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1. Introduction
We are concerned with the analogues for Lie algebras of the problems cen-

tering around the Tannaka duality theorem, such as those treated in [4] and
[6]. The analogue of the Tannaka theorem for semisimple Lie algebras was
established by Harish-Chandra in 1950. More recently, P. Cartier has
sketched (without proofs) a general duality theory for algebraic groups and
Lie algebras which absorbs Harish-Chandra’s result. The essence of most of
the results of this type is that they establish connections between abstract
Lie groups (or abstract Lie algebras) and their representations on the one
hand, and algebraic groups (or algebraic Lie algebras) and their rational
representations on the other. Just as, in the case of groups, the vehicle for
these connections is the algebra of representative functions on the group, so,
in the case of Lie algebras, it is the algebra of representative functions on the
universal enveloping algebra of the Lie algebra. Although this has been indi-
cated by Cartier in [1], no systematic development of the relevant techniques
and results is available, and it is our purpose here to carry out such a de-
velopment.

Section 2 gives the requisite mechanism of representative functions. In
Section 3, this is applied to obtain a direct construction for the algebraic group
and Lie algebra hulls of a linear Lie algebra. The main purpose of Section 4
is to give a characterization (Theorem 3) of the differentials of the rational
representations of an algebraic group, involving only the universal enveloping
algebra of the Lie algebra. In order to make this directly intelligible, we have
included a sketch of the relevant portion of Chevalley’s theory of algebraic
groups, casting it into a form especially adapted to our purpose. Section 5
reviews the auxiliary results for semisimple Lie algebras. Sections 6 and 7
give the general results concerning the structure of the algebra of representa-
tive functions.

It should be pointed out that most of the results presented here constitute a
direct outgrowth of previous work done in collaboration with G. D. Mostow
([4], [5], [6]). I wish to thank him here for permitting me to make such free
use of his contributing ideas.

2. Representative functions
Let L be a finite-dimensional Lie algebra over a field F, and let U denote

the universal enveloping algebra of L. We consider finite-dimensional
representations of L or, which amounts to the same thing, finite-dimensional
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representations of the associative algebra U mapping the identity element of
U onto the identity transformation of the representation space. Thus, if M
is the representation space of such a representation, M is a unitary left U-mod-
ule of finite dimension over F. Let E denote the algebra of all linear endo-
morphisms of M, and let E Hom(E, F) denote the dual space of E.
If is any element of E’ and if p is the given representation U--, E, the
composite map p e U Homr(U, F) is called a representative function
on U, associated with the representation p. Evidently, these functions make
up a finite-dimensional vector space R(p). The kernel, I, of p in U is a two-
sided ideal of finite codimension in U, i.e., U/I is finite-dimensional, and the
functions belonging to R(p) vanish on I.

Conversely, every linear function on U that vanishes on some two-sided
ideal of finite codimension in U is a representative function. In fact, U
has the structure of a left U-module, the operations being (with f in U’ and
x, y in U) f -- x .f, where (x.f) (y) f(yx). If f vanishes on an ideal of
finite codimension, then f generates a finite-dimensional U-submodule of U’,
and f is associated with the corresponding representation p of U: f p,
where t(e) e(f)(1), for every linear endomorphism e of the U-module
generated by f.

Let d denote the unitary homomorphism of U into the tensor product
U (R) U that is determined by the condition that, for every x eL,
d(x) x (R) 1 1 (R)x. If A and B are unitary U-modules, the tensor
product A (R) B is given the structure of a unitary U (R) U-module such that,
for ui e U, a e A and b e B,

(ul (R) u2).(a (R) b) ul.a (R) u2.b.

Composing this with d, we obtain the unitary U-module structure of A (R) B
that corresponds to the usual tensor product of the representations of L in
A and in B"

u.(a (R) b) d(u).(a (R) b).

If f and g are any two elements of Up, we denote by f (R) g the linear func-
tion on U (R) U such that (f (R) g)(ul (R) u.) f(ul)g(u). Then we define
the product fg as an element of U by

(fg) (u) (f (R) g)(d(u) ).

This is the multiplication pointed out by P. Cartier in [1]. Clearly, U is
an associative and commutative algebra with this multiplication. If f and
g are representative functions associated with representations p and , re-
spectively, then fg is a representative function associated with the tensor
productp@ . In fact, if f= sopandg to,wehave

f=((R))o((R)).

Thus the representative functions on U constitute a subalgebra of Up. This
can also be seen directly by noting that if f vanishes on the ideal I and g
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on the ideal J, then fg vanishes on the ideal K d-l(I (R) U - U (R) J),
and that d yields a monomorphism of U/K into U/I (R) U/J, so that U/K
is finite-dimensional whenever U/I and U/J are finite-dimensional.
For every nonnegative integer p, denote by U the subspace of U consist-

ing of the elements that can be written as (noncommutative) polynomials of
degree not exceeding p in the elements of L. Each U is finite-dimensional,
U is the union of all the U, and U Uq c U+q. The graded algebra that
is associated with U by this filtration is canonically isomorphic with the
symmetric algebra built over L.
Now let gl, gn be elements of U’ such that each gi vanishes on U0

(= F) and that the restrictions of the gi to L constitute a basis for the dual
space L’ of L. Then every monomial of degree greater than p in the g
vanishes on U. On the other hand, there is a basis x, x for L such
that g(xj) . The elements of U can be written uniquely as linear
combinations of the ordered monomials x ...x,,, with e e, < .
Now let u, Un be nonnegative integers such that u - + u, >=
e -- -- en. Then it is immediately verified that

Hence we see that, if F is of characteristic 0, every element of U’ coincides
on U with a unique polynomial of degree -< p in the g. In particular,
this shows that, if F is of characteristic O, U is an integral domain.
We have already defined the structure of a left U-module on U" the opera-

tions are the left translations f -- x.f, where (x.f) (y) f(yx). We define
the right translations similarly: f --* f. x, where (f. x) (y) f(xy). Thus
U’ has been given the structure of a double U-module. If x e U0 F, then
both the right and the left translation by x coincide with the scalar multipli-
cation by x. If x e L, the translations by x are derivations of U’. The
linear functions on U that vanish on LU are called the constants. The multi-
plication by a constant f e U coincides with the scalar multiplication by the
value f(1); we identify the constants with their values at 1 e U. The right
and left translations by an element of L annihilate the constants. If p is a
representation of L, then R(p) is evidently stable under the right and left
translations. In particular, the algebra R of all representative functions on
U is stable under the right and left translations.

LEMMA 1. Let S be a subspace of R that is stable under the right transla-
tions. Let T be a subspace of S that is stable under the left translations.
Then every linear map of S into U’ that commutes with the right translations
maps T into itself.

Proof. Let e T, and let [t] denote the space spanned by the left trans-
lates of t. Since is a representative function, [t] is finite-dimensional.
Hence we can find a basis t, tn of [t] and elements ul, u in U
such that t(uj) . Then, for every u e U,

u.t t(u, u)t,.
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Applying this to n element e U, we obtain

t(u) , t(u u)t,(),
whence

v " t(v)t u.i,1

Now let e be ny linear mp of S into U’ that commutes with the right trans-
lations. Then we hve

e(t) .v , t(v)e(t).u,

If we ewlute this t the identity element 1 of U, we find that

e(t) = e(t)(u,)t, e It].

This completes the proof of Lemm 1.

Let Q be ny sublgebm of R that contains the constants and is stable
under the right nd left translations. We shll sy that derivation of Q
is proper derivation if it nnihiltes the constants nd commutes with the
right translations. By differentiation of Q we shll mean n F-linear mp
6 of Q into F such that

(#) 6(f)g(1) + f(1)6(O),

for ll f nd g in Q. If D is proper deriwtion of Q, we define differentia-
tion D’ of Q by putting D’ (f) D(f) (1), for every f e Q.

PoPosIwION 1. Let Q be a subalgebra of R that contains the constants and
is stable under the right and left translations. Then the map D D’ is a linear
isomorphism of the space of all proper derivations of Q onto the space of all dif-
ferentiations of Q.

Proof. Let be ny differentiation of Q. We define linear mp * of
Q into U’ by setting *(f)(u) (f.u), for every f e Q nd every u e U.
It is clear from the definition that * commutes with the right translations.
Hence we conclude from Lemm 1 that *(Q) Q.

Let denote the multiplication U’ @ U’ U’. Let us regard U’ @ U’
s right module for U @ U such that, for f nd g in U’ nd a and b in U,

(f @ g). (a @ b) f.a @ g.b.

Then, for every u e U, we hve

(f) .u (( g).d(u) ).

If f nd g re in Q, we hve

6((f.a) (g.b)) 6(f.a)g(b) + f(a)(g.b)

(,(f) + f *(g))(a b).
This gives

(6*(f) g + f 6*(g))(d(u)) 6(((f g).d(u))) ((fg).u),
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i.e., (*(f)g -4- f*(g))(u) *(fg)(u). Thus we have shown that i* is a
derivation of Q. It is clear that i* is therefore a proper derivation of Q,
and one verifies immediately that (i*)’ i. If D is any proper derivation
of Q, one sees at once that (D’)* D. Hence Proposition 1 is proved.

3. Algebraic Lie algebras
From now on, we shall assume throughout that our base field F is of charac-

teristic O. Let p be a representation of the Lie algebra L in a finite-dimen-
sional vector space M over F. We shall always use the same letter p to
denote the corresponding representation of the universal enveloping algebra
U of L. Let E be the algebra of all linear endomorphisms of M, and let P
be the algebra of all polynomial functions on E. Let Sp be the subalgebra
of R that is generated by the constants and the elements of l(p). The
map -- o p is a linear map of E’ onto R(p). It can be extended uniquely
to a unitary algebra epimorphism of P onto Sp. Let Q denote the kernel
of this epimorphism. We shall call Q the ideal (of polynomial functions)
associated with p. Since Sp is an integral domain, Q is a prime ideal.

THEOREM 1. Let p be a finite-dimensional representation of the Lie algebra
L, with representation space M. Let Q be the ideal associated with p. Then
the set G of all automorphisms of M that are zeros of Q is the smallest algebraic
group whose Lie algebra contains p(L), and Q is the ideal of all polynomial
functions vanishing on G.

Proof. If f is any function on E, and e e E, we define the left and right
e-translates e .f and f. e of f by (e .f) (x) f(xe) and (f. e) (x) f(ex). Let
H be the group of all linear automorphisms h of M for which Q. h Q. We
indicate the canonical epimorphism P Sp by p -- p’. If p e P, then p’(1)
coincides with the value taken by p at the identity automorphism of M.
Hence every element of Q vanishes at the identity automorphism of M.
It follows that every element of H is a zero of the ideal Q. We shall show
that, conversely, every automorphism of M that is a zero of Q belongs to H.
For every e e E, let De denote the derivation of P that annihilates the

constants and coincides with the left translation by e on E’. Clearly, De
commutes with the right translations on P. We regard P as a left U-module
such that the linear endomorphism of P corresponding to an element x of
L is Dp(). With this U-module structure of P, the epimorphism p ---, p’ of
P onto S is evidently a U-epimorphism, i.e., if u e U and p e P, and if u(p)
denotes the transform of p by u, (u(p))’ u.p’. Hence Q is a U-sub-
module of P.
Now let k be any linear automorphism of M that is a zero of Q. Let

qQandueU. Then we have

(q.k)’(u) (u.(q./)’)(1)= (u(q.k))’(1)

(u(q).k)’(1) u(q)(k) O.

Hence q. k e Q, and so Q./c c Q. Since k is an automorphism, and since the
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right translation by k preserves degrees in P, it follows that Q. ] Q, i.e.,
that k e H. Thus we have shown that H is precisely the set of all auto-
morphisms of M that are zeros of Q. Hence H is an algebraic group, and
H=G.
Now let T be any algebraic group of automorphisms of M whose Lie alge-

bra contains p(L), and let A be the ideal of all polynomial functions vanish-
ing on T. Since the Lie algebra of T contains p(L), A is a U-submodule of
P. Hence, for every u e U and every p A, u(p) vanishes at the identity
automorphism of M. Hence we have u(p)r(1) 0, i.e., pr(u) 0. We
conclude that A c Q, whence G c T.

Let x be any element of p(L), and let G be the intersection of all algebraic
groups of automorphisms of M whose Lie algebras contain x. By [2, Theo-
rem 10, p. 165], G is an irreducible algebraic group whose Lie algebra con-
tains x, and exp(tx) is a generic point of G over the field of the formal power
series in with coefficients in F. It is easily seen that, for every p e P,

exp tx p exp tD p ).

If p e Q, the right-hand side is evidently a power series in with coefficients
in Q. Hence it vanishes at the identity automorphism, so that

p(exp(tx) O.

Thus exp(tx) is a generalized zero of Q. Since every element of G is a spe-
cialization of exp(tx), we conclude that G G. It follows, as in the proof
of Corollary 1 below, that the Lie algebra of G, and in particular x, is con-
tained in the Lie algebra of G. Thus we have shown that the Lie algebra of
G contains p(L). As we have seen above, this implies that the ideal of all
polynomial functions vanishing on G is contained in Q, and thus coincides
with Q. This completes the proof of Theorem 1.

COROLLARY 1. The Lie algebra K of all e e E for which De(Q) Q is the
smallest algebraic Lie algebra containing p(L). The ideal associated with the
identity representation of K coincides with Q.

Proof. K is the Lie algebra of G and thus is algebraic. We know also
that p(L) c K. Now let C be any algebraic Lie algebra contained in E and
containing p(L). Then C is the Lie algebra of an algebraic group H of linear
automorphisms of M, and G H. Let x e K, and let p be a polynomial
function vanishing on H. For every h H, p.h is a polynomial function
vanishing on H, and a fortiori on G. Hence D(p.h) vanishes on G, and in
particular at the identity automorphism of M. But D(p.h) D(p).h,
so that we conclude that Dx(p)(h) 0. Thus Dx maps the ideal of poly-
nomial functions vanishing on H into itself, so that x e C. Thus K C,
and the first part of the corollary is proved.

A direct proof of the next assertion, proceeding from the point of view adopted here,
will appear in Proc. Amer. Math. Soc.
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Now let J be the ideal associated with the identity representation of K.
By Theorem 1, J is the ideal of all polynomial functions vanishing on the
smallest algebraic group H whose Lie algebra contains K. Since p(L) c K,
we haveG c H, whenceJ c Q. Now letqeQ. Thenv(q) eQ, forevery
element v of the universal enveloping algebra of K. In particular, v(q)
vanishes at the identity automorphism of M. As we have seen in proving
Theorem 1, this implies that q e J. Thus we have Q J, and so Q J.
This completes the proof of Corollary 1.

We have defined the structure of a left U-module on P, using the deriva-
tions De, such that the epimorphism P -- Sp is a module epimorphism for
the left U-module structures. Replacing left translations by right transla-
tions throughout, we define the structure of a right U-module on P such that
the epimorphism P -- Sp is a module epimorphism also for the right U-
module structures. Clearly, the right U-operations on P commute with the
left U-operations. Moreover, all the derivations De, as e ranges over E,
commute with the right U-operations. If De(Q) Q, then De induces a
derivation D: on S and, since De commutes with the right U-operations on
P, D: commutes with the right translations on Sp. Thus D: is a proper
derivation of S,. The map e --. D’e is therefore a homomorphism of the Lie
algebra K of Corollary 1 into the Lie algebra of the proper derivations of
S. If D: 0, then De(P) Q. In particular, for every p e E’, De(p)
vanishes at the identity automorphism of M, which means that p(e) O.
Hence e 0, and we have shown that the map e -- D’e is a monomorphism.
Now let D be any proper derivation of S. Then the map p ----) D(p’)(1)

is a linear function on E’, so that there is an element e e E such that,

D(p’)(1) p(e),

for every peE’. It is seen at once that then DPe D. Thus the map
e -- D: is an isomorphism of K onto the Lie algebra of all proper derivations
of Sp. Now we know that p(L) is algebraic if and only if it coincides with
K. Hence we have the following result.

THEOREM 2. The Lie algebra p(L) is algebraic if and only if every proper
derivation of S is the left translation by an element of L, or, equivalently (by
Proposition 1), if and only if, for every differentiation of Sp, there is an x L
such that f f x for every f S

4. Rational representations
Let M, E, P have the same meanings as before, and let G be an irreducible

algebraic group of linear automorphisms of M. Let Q be the ideal of all
polynomial functions vanishing on G. Let M1 be another finite-dimensional
vector space over F, E1 the algebra of all linear endomorphisms of M, P
the algebra of all polynomial functions on E. Let be a homomorphism
of G into the group of the linear automorphisms of M1. Such a homomor-
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phism is called a rational representation of G if, for every f E’I, the com-
posite f is a rational function on G (necessarily defined at every point
of G).
Now let L denote the Lie algebra of G. The differential * of the rational

representation is a homomorphism of L into El, which is defined as fol-
lows. Let x e L, and consider the derivation of P/Q that is induced by D.
This extends uniquely to a derivation d of the field of quotients of P/Q,
i.e., of the field of the rational functions on G. Let T be the subring of this
field consisting of the functions that are defined at the identity element 1 of
G. The elements of T are representable as quotients a/b, where a and b
are elements of P and b(1) 0. Hence we see at once that d maps T
into itself, because

d(a/b) (D,(a)b aDz(b) )/b2.
Hence we can define a differentiation d’ of T by setting

d:(f) d(f)(1), for every f T.

If g e E’I, then g o e T, and the map g -- d(g ,) is evidently linear.
Hence there is one and only one element Xl e E1 such that g(xl) d,(g o ),

Efor every g e 1. We put *(x) xl. Evidently, * is a linear map of
L into El.
LetxeL, geEl,andaeG. Then we have

dx(g ,) (a) d( (g ,) .a) (1) d:( (g ,) .a) d’( (g.,(a) ,)

(g.(a))(xl) (Dl(g) o,)(a).

Hence d,(g o ) Dx(g) , and this extends immediately to every g e PI.
Now let x and y be any two elements of L. We have

[D, D] Dlx., whence [d, d] dx..
Hence we obtain

With g e E’I, this gives

[.] d. o d,

g([xl yl]) g(xl Yl) g(yl xl) D(g)(xl) D(g)(yl)

Dd(D,(g) o q) d( ,(g) o ,)

(d’,o d d’o d)(g o

d’. g , g [x,

Thus [xl, yl] [x, Y]l, and we have shown that * is a Lie algebra homo-
morphism.
Now let G1 denote the smallest algebraic group containing (G), and let

Q1 be the ideal of the polynomial functions vanishing on G. Let g e Q.
Then we have D(g)(1) d:(g o ) O. Hence we conclude that xl be-
longs to the Lie algebra L1 of G1. Thus *(L)
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Observe that the map g -- g is a homomorphism of P1 into T, and that
the kernel of this homomorphism is precisely Q1. Indeed, if g o 0, then
g vanishes on (G) and hence on G, so that g e Q. Since T is an integral
domain, it follows that Q is a prime ideal, i.e., that G is irreducible. If
d,1 denotes the derivation of the field of rational functions on G1 that is in-
duced by D, we see at once from the above that, for every rational function
f on ,

d, (f) o d(f o ,p).

Actually, the same result evidently holds when G1 is replaced by any other
irreducible algebraic group containing (G).
The most important fact for our purposes is that, actually, *(L) L.

The proof of this fact, as given in [2], is bound up with a number of con-
siderably more difficult questions, so that it seems worth while to isolate it
here. Let K, K denote the fields of the rational functions on G, G1, respec-
tively. Let z e L, and let d denote the corresponding derivation of K.
The map f f o is a monomorphism of K1 into K, and, since K is of char-
acteristic 0, we can extend the derivation f o ---. d,(f) o to a derivation of
K. Thus there is a derivation i of K such that (f o ) dz(f) o , for every

f eK.
Let u be the element of E (R) K such that, for every p . E’ (regarded also

as a linear function on E (R) K, in the natural fashion), p(u) is the canonical
image p’ of p in P/Q. Then we shall have p(u) p’, for every
p e P. Hence p(u) 0 if and only if p e Q. In particular, this implies that
the determinant function does not vanish at u, so that u is an automorphism
of M (R) K. Since u is a zero of Q (R) K, it belongs to the smallest algebraic
group GK of linear automorphisms of M (R) K that contains G.
The derivation i of K defines a derivation i* of E (R) K such that, for e e E

and k K, i*(e (R) k) e (R) ti(k). We claim that the element u-*(u) of
E (R) K actually belongs to L (R) K, which is the Lie algebra of GK. Put
v u-t*(u), and let p e E’. Then we have

D,,(p)(u) p(uv) p(*(u)) (p(u)),

and this extends at once to give D,(p)(u) i(p(u)), for every
peP. Hence, if peQ, D(p.u)(1) D(p)(u) 0. Since ueGK and
since Q (R) K is the ideal of all polynomial functions vanishing on G, we have
(Q (R) K).u Q (R) K,i.e., (Q.u)K Q (R) K. Hence we conclude that
D(q) (1) 0, for every q e Q, which implies that D,,(Q) Q (R) K, whence
vL(R)K.
Our rational representation of G in M extends canonically to a rational

representation of GK in M (R) K, which we shall still denote by (see [2],
p. 109). The differential of this extended representation is easily seen to be
the canonical K-linear extension of *, and we shall denote this extension
still by *. We shall also retain the symbol * to denote the derivation of
E1 (R) K that is induced by
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Let h E’I Then we have h(*(,(u) (h(,(u) ). But h((u) is
simply the rational function h on G, and, since t is an extension of the
derivation f o -- dz(f) (f Ki), we have

(h ) Dz(h) o, D(h)((u)) h((u)z).

Thus h(ti*((u))) h(,(u)z), for every h e E, whence

*((u) (u)z.

On the other hand, consider the image *(v) of v in the Lie algebra L1 (R) K
of G. As we have seen earlier, we have

d.() (f) d(f o ,).,

for every rational function f on G. Hence

d.()(f)((u)) &(fo,)(u).

Now let f be the function on G that corresponds to an element h e E.
Then the expression on the right of the last equation is equal to (h(,(u))),
as follows from the fact that, for every p P, D(p)(u) (p(u)). Hence
our above equation gives

h((u)*(v)) (h((u))) h(ti*((u))).

Hence we have

,(u)*(v) i*(q(u)) ,(u)z, whence *(v) z.

Now we can write v x (R) ]i, where the x are elements of L and
the ]c are elements of K that are linearly independent over F, and 1.
Then our last result shows that ,*(xl) z. Thus we have shown that *maps L onto the Lie algebra L1 of G1. In particular, *(L) is therefore an
algebraic Lie algebra.

If we pass to the power series field over F in an auxiliary variable t, say
F*, we have exp(tx) GF*, for an element x of E, if and only if x e L. The
proof is as follows. Note first that, for every p e P,

exp tx .p exp tDx p ).

Now suppose that exp(tx) e GF*. Then, for all q e Q, exp(tx).q Q (R) F*,
i.e., exp(tDx)(q) Q (R) F*, which evidently implies that D(q) Q. Thus,
if exp(tx) eG*, then x eL.

Conversely, if x eL we have exp(tx).Q exp(tD)(Q) c Q (R) F*. Since
exp (tx) is an automorphism of M (R) F*, this implies that exp (tx) e G*.
Now we shall show that, if is a rational representation of G, we have

(exp(tx) exp(t,*(x)), for every x e L. In order to prove this, we shall
use the derivation with respect to t, applying it to formal power series whose
coefficients may be in K, E (R) K, or E (R) K. We denote this derivation
by r throughout. We have r(exp(tx)) exp(tx)x, whence, for every
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p E’, r(p(exp(tx))) Dx(p)(exp(tx)). This result extends immediately
to give -(f(exp(tx))) dx(f)(exp(tx)), for every f K such that f is de-
fined at every point of G*. In particular, we may take f h o , where
h e E’I. Then we obtain

h(r((exp(tx) r((h p)(exp(tx) d(h )(exp(tx)

D.()(h)((exp(tx))) h(p(exp(tx))*(x)),
so that

r((exp(tx))) (exp(tx))*(x).

This shows, first of all, that (exp(tx)) is an integral power series in
t. Hence the constant term is obtained by putting 0, so that the con-
stant term is (1) 1. But then the above differential equation for
(exp(tx)) shows that we must have (exp(tx)) exp(t*(x)).
Now let V be a subspace of the representation space M1 of the rational

representation . Then V is stable under (G) if and only if it is stable
under *(L). We can prove this from the above results as follows. Sup-
pose first that V is stable under (G). Then, for every x e L, (exp(tx))
must map V into V (R) F*, because exp(tx) G*, so that (exp(tx)) G*,
which is the smallest algebraic group of automorphisms of M (R) F* that
contains (G). Thus exp(t*(x)) maps V into V (R) F*, whence *(x)
maps V into itself. Conversely, suppose that V is stable under *(L).
Then (exp(tx)) maps V into V (R) F*. Let x, xn be a basis of L,
and let tl,’’’, tn be algebraically independent elements over F. Then
(exp(t Xx) exp(tn x,) maps V into V (R) F*, where now F* denotes
the field of quotients of the ring of power series in the ti over F. If s e G,
the condition that (s) map V into itself is that s be a zero of a certain set
of polynomial functions. If p is any polynomial function on E we have

p(exp(t xl) exp(tnX)) exp(ti DI) exp(U D) (p) (1).

We see from this that if p(exp(tl x).., exp(tx)) 0 then the image
p’ of p in the algebra of representative functions on the universal enveloping
algebra of L that is associated with the identity representation of L is 0.
Indeed, the coefficient of t t on the right side of the above equation
is (el enl )-lp’(xl enx). Thus we conclude that if

p(exp(t x) exp(t x)) 0,

then p vanishes at every point of G. Hence it follows from what we have
said above that V is stable under (G).

Let L be an algebraic Lie algebra of linear endomorphisms of M, and let
S denote the algebra of representative functions on the universal enveloping
algebra U of L that is generated by the constants and the representative
functions associated with the identity representation of L. We wish to give
an intrinsic characterization of the representations of L that are the differ-
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entials of rational representations of the corresponding irreducible algebraic
group G.

Let d denote the determinant function on E, and let s denote the trace
function. It is easy to see that, for every e e E, we have De(d) s(e)d.
We see from this that the image d’ of d in S is given by

where yl,

such that

d’(yl y,) s(yl) s(y,), d’(1) 1,

ym are arbitrary elements of L. There is an element z in U’

z(y y,) (--1)’s(y) s(y,), and z(1) 1.

One checks immediately that d’z 1. Thus z is the element of the field of
quotients of S that corresponds to d-1. For x L, we have

x.z z.x -s(x)z.

In particular, this shows that z e R. We are now in a position to state our
result.

THEOREM 3. A representation p of an algebraic Lie algebra L is the differ-
ential of a rational representation of the corresponding algebraic group G if and
only if R(p) c S[z].

Proof. Let M denote the representation space of p, and suppose first
that p *, where is a rational representation of G in Mp. Let E be the
algebra of all linear endomorphisms of M, and let f e E’. Consider the
representative function f on G. Since it is rational and defined at every
point of G, it follows (see Lemma 10.1 in [4]) that there is a nonnegative
integer k such that dk(f o ) is the restriction to G of some p e P. Hence
dk(f ) p vanishes at the generalized point u exp(t x) exp(tn xn)
of G, where xl, x is a basis for L. Let p(u) stand for the power series
whose coefficients are the images by p of the coefficients of u. Then, since
(exp(tx)) exp(tp(x)),we have(u) p(u). Nowwrite vfor exp(t DI)

exp(tn Dxn). Then we have

0 d(u)f((u)) p(u) v(d)(1)f(p(u)) v(p)(1).

When the last expression is written out as a power series, the coefficient of
t’ t, isequal to (el! "’’en! )-1 ((d),(fo p) p’)(x’ x). Since
each coefficient must be zero, we find that (d)’(fo p) p’ 0, whence
f p zp’. Thus our condition on R(p) is necessary.
Now suppose that R(p) c S[z]. The group G operates by left transla-

tions on P, and Q is G-stable. Hence we get induced left G-translations on
S, and hence also on S[z]. In fact, if x e G, we have x.d- d(x)-d-,
whence x. z d(x)-z. The G-operations on S[z] are algebra automorphisms
and commute with the right U-translations. Since R(p) and S[z] are stable
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under the right and left U-translations, it follows at once from Lemma 1
that R(p) is stable under the left G-translations. Thus we have a representa-
tion of G by left translations in l(p). The representative functions on G
that are associated with this representation are the linear combinations of
the maps x (x.f)(u), where u ranges over U and f ranges over R(p).
However, we have

(x.f)(u) ((x.f).u)(1) (x.(f.u))(1),

and f. u e R(p). Hence the representative functions on G that are associated
with our representation of G in l(p) are precisely the maps x (x.f)(1),
where f ranges over R(p). But these are precisely the rational functions on
G that correspond to the elements of l(p) under the canonical isomorphism
between S[z] and a subalgebra of the algebra of the rational func.tions on G.
Hence our representation of G in R(p) is
denote this rational representation.

Let F* denote the power series field in one variable over F, and extend
in the canonical fashion to a rational representation of GF* in R(p) (R) F*.

We have (exp(tx)) exp(t*(x)), for every x e L. On the other hand,
the left translation by exp(tx) on l(p) (R) F* coincides with exp(trx), where
rx denotes the left translation by x (regarded as an element of U) on R(p).
It follows that

Let m be the dimension of Mp, and let m.l(p) denote the direct sum of
m copies of R.(p). Our representation yields a rational representation of
G in m.R(p) in the natural fashion. Let hi, hm be a basis for Mp.
For v e M, let hi/v be the element of R(p)’ that is given by

(hi (u) h(p(u) (v) ), for every ueU.

Then the map v (hl/v,..., h,n/V) is easily seen to be a left U-module
monomorphism of Mo into m.R.(p). The image of Mo in m.R.(p) is there-
fore stable under *(L), and hence stable under (G). Hence, by restric-
tion, k yields a rational representation of G in Mo, and it is clear that the
differential of this representation is precisely p. This completes the proof
of Theorem 3.

Let L be any Lie algebra over F, and let S be a finite-dimensional subspace
of R that is stable under the right and left translations. Let S* denote the
subalgebra of R that is generated by the constants and the elements of S.
Let p be the representation of L by left translations in S. Then we have
evidently Sp S*. Let Ls be the restriction to S of the Lie algebra of all
proper derivations of S*. It follows at once from Theorem 2 that Ls is the
smallest algebraic Lie algebra of linear endomorphisms of S containing
p(L). Let T be another subspace of R satisfying the same conditions as S
and such that S c T. The representative functions on the universal en-
veloping algebra of Lr that are associated with the identity represent,ation
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of Lr are the mps u u(t)(1), where rnges over T. Now S is stable
under Lr, so that we get representation of Lr in S. The representative
functions associated with this representation re the mps u -- u(s)(1),
where s rnges over S. Hence it follows from Theorem 3 nd the fct that
the differential of rtional group representation sends the Lie lgebm
onto n lgebric Lie lgebr that the restriction of LT tO S is n lgebric
Lie lgebr. Since it contains p(L), it must therefore contain Ls. On the
other hnd, the restriction of Lr to S is evidently contained in Ls. Hence
it coincides with Ls.
Now we hve n inverse system of Lie lgebr epimorphisms Lr --* Ls,

for all pirs S T. By Proposition 2.10 of [4], the nturl homomorphism
of the inverse limit of our system into Ls is n epimorphism, for ech S.
The inverse limit of our system my evidently be identified with the Lie
lgebm of ll proper deriwtions of R. Hence we hve the following result.

THEOREM 4. Let A be any finitely generated subalgebra of R that contains
the constants and is stable under the left and right translations. Then every
proper derivation of A is the restriction to A of a proper derivation of R.

5. Semisimple Lie algebras

Let M be finite-dimensional vector spce over F, nd let E be the lgebm
of ll linear endomorphisms of M. We consider tensor spce

T M (R) (R) M (R) M’ (R) (R) M’.

Regarding E as Lie lgebr, we consider the usual tensor representation
of E in T. Let A nd B be subspces of T such that A B. It is stand-
ard result that the Lie lgebm consisting of ll elements of E that mp B
into A is n lgebric Lie lgebm. In fct, let denote the tensor repre-
sentation of the full linear group over M in T. Let G be the group of 11
linear utomorphisms s of M such that (s)(b) b eA, for every b eB.
Evidently, G is n algebraic group. Extend the bse field F to the field F*
of power series in one Triable t. Then the extended group G* is the group
of ll utomorphisms s of M (R) F* such that (s)(b) b A (R) F*, for every
b e B. Now it is esily checked quite directly that, if e e E, exp(te) G* if
nd only if, in the Lie lgebr representation of E in T, e sends B into A.
By wht we hve seen in Section 4, this means that the Lie lgebm of ll
elements of E that send B into A is precisely the Lie lgebm of G. nd thus
is n lgebmic Lie lgebm.
Now let L be ny Lie sublgebm of E, nd pply the bove with

T M (R) M’ E,

A [L, L], nd B L. We conclude that, if S denotes the smallest lge-
bric Lie lgebr containing L, [S, L] [L, L]. Now tke A [L, L] nd
B S. We find tht [S, S] [L,L].
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Now suppose that L is semisimple. Then M is semisimple as an L-module,
and it follows at once from the above, with T M, that M is semisimple
also as an S-module. As is well known, this implies that S is the direct
sum of [S, S] [L, L] L and its center, C say, and that M is semisimple
with respect to every element c e C. We wish to prove that C (0). In
order to do this, we extend the base field F to its algebraic closure. Noting
that the smallest algebraic Lie algebra containing the natural extension of L
is the natural extension of S, we see that we may suppose without loss of
generality that F is algebraically closed. Assuming this, let c C, and let
W be the c-submodule of M that corresponds to a characteristic value , of
c. Let wl.... ,w be abasisfor W. Since cisin the center of S, Wis
an L-submodule of M. Let T be the tensor product of n copies of M. Let
b denote the element

()w (R) (R) ,
where the summation is over all permutations z of (1, n), and (z) is
1 or-1 according to whether z is even or odd. Let B Fb, A (0).
If x e L, we have x.b Tw(x)b, where T,(x) denotes the trace of the re-
striction of x to W. Since L [L, L], it follows that Tw(x) O. Hence
L maps B into A (0). By the general result of the beginning of this sec-

tion, we conclude that S maps B into (0). Hence c. b 0. But evidently
c. b n.b. Thus , 0. Thus every characteristic value of c is 0, so that
c 0. We have shown that C (0), whence S L. Our conclusion is
the well known result that every semisimple linear Lie algebra is algebraic.
The other result we shall need is that, for every semisimple Lie algebra L,

the algebra R of all representative functions on the universal enveloping algebra
of L is finitely generated. This result, proved first (for an arbitrary base
field of characteristic 0) by Harish-Chandra, is not elementary. Using the
theory of weights for the representations of a semisimple Lie algebra (as
contained, for instance, in [7]), one can prove the result quite rapidly, as
follows. Let F* denote the algebraic closure of F. Then R (R) F* is the
algebra of representative functions on the universal enveloping algebra of
L (R) F*: If R (R) F* is finitely generated, then the same must evidently hold
for R. Since L (R) F* is still semisimple, we may therefore suppose without
loss of generality that F is algebraically closed. In that case, every simple
representation of L is determined (up to an isomorphism) by its highest
weight with respect to some Cartan subalgebra of L. It is known that the
highest weights belonging to the simple representations of L are all the sums,
with repetitions allowed, of a finite set 1, of weights (where r is the
rank of L). If V and W are L-modules, the weights of their tensor product
V (R) W are all the sums , , where , ranges over the weights of V and
ranges over the weights of W. Hence the highest weight of V (R) W is the

sum of the highest weight of V and the highest weight of W. For each i,
let Vi be a simple L-module with highest weight i. Then the tensor prod-
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UCt Of el copies of V1, e,. copies of Vr has el 1 + er ,. for its
highest weight, and hence must contain a simple component with that highest
weight. It follows that if V is the direct sum V1 -k -k Vr, then every
simple L-module is a component of some tensor power of V. Hence, if p

is the representation of L in V, R is generated by the constants and the
representative functions associated with p. This completes the proof.

6. The algebra of representative functions

Let L be a finite-dimensional Lie algebra over F, and suppose that L is a
semidirect sum H K, where K is an ideal of L and H a subalgebra. Let
U(L), U(K), U(H) denote the universal enveloping algebras L, K, H,
respectively. For any universal enveloping algebra U, we denote the pro-
jection map U -- U0 F, whose kernel is the ideal generated by the ele-
ments of the Lie algebra, by u --. u0. Let R(L), etc., denote the algebra of
representative functions on U(L), etc. The epimorphism L --. H with kernel
K extends uniquely to a unitary epimorphism U(L) U(H) with kernel
KU(L). This yields an isomorphism of R(H) onto a subalgebra R’(L) of
R(L). If f e R(H), the corresponding element of R’(L) is denoted f+.
Identifying U(H) and U(K) with their canonical images in U(L), we have
U(L) U(H)U(K) U(H) (R) U(K), and f+(uv) f(uvo), for all
u e U(H)and all v U(K).
On the other hand, we have the restriction epimorphism f -- fK of R(L)

onto a subalgebra R(L)K of R(K). We shall characterize R(L) as a sub-
algebra of R(K) and obtain an algebra monomorphism of R(L) into R(L)
inverse to the restriction epimorphism R(L) -- R(L). Clearly, the re-
striction epimorphism is a U(K)-epimorphism with respect to the double
U(K)-module structures of R(L) and R(K). Hence R(L) is stable under
the right and left translations on R(K). Since K is an ideal in L, U(K) is
stable under the commutations with the elements of L and, in particular,
with the elements of H. Hence we may define the structure of an H-module
on U(K)’ as follows: let h H, f U(K)’, u U(K). We define the trans-
form h(f) by putting h(f)(u) f(uh hu). If f gK, with g R(L),
we have h(f) (h.g g.h). Thus R(L) is stable under the H-opera-
tions.
The H-operations on U(K)’ can be combined with the left translations by

the elements of K "to yield an L-module structure on U(K)’. In fact, given
xL, we have uniquelyx h k, withhHandkK. ForfU(K)’,
we define x(f) h(f) k.f. It is immediately verified that

h(] .f) It. h (f) [h, k] .f,

whence it is seen that our definition gives an L-module structure on U(K)’.
This, in turn, defines the structure of a left U(L)-module on U(K)’, the
induced U(K)-module structure being again the canonical left translation
structure. It is clear from the above that every element of R(L) generates
a finite-dimensional U(L)-submodule of R(L).
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Conversely, suppose that f U(K)’ and that f generates a finite-dimen-
sional U(L)-submodule T of U(K)’. Then we have a finite-dimensional
representation of L in T. The map u --> u(f)(1) of U(L) into F is evidently
a representative function associated with this representation. Call this
representutive function f+. If u U(H) and v e U(K), we have

f+(u) f(uo ).

Hence f (f+)K e R(L)K. Thus we have shown that R(L) is precisely
the sum of all finite-dimensional U(L)-submodules of U(K)’, which is also
the sum of all finite-dimensional U(L)-submodules of R(K). Observe also
that, for every f U(K)’, there is one and only one f+e U(L)’ such that
f+(uv) f(uo v), for every u e U(H) and every v U(K), because

U(L) ’ U(H) (R) U(K).

Moreover, the mp f -- f+ is evidently n lgebm monomorphism.
Our two lgebr isomorphisms of R(H) onto R(L), nd of R(L): onto

sublgebm R(L) of R(L), compose to n lgebm homomorphism of
R(H) (R) R(L) into R(L). We claim that this is ctully n isomorphism
of R(H) (R) R(L): onto R(L). Since it is clearly monomorphism, there
remains only to show that R(L) R(L)R (L).

Let f e R(L), nd let f, f be bsis for the spce spanned by the
left translates of f. Then, for every x U(L), we hve

x.f _’_ g(x)fi

where each g is an element of P,(L). Take x v U(K). Then we my
write

(v.f), -’’}_ (g):(v)(f),.

Evaluating this at n element u e U(H), we find

f(uv) E.I
Put p ((f),)+ eR’(L), and q ((g):)+eR:(L). Since

p( U(L)K) (0),

and q(HU(L)) (0), it follows from the definition of the multiplication
in U(L)’ that (piqi)(uv) p(u)q(v). Hence our last expression for
f(uv) shows that f _.-1 pi qi e R’(L)R:(L). This completes the proof
that the maps f -- f+ give an isomorphism of R(H) (R) R(L) onto R(L).
We shall need a result on extensions of representations, due to Zassenhaus,

and we shall also need a by-product of the proof of this result, as given in
[5] (Theorem 5.1), where the result is obtained by using the same technique
of representative functions that we are using here. The full statement of
what we shall need, in terms of the above notation, is as follows. Let p be
a representation of K, and suppose that p is nilpotent on an ideal J of K
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that contains [H, K]. Then p can be extended (allowing extension of the
representation space) to a representation of L with the following properties"

(1) is nilpotent on J;
(2) if f is a representative function associated with p, then its image f+

in U(L)’ is a representative function associated with ;
(3) if H is nilpotent on K under the adioint representation, then is

nilpotent on H + J.
We are now in a position to begin with an analysis of the structure of

R(L). Let A denote the radical of L. Then L is a semidirect sum S + A,
where S is a maximal semisimple subalgebra of L. By the above, we have

R(L) RS(L)RA(L) R(S) (R) R(L)A.

Let T [L, A]. We shall show first that R(L) consists precisely of the
representative functions on U(A) that are associated with representations of
A whose restrictions to T are nilpotent. It follows at once from Lie’s theorem
that every representation of L is nilpotent on T, so that our condition on
the elements of R(L) is necessary. Conversely, let f be a representative
function on U(A) associated with a representation p of A that is nilpotent
on T. By what we have said above, p can be extended to a representation
of L, and it follows that f e R(L).

Since T is a nilpotent Lie algebra, we can find a basis xl, xm for T
such that each commutator [xp, Xq] is a linear combination of elements xi

with i < min(p, q). In particular, the subspace Tp spanned by xl,

x is an ideal of T for each p. Now we complete this basis to a basis x,
Xn of A. Then the elements of U(A) can be written uniquely as linear

combinations of the ordered monomials x... x1. Let fi be the element
of U(A)’ that takes the value 1 at x and the value 0 at every other ordered
monomial.

PROPOSITION 2. R(L)r coincides with the algebra generated by (f)r,
(fin) r and the constants, and each fi e 1 L

Proof. Clearly, the restriction of f to U(T) is a representative function
associated with a nilpotent representation of T1. Now let g be any repre-
sentative function on U(T1) F[xI] that is associated with a nilpotent
representation. Then there is an exponent q such that g vanishes on

xU(T), and, since f (x) t e !, we see that g is a polynomial of degree
less than q in the restriction of f to U(T).
Now observe that A is reached from T by a sequence of semidirect sum

constructions passing along the composition series whose terms are the sub-
algebras A spanned by x, x; clearly, each A is an ideal of A i+1.

If, starting with the restriction of f to U(T), we apply the maps f -- f+ suc-
cessively on each level of the composition series, we evidently arrive at the
function f in the end. It follows from what we have said above concerning
extensions of representations that f is associated with a representation of A
that is nilpotent on T, so that fl e R(L)A.
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Suppose now that m _-> p > 1, and that we have already shown that fl,
fp-i belong to R(L) A, and that their restrictions to U(Tp_I), together

with the constants, generate the algebra of all representative functions asso-
ciated with nilpotent representations. We have T Fx, -t- T,_I. Write
H for the 1-dimensional Lie algebra Fx. The restriction of f to U(Tp)
evidently belongs to Rn(T) R(H), and we see as above for f that, to-
gether with the constants, it generates the algebra of all elements of RH(T)
that are associated with nilpotent representations.
Now let g be any element of R(T) that is associated with a nilpotent

representation. We may write g ui vi, where the u are linearly in-
dependent elements of RH(T) and the v belong to Rr-I(T). If x e T_,
we have x.u 0, so that x.g _,

ux.vi. Clearly, Rr-I(T) is stable
under the left translations with the elements of T_, and the elements u
are free over this algebra. Since g is associated with a nilpotent representa-

T_ U(T_I).g (0). We see attion, there is an exponent q such that
once from the above that each vi is annihilated from the left by this same
ideal of U(Tp_I). Hence the restriction of each v to U(T_I) is associated
with a nilpotent representation. By our inductive hypothesis, this means
that these restrictions of the v are polynomials in the restrictions to U(T_)
of fi, f-i. It follows that each v is a polynomial in the restrictions
to U(T) of f, fp-i.
Now we can rewrite g as a sum of products as above, but this time with

the v linearly independent polynomials in the restrictions to U(Tp) of f,
f_, while, of course, we have to abandon the requirement that the ui

be linearly independent. Since vi.x O, we have g.x, ui.xvi.
Since g is associated with a nilpotent representation, it is annihilated from
the right by some power of x. Since now the v are free over R’(T), it
follows that the ui are annihilated from the right by the same power of xp,
so that they are associated with nilpotent representations. Hence we see
as above that the u are polynomials in the restriction of f to U(T). The
extension theory shows that f e R(L), and we have now completed the
inductive step, whence we may conclude that fl, fm belong to R(L),
and that their restrictions to U(T), together with the constants, generate
the algebra of all representative functions associated with nilpotent repre-
sentations of T. Since every nilpotent representation of T can be extended
to a representation of L that is still nilpotent on T (because L is obtained
from T by a sequence of semidirect sum constructions), this algebra coincides
with R(L)r.

In order to complete the proof of Proposition 2, we must merely observe
that the f with i > m are also elements of R(L), because they are asso-
ciated with representations of A that are trivial on T.

Before we proceed with our analysis of P,(L). we have to examine the
representative functions for the 1-dimensional Lie algebra. If x denotes
any nonzero element of the 1-dimensional Lie algebra, the universal enveloping
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algebra is the polynomial algebra F[x]. Let f denote the representative
function defined by f(xe) le. Let F* denote the algebraic closure of F,
and let us first examine the representative functions on F[x] with values
in F*. These are associated with representations in vector spaces over F*.
For every element c of F*, there is a unique homomorphism of F[x] into F*
sending 1 onto 1 and x onto c. This homomorphism is given in the natural
fashion by the power series exp(cf). It is evidently a representative func-
tion.
Now let V be any representation space for F[x] over F*. Then we can

decompose V into a direct sum of stable subspaces V for each of which
there is an element c e F* such that V is annihilated by some power of
x c. Hence it suffices to consider representation spaces V for which
there is an element c e F* such that some power of x c annihilates V. Let
p denote the representation of F[x] in V, m the dimension of V, I the identity
map of V onto V. Then we have p(1) I, nd p(x) u + cI, where
u 0. Hence

/ /.../

where all the terms after the mh one are zero. Noting that

1_ (exp(cf)fk)(x,) (;)c,_k
we see that the above may be written

o exp(4) I + fu + 1/2f + + 1)!ff-l’-
where he produeg of a function on F[z] by a linear transformation e of V
denoges ghe map of F[z] into ghe algebra of linear gransformagions of V send-
ing each elemeng of F[z] onto O()e. We see from ghis ghag ghe representa-
give funegions on F[z] can be writgen as polynomials in f whose eoeffieiengs

are F*-linear combinations of functions exp(ef), with e e F*.
The F*-linear eombinagions of ghe exp(f) eonsgiguge an algebra G* of

F*-valued representative funegions, and ghe powers of f are free over G*.
Leg be the subalgebra of G* consisting of the F-valued elemengs of G*.
Then it is clear hag the F-valued represengagive functions on F[z] are ghe

polynomials in f with eoeffieiengs in G.
An element of U(L)’ will be called an elementary function if ig vanishes on

U(L)o and on LU(L). Clearly, ghe elemengary funegions are represengagive
functions assoeiaged wigh represenagions of L ghag are rivial on
Thus ghe elemengary funegions belong go ghe canonical image, R*(L) say, of
R(L/[L, L]) in R(L).

If f is an elemengary funegion and c is an elemeng of F*, ghen exp(cf) is
defined as a linear map of U(L) ingo F*. The F*-linear eombinagions of
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these functions exp(cf) that are such that their values lie in F are evidently
elements of R*(L). We shall call these functions the trigonometric functions.

Let gi, gn be the elements of R(L) whose restrictions to U(A) are
the functions fl, f of Proposition 2. Then g+l, g belong to
R*(L) and span the space of all elementary functions on U(L) in fact,
L/[L, L] is canonically isomorphic with A/T, so that the cosets rood. T of
the elements x+, x may be identified with the elements of a basis
for L/[L, L].

It follows that the trigonometric functions on U(L) can be written as poly-
nomials with coefficients in F* in the functions exp(ci gi), with i > m and
ceF*. We claim that R(L)A is generated by thef (i 1, n) and the
restrictions to U(A) of the trigonometric functions on U(L). Clearly,
R(L) A contains all these functions. The proof that R(L) is generated by
them is by induction on n m. If n m 0, the result is already estab-
lished, by Proposition 2. Indeed, in this case, we have T A, whence
L [L, L], and the trigonometric functions are the constants. We base
our induction on the sequence of semidirect sum constructions leading from
T to A, via the A.with i > m. Since each A+/Ai is 1-dimensional, we can
use our determination of the representative functions for the 1-dimensional
Lie algebra at each level, and the remaining arguments for completing the
induction are merely repetitions of parts of our proof of Proposition 2.

Observe also that the case T (0) gives the result that R*(L) is gener-
ated by the elementary functions and the trigonometric functions. More
precisely, if G is the algebra of the trigonometric functions, we have

R*(L) G[gm+i, gn],

and the monomials in the g (i > m) are free over G.
The algebra generated by g, g is the image in R(L), by the com-

position of the maps f - f+ corresponding to the levels of our sequence of
extensions leading from T to L, of the algebra of all representative functions
on U(T) that are associated with nilpotent representations. Denote this
last algebra by R0(T), and denote its image in R(L) by R(L). Then we
can summarize our results as follows.

THEOREM 5. R(L) RS(L)R*(L)R(L) RS(L) (R) R*(L) (R) R"(L);
RS(L) is canonically isomorphic with R(S) R(L/A R*(L) is canonically
isomorphic with R(L/[L, L]) and is generated by the elementary functions and
the trigonometric functions; R(L) Ro(T) and is generated by the m alge-
braically independent functions g, g,n R*(L)I(L) R’(L).

It is now easy to deduce the following result.

THEOREM 6. A proper derivation D of R(L) is the left translation by an
element of L if and only if its natural extension to a proper derivation of
R(L) (R) F* satisfies D(exp(f)) D(f)exo(f), for every elementary function
f on U(L (R) F*).
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Proof. Since exp(f) is a homomorphism, we have, for all x e L and all
ueU(L),

(x.exp(f))(u) exp(f)(ux) exp(f)(u)exp(f)(x)

exp(f)(u)f(x) ((x.f)exp(f))(u).

Hence the condition is necessary.
Now suppose that D is a proper derivation satisfying the condition of our

theorem. Let i be the differentiation of R(L) defined by (f) D(f) (1).
We must prove that there is an element x eL such that i(f) f(x), for
every f e R(L). First consider the restriction of ti to RS(L). Since RS(L)
is isomorphic with R(S), we know from the end of Section 5 that it is finitely
generated. In fact, R(S) is the algebra generated by the constants and the
representative functions associated with a representation p of S. We know
from Section 5 that p(S) is algebraic. Hence it follows from Theorem 2
that, if i* is the differentiation of R(S) that is induced by ti, there is an ele-
ment s e S such that *(f) f(s), for every f eR(S). But this means that
(f) f(s), for every f e Rs(L). Now we subtract from D the left transla-
tion by s. The property assumed for D is thereby preserved, and the new
differentiation ti annihilates RS(L). Hence we may now assume that

ti(RS(L)) (0).

There is a linear map of A’ into F sending the restriction to U(A) of each
g (as defined above) onto ti(g). Hence there is an element a e A such
that (g) g(a), for each i. Since the elements of RS(L) vanish on A,
we have, using the notation of Theorem 5,

(f) f(a), for every f e R(L)R(L).
Now subtract from D the left translation by a. Then we may assume that
ti annihilates R (L)R"(L) and also the elementary functions, which are the
linear combinations of the g with i > m. The condition imposed on D
means that (exp(f)) (f), for every elementary function on U(L) (R) F*.
Hence we have now i(exp(cf)) 0, for every elementary function f on
U(L) and every c e F*. Thus t annihilates the trigonometric functions on
U(L), whence ti annihilates all of R*(L). We may now conclude from
Theorem 5 that i 0. For the originally given derivation D, this means
that D is the left translation by s -[- a, and this completes the proof of The-
orem 6.

Let D be a proper derivation, and let ti be the corresponding differentiation
f -- D(f)(1). One checks immediately that, for every elementary function
f, D(f) coincides with the constant i(f), and D(exp(f)) i(exp(f))exp(f).
It follows that the commutator algebra of the algebra of all proper deriva-
tions annihilates the elementary functions and their exponentials. Hence
it follows at once from Theorem 6 that this commutator algebra lies in the
algebra of the left translations by the elements of L. Hence the image of L
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in the Lie algebra of all proper derivations of R(L) is an ideal, and the factor
algebra is abelian.

7. Algebras with nilpotent radical

Now let us assume that the radical A of the Lie algebra L is nilpotent.
Let N denote the subalgebra of R(L) consisting of the representative func-
tions associated with representations of L that are nilpotent on A. Evi-
dently, RS(L) is contained in N, and so are the elementary functions. Since
A is nilpotent, the nilpotent representations of T can be extended in the
standard fashion to nilpotent representations of A and from there to repre-
sentations of L that are still nilpotent on A. It follows that, in the notation
of Theorem 5, R" (L) is contained in N. Thus N contains R (L)R" (L)
and the elementary functions. We shall prove that N coincides with the
algebra generated by Rs(L)R"(L) and the elementary functions. It is
easily seen that, in doing this, we may suppose without loss of generality that
F is algebraically closed.
By Theorem 5, it is clear that R(L) is generated by N and the trigono-

metric functions. Let H denote the multiplicative group consisting of the
functions exp(f), where f ranges over all elementary functions. Since we
assume that F is algebraically closed, the trigonometric functions become
simply the linear combinations of the elements of H. Hence it is clear that,
if N were strictly larger than the algebra generated by R(L)RT(L) and the
elementary functions, the elements of H could not be free over N. Hence
it suffices to show that the elements of H are free over N.
We have H c R(L), and it is easily seen, using that A.RS(L) (0),

that N R(L) (R) M, where M N n R (L). Hence it suffices to show
that the elements of H are free over M. Let H1 and N1 denote the images
of H and N, respectively, in R(A), by the restriction map. Then N coin-
cides with the restriction image of M, and since the restriction map is a mono-
morphism on R(L), we see that it will suffice to prove that the elements
of H1 are free over N1.
Suppose that the elements of H are not free over N, and let

E= t hi 0

be a nontrivial relation with the minimal number n of terms, where t e N
and h e H. We can evidently arrange to have hi 1. By the minimality
of n, the hi are all distinct, and the ti are not 0. Moreover, we must evi-
dently haven > 1. LetxeA. Then we have

x.(tihi) (x.ti)hi - ti(x.hi) (x.ti + h(x)t)hi.

The last expression is of the form si h, where si e N. Repeating this, we
find that, for every u U(A), there is an si N such that

u. ti hi) si hi
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and si(1) (tih)(u). Nowthereis apositive integer qsuch thatu.tl 0,
for every u AqU(A). Applying the left translation by such an element u
to the given relation, we find, because of the minimality of n, that each s
must be 0. In particular, s(1) 0, i.e., (t h)(u) 0. Hence the repre-
sentation of A by left translations in the space [t h] spanned by the left
translates of t. h. is nilpotent.
By the above, we have [t h] [t.]h:, and evidently (A. [t])h. is an A-

stable subspace of [t.]h:. The induced representation of A in the factor
space must still be nilpotent. On the other hand, our above result for the
translate x. (t h) shows that, if v denotes the coset of t h rood. (A. [t.])h,
we have x. v h(x)v, for every x e A, and hence also u. v h(u)v, for every
u e U(A). Since v 0 (because the representation of A in [t] is nilpotent),
this shows that h. must be a constant, i.e., h hi, which is a contradiction.
Thus we have proved the following result.

THEOREM 7. Suppose that the radical A of the Lie algebra L is nilpotent.
Then the algebra N of the representative functions associated with representa-
tions that are nilpotent on A is generated by RS L R L and the elementary
functions. Moreover, if C is the algebra of the trigonometric functions, we have
R(L) CN C (R) N.

Observe that both C and N are stable under the right and left translations,
and hence also under every proper derivation. It is clear from the proof of
Theorem 6 that every proper derivation of N is the left translation by an ele-
ment of L. Hence we see that the Lie algebra of all proper derivations of
R(L contains the Lie algebra of the left translations by elements of L as a direct
summand, the complementary summand being isomorphic (by restriction) with
the Lie algebra of all proper derivations of C.
As an easy consequence of our above results, we obtain the following well

known result. Let L be an arbitrary Lie algebra, and let p be a representa-
tion of L such that the restriction of p to the radical of L is a nilpotent repre-
sentation. Then p(L) is an algebraic Lie algebra.

In proving this, we may replace L by p(L), so that we may assume that
the radical of L is a nilpotent Lie algebra. By assumption, we have Sp c N.
By Theorem 4, every proper derivation of Sp can be extended to a proper
derivation of R(L). By the above, this derivation of R(L) coincides on
N with the left translation by an element of L. Hence every proper deriva-
tion of S is the left translation by an element of L. By Theorem 2, this
implies that p(L) is algebraic.

It is an immediate corollary that, if L is any linear Lie algebra, [L, L] is
an algebraic Lie algebra.
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