a) in the same way as a(a) is related to f(a).

The straightforward proof will be given at the end of the section.
From this lemma it follows as in 2 for f(s), that there exists a unique h(s)

or R1 s >_- 0 such that

(4.2)

(4.3) (0) 1, lim_0+ (1 ())/ 1,

and (s) is given by

(4.4) (s) e-Su dH(u),

where H(u) is related to as (7 is to in 2. H(u) is a distribution function.
Since (4.2) and (4.3) determine uniquely, direct verification shows that

(4.5) (s) ([(1 a)s] a)/(1 a).
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Recalling that is the Laplace-Stielties transform of G, it follows from (4.5)
that

H(u) G(u/(1 a)) a u>_O,
(4.6) 1 a

H(u) O, u < O.

To show that G(0+) a and that G’(u) is continuous for u > 0, it suffices
to show that H(u) is continuous for < u < , and that H’(u) is con-
tinuous for u > 0. The proof of this given by Harris is valid once it is shown
that Ih(s) is less than 1 for s 0, R1 s >- 0, and sl small. Since H(u) is
a distribution function with first moment 1, it follows from (4.4) that, if
s ( -- it,

Hence if (s) assumes the value 1 arbitrarily close to s 0, it must be at a
sequence of points itj, tj ---> O. It will be assumed in the following argument
that t. > 0. The case t < 0 can be dealt with in a similar way, and the gen-
eral case can be reduced to the one or the other by discarding some t.. If
I(itj) 1, then

--ic(4.7) e-t’ dH(u) e

where c. is real and 0 _-< c. < 2. From (4.7)

(4.8) e-(tiu-cp dH(u) 1.

Since H(u) is a distribution function, (4.8) implies that H(u) is a step func-
tion which can increase only for those u for which

t.u cj + 2n,

where n >= 0 is an integer. Since t. -- 0, it" follows that for large j, H(u) can
have a jump at c/t and nowhere else. Thus cj/t is a constant. Since H(u)
is a step function with only one jump and first moment 1, the jump must be
at u 1, and hence (s) e-8.
From b(ms) k(b(s)) and the series representation of k,

e q e

Hence m must be an integer, q 1, and all other q 0. Thus k(s) s.
From (4.1)

f[s(1- a)+a] a+ (1- a)s.
Differentiating and setting s 0 gives f’(a) 0. This implies a 0, and
hence f(s) sm, which was ruled out in our hypothesis concerning f. This
completes the proof that I(s) < 1, s 0, ]sl small, and R1 s => 0.

Proof of Lemma 4.1. Let

(4.9) f(e
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Then by (2.5)

(4.10)

Thus r() o 1 as -- 0+. From (4.1) and (4.9)

(1 a)k(e-) --(1 a) + m log [1 (1 a)(1 e-)]

log [1 (1-- a)(1 e-)]r log
1 (1 a)(1 e-)

For smallz, log (1 z) -z+ O(z2). Hence

(4.11) /c(e-) 1 m-t- rl() -t-’er log
1 (1 a)(1 e-)

where rl(o) 0 (o) for small o-. Leg

1 1
logo()

1 a 1 (1- a)(1 e-)
Then o(0) 0, and

p’(a) 1/((1 a) + ae),

so that p’(z) > 0, and p’(0) 1. Hence by (4.10)

[ 1 I < a[(1- a)p(a)](4.12) r lOgl_ (1-- a)(1--e-)

If (1 a)p(z) tinvertsto give F(t), then F(0) 0, F’(t) > 0,
andF’(0) 1/(1 a). Hence

f01 f0(1--a)p(1) I 1a[(1 a)p(a)] da a(t) tF’(t)
-J ’r(t) dr;

since the bracketed term tends to 1 as -- 0, the integral converges.
A 1 is an appropriate constant, and if

al(a) a[(1 a)p(a)]--

and al(0") a(1) for a > 1, then by (4.11) and (4.12)

0 -<_ m- (1 /(e-))/a _-< a(a),

and al(a) satisfies the same requirement as a(a) in Lemma 2.1.
Lemma 4.1.

Thus if

This proves
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