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1. Introduction
Let X be a Banach lattice of measurable functions. If xe e X is the char-

acteristic function of a set e, (I,(e) xe is a function defined on a certain
Boolean ring of sets. In this paper we consider the following problem. If
a function (e) is given on a Boolean ring B, what are the conditions under
which B can be imbedded into a vector lattice X and extended into a norm
on X? Under what conditions on is it possible to postulate some additional
properties of X? Answers to such questions are given in Sections 2, 3, 5.
This leads in Section 6 to a natural generalization of certain spaces intro-
duced by one of the authors [4] under the name of spaces h. We consider
abstract Boolean rings B and correspondingly functions in the sense of Cara-
thiodory [3]. The reader may substitute for this, if he so wishes, Boolean
rings of sets and point-functions. This substitution would not lead to any
simplification of the proofs.

2. Extension of a multiply subadditive function into a norm

Let B be a Boolean ring, i.e., a distributive, relatively complemented
lattice with zero element (a Boolean ring is a Boolean algebra if and only if
it contains a unit). Let (e) be a real valued function defined on B. We
will discuss extensions of B into a vector lattice S such that unions of disjoint
elements of B become sums, intersections become products, and the order is
preserved, and at the same time extensions of into a seminorm on S.
The smallest extension of B of this kind is the vector lattice S of step-func-

tions. The elements of S are formal sums x kl ak ek (where ek is also
the characteristic function of the set ek) with an obvious identification rule
(see [5], [3]).
A seminorm P(x) on a vector space satisfies the following relations:

(a) P(x) >= O, (b) P(ax)

(c) P(Xl -i x.) <= P(xl) -I- P(x).
Other natural conditions for P(x) are

(d) P(x) <- P(y) for0 <= x <- y, (e) P(Ixl) P(x).

THEOREM 1. (a). A real valued function 4 on B has an extension P onto
S which is a seminorm (we call such norm-generating) if and only if satisfies

(i) (I)(e) -< 1 ak I)(e) for e ake, e, ekeB;
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there is a maximal extension of this type. (). The function has an extension
P which satisfies (a)-(c) and (d) or (e) if and only if is norm-generating and
increasing"

(ii) (I)(o) _-< (I)(e) for e e

or, alternatively, increasing and multiply subadditive"

(iii) p(e) Ek_l(ek) whenever

Proof. (a) The necessity of the condition is obvious. If it is satisfied,
we first conclude (applying it to the representation e e e + e) that
(e) -> 0. Put

(1) Po(x) inf ’1 ak

where the infimum is taken for all representations x a e of x with e e B"
Clearly P0 satisfies (a)-(c), and (i) implies that P0 is an extension of . If P
is any seminorm which satisfies P(e) __< (e) for e e B, then forx a e,
P(x) <= _,la I(ek); hence P(x) <= Po(x).
() Condition (ii) is necessary for (d). It is also necessary for (e), since

ifen e2 0, (e) and (c) imply

2(e - e2) P(O - e2) + P(el- e2.) P(2el) 2(e).
Assume now that (i) and (ii) hold. We define for x >_- 0

(2) Pl(X) inf -’1 ak (e) for x ’ a e, a >- 0,

(3) Pi(x) P([ x I), x e S.

From (i) we see that P(e) (e), e e B, and it is clear that P satisfies (a)-
(c) (with a >- 0 in (b)) on the cone C of positive elements of S. If 0 -< x -< y
and y a e, a _>- 0, there exists a representation [2, p. 19]

x k.ae, a_>_ 0, ’a __< ak, e c e.

Hence by (ii)

". a (ek) _<_ ’. (ek) a _<_ -: a (e)
andP(x) -< ’ a (ek), sothat P(x) <= PI(y). Thus P satisfies (d) on C,
and hence (a)-(e) on S. Also P1 is the largest extension of this kind. In
this proof we used the condition (i) only with a >- 0. It follows that this
special case of (i) is equivalent to the general case, if (ii) is assumed. But
this is also equivalent [5, p. 457] to (iii). This completes the proof.
We conclude by remarking that the extension P is a norm if and only if

(iv) (e) > 0 for e 0.

3. Norms additive for covariant elements
We shall now discuss functions ) which possess an extension P additive for

certain positive elements of S. Let x ’. a e, a _>- 0. There exists an
extension P with the properties (a)-(e) and

(4) P(x) a ((e)
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if and only if (4) is true for the seminorm P1 instead of P, in other words, if
and only if

(5)
"=i ak (ek) __<

_
a(e)

E E ’’ ’>0.whenever ak e al el, al

For if there is an extension P satisfying (4), then

P(x) a(e)= P(x) P(x).

Each positive element x of S has a representation

(6) x a e, a > 0, el en,

which is unique if the e are assumed different. Two positive functions
x(t), y(t) are covariant if the differences x(t) x(t’) and y(t) y(t’) have
always the same sign. Two positive elements x, y e S are covariant if there
exist representations x a, e,, y b, f, of type (6) in which all e, f,
are comparable in B.
We now ask whether an increasing, multiply subadditive (e) has an exten-

sion which is additive for covariant elements. As a necessary condition we
have

_
a(e) ,

_
ag (e)

(7)
for a,e a, e,, a, O, a, O, e e.

This condition is also sufficient. We prove more, replacing (7) by the simpler
condition (v), which is implied by (7).

THEOREM 2. (a). An increasing function on B has an extension P on
S which satisfies (a)-(e) and is additive for covariant elements if and only if
is concave, i.e., satisfies

(v) (e u e) + (e n e) (et) + (e).

(). A concave increasing function is multiply subadditive. (). If the
desired extension exists, it is given by P x of Section 2.

Proof. If satisfies (v), we first prove that

(8) ’-(ek) <- 7’..(e,) if e <- e,, e, :::) D en.

From (v) we derive (e u e) _-< (el) -{-(e.) and the subadditivity
property

This is (8) with n 1; we prove (8) by induction on n.
7’e,el en. We put

gg e, n (el u u e,_l); f e,- g,

ifecU e,.

Let [’ ek -<

l- 1,2,...,m.
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Then the f are disjoint, and Lift Lle (J ek el. Multiplying ek =<
’f + g with e we obtain

so that e g, and by the induction hypothesis,

Next we have by (v)

l=2,...,m.
Adding (9) and all relations (10) we obtain

+ .... -< Z7_ 
which implies (8). If ak, az are all rational in (7), this inequality reduces to
(8). Finally, in the general case, we have only to approximate the ak by
rationals from below, the a’ by rationals from above, and pass to the limit.

Since (7) implies (i) and (iii), we see that is norm-generating and multiply
subadditive.

It remains to show that if P(x) is defined by (2), then P(x y)
Pl(x) -t- PI(y) for covariant positivex, yeS. Writingx ae,
y ’ bz f in form (6), we arrange the e, fz to obtain a single decreasing se-
quence gl c c gn+,. If Ci denote the corresponding a or b, we have

ci((g) a (ek) -J- bz((/) P(x) -J-- P(y).

This completes the proof.

4. Extension of onto a complete Boolean ring
We now assume that the Boolean ring B is contained in a a-ring where

countable unions and intersections are defined. A subring B* of ! is rela-
tively a-complete if each sequence e, e B* with e, e e B* has (J e, e B*. In
what follows, always will be a strictly positive increasing multiply sub-
additive function on B. Our purpose is to imbed B into a relatively a-com-
plete B* and to extend into a function * on B* which has some continuity
properties. We say that is a-subadditive on B if

(vi) (e) =< ’ )(e,) whenever e, e e B, e LI e.

Also, is multiply a-subadditive if

(vii) p(e) Z(en) whenever e, e e B and e is covered p times
by the en.

The last statement means that if g is the maximal element covered p times
by e, en (gn is obtained from the el, e by finite intersections and
unions), then e [J g.
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THEOREM 3. There exists a multiply z-subadditive extension * of onto a
relatively (-complete subring B* of !, B c B*, if (and only if) satisfies
(vi) on B.

Proof. Let B0 be the set of f e which admit a covering f [J e,,
en e B, and put

(11) )*(f) inf (en), f Bo,

where the infimum is taken for all possible coverings. Let B* be the subset
of f e B0 with *(f) < . Only the fact that * is multiply a-subadditive on
B* requires a proof. From the definition of * it follows that we have only to
prove (vii) in case e e B*, en B. If gn B is the largest element covered p
times by el, en, then by the multiple subadditivity of , VI)(gn) -<_

’ (ek). Also by (vi), (gm g) _-< +1 (ek). Combining this with
P(e) P(gnl) - Z P(gnk+l --gnu), and taking n sufficiently rapidly in-
creasing, we obtain (vii).

In the same way we can prove:

(12) If fn B* increase, and *(fm fn) ---> 0 for n, m - o, then f
U f e B* and *(f fn) -- 0.

The order relation defines order convergence [1, p. 50] on B. We
shall call a function ) order continuous if order convergence e - e implies
(e) - (e).

THEOREM 4. Let be an increasing multiply subadditive function on B.
There exist a relatively a-complete ring B B c B , and an order con-
tinuous extension * of onto B if and only if satisfies (vi) and

(viii) dP(en+p e,) 0 if e e e B, e increase, and en e.

Proof. The necessity of the condition is obvious. To prove the sufficiency,
we take B0* to be the subring of B* of all f B* with the property that for
each v > 0 there is a representation

f= e+9-- h witheeB, 9,heB*, *(e) < e, *() < e.

The main difficulty is to prove that if f e B0* are increasing, and f
U f e B*, then *(f- f) -- 0. We can write fn e + n n. The
elements U= e increase and are contained in e0 + , with e0 e B,
*(h) < e, if the 9n, /n are chosen properly. For the ,’ n e0 we have
(viii). Then the relations between the , g, fn imply *(f+, --fn) < 2e
for all large n, and the desired conclusion follows from (12).

Remark. One sees easily that if B is relatively a-complete, then (viii)
is equivalent to

(ix) P(en) "--> 0 if en B decrease and converge to 0.

We mention some examples. The outer Lebesgue measure te of subsets
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e of [0, 1] satisfies (i)-(vii), but not (viii). Another example is the function
(e) supn (e n En), whereE (2-, 2-+1), n 1, 2, which satisfies

all conditions (i)-(ix) except (v).

5. Extension of S into a Banach lattice

Let B, , have the same meaning as in Section 4; B in addition is rela-
tively a-complete, and and B satisfy the first half of (12). P is a norm
which extends ) onto S and satisfies (d) and (e). We wish to imbed S into
a Banach lattice X and to extend P into a norm of X. The possibility of
this extension is discussed in Theorem 5 below; it is interesting to note that
this possibility depends only on the properties of and not on the mode of
extension of into P.
A Banach lattice is a Banach space and a vector lattice in which the norm

has the property that x =< Y limplies x =< Y (from this also the
continuity of the lattice operations follows).

THEOREM 5. (o). There exists an extension of S into a Banach lattice X
such that B is a closed sublattice of X and of the norm P of S into the norm of X
if and only if satisfies (vi). In this case X can be taken relatively (-complete.
(). There is an extension o] S into a Banach lattice such that order convergence
implies norm convergence if and only if in addition satisfies (ix).

Proof. We show that the condition (vi) is necessary.

’(e,) < . We put n e [’l (.J ek then

+ (e) 0;

hence e converges in norm to an element x X. From

Lete c Uen and

we see that (n X U 0 0, n X. Since U , e, we have _<_ e =< x;
hence n -- e. Therefore (e) lim (gn) =< (ek).

Sufficiency is proved by a direct construction of X. A positive real func-
tion x (see [3]) is a map x(a) from the positive reals into B such that
U a>, x(a) x(a). Functions xl, x2 are disjoint if x(a), x2(a) are dis-
joint for each a > 0. Arbitrary real functions are differences of disjoint
positive functions. We now define for x >_- 0

(13) x sup0__<=<x P(), e S,

and put x Illx Ill for an arbitrary function x. Then X is the set of
all x with x < . Only the proofs of the subadditivity of the norm and
the norm completeness require some care. In the first proof, the following
device is used. For each x => 0, x may be approximated by the norm of
a special element 0 =< x’ =< x which does not take arbitrarily large or arbi-
trarily small positive values, and x’ in its turn by the norm of an element
S, _-> x’.
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The subspace S is not always dense in X. This can be true even for all
extensions P of a norm-generating function . For example, if x(t) 2
onEn, n 1, 2, in the last example of Section 4, then x e X, but
IIx-[[ l for each 0 _<_ -< x,S.

6. Spaces
The phenomenon iust described cannot happen for a certain class of spaces

which we shall discuss now. Let X be a Banach lattice of functions on a
relatively a-complete ring B; this implies by definition that x e X if 0 -<_ x --<
y, y e X. Let the norm on X be additive for covariant functions. In particu-
lar, for this norm the function (e) e will satisfy (v). We shall show
that for x _>- 0, xeX

(14)’ x ]1 J0 (x())

Let xn be defined by Xn(a) x(n - n-1) for > n, Xn(a)
forn-1 --< a =< n. Thenx xnandxnare covariant;hence
I[ x x I[. The xn increase and x -- x; therefore
x xn il-- 0. Each x can be approximated uniformly by elements of S.

It follows that S is dense in X. Moreover we have x sup II for the
elements Z e S of the form

: = ak x(al + + ak),
This gives

x sup ak (x(al + --[-- a) f(R) ((x(a) da.

a>O.

For a given concave , the Banach lattice of all functions with the norm
(14) is called a space A. We obtain in this way

THEOREM 6. Let X be a Banach lattice offunctions on B with order conti,,,.
norm. Then X is a space A if and only if the norm in X is additive for covariant

functions.
Spaces A considered in [4] were of the following type. Let x(t) be measur-

able functions on a measure space S with a countably additive measure . We
select a nonnegative measurable function (t) and put

(15) x sup

where the supremum is taken for all functions x’(t) equimeasurable with x(t).
It is fairly easy to see that the space A,. with the norm (15) is a space of
type A. The converse is not in general true. However we can find neces-
sary and sufficient conditions for in order that A have a concrete representa-
tion as a space A,. The tools of this proof are: a theory of equimeasurable
functions for arbitrary measure spaces, and theorems similar to those of
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D. Maharam [6] about the representation of a function O(e) in form
(e) F(ge), where/z is a measure. We hope to come back to these re-

sults in a separate publication.
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