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1. Introduction
Let q be the field of q pm elements, 9 YSt(n, q) the mul-

tiplicative group of all n-rowed square matrices with elements in and deter-
minant 1, and 9 Tt(n, q) the subgroup of F consisting of its scalar
matrices pI with pn= 1. We assume, of course, that n > 1. Then
is a normal subgroup of J, and the quotient group

(1) @ @(n, q) g/

is a well-known simple group called the projective unimodular group.
In 1930 H. R. Brahana gave a list of simple groups of orders less than

1,000,000. An examination of his list reveals the fact that every group there
is generated by two elements, one of which has period (group order) two.
The purpose of this paper is to prove the corresponding result for a general
class of simple groups. We shall derive the following property.

THEOREM. The pro2ective unimodular group is generated by two elements
A and Bg, where the coset A has period two.

The nature of our proof is such that it is necessary to consider a number of
special cases for small matrix orders n. We shall begin with a treatment of
the general case n -> 5, and shall then handle these special cases, the most
difficult being the case n 2.

2. The group @ for n -> 5

The nonzero elements of q form a cyclic group * of order q 1, and the
set of all elements p of *, such that pn 1, is a subgroup of * isomorphic
to 9 9(n, q). This is a cyclic group generated by an element whose
period divides both n and q 1, and we observe that, when n 2, the group
9 is the identity group if p 2, and is generated by -I when p is odd.
Our theorem is clearly equivalent to the property that )(n, q) is generated

by A, B, and I. We let ei. be the n-rowed square matrix with 1 in its ith
row and jh column and zeros elsewhere, and I the n-rowed identity matrix.
Then the theory of the reduction of a matrix to diagonal form by elementary
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422 A. A. ALBERT AND JOHN THOMPSON

transformations implies that the group (n, q) is generated by the matrices

(2) I + xe (i j; i, j 1,..., n),

where x ranges over all nonzero elements of q. Thus our technique will
consist of a study of the subgroup $9 of !Ft(n, q) generated by A, B, and kI,
and a proof of the property that contains all of the matrices in (2).
We note that

(I + xe)(I -{- ye) I + (x - y)e,
(3)

(I + xei)-1 (I xei),
and that

(4) (I -t- xe) I -t- txe,
for all i 3, all x and y in q, and all integers t. Also

(5) (I

and

(6) (I

for all integers t, and all i j, j r, r s, and s i. In particular,

7 I

Finally, let i, j, k be distinct, let x and y be in q, and let

(8) A I + xe, B I -t- ye.

Then AB I - xe - ye + xye, A-1B-1 I xe ye -{- xye
so that the commutator of A and B is

(9) ABA-1B-1 I -{- xye

We shall use the convention

(10) e,.+, e+,,

for all i, j 1, n, and shall begin with a derivation of the following key
lemma.

LEMMA 1. Let a be a primitive element o] q, n >- 5, and

(11) C I "t- ae._,2 -[- e,,, D ( 1 "(e2 e + ’’ffi3 e,,+l).
Then the cosets C and D generate @(n, q).

We observe that D is unimodular for all n

_
1, and that

(12) D- (-.1)’(el e - "’.. e+l.).

Then a direct computation shows that
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(13)

while

(14)

for alln > 3.

D-lei D ei+l,+l (i 2;j 2;i =j-- 2),

D e2D -es,+, ei2D -ei+1,8 (i 2;j 2),

It follows from (13), (14), and (3) that, if a subgroup
of )(n, q) contains I xe and I --}-- yek with i, j, k distinct, then
also contains I xyeik.

We now make the assumption that n -> 5 and that 0 is the subgroup of
(n, q) generated by C, D, and the scalar matrices of determinant one.
Then 0 contains

(15) C1 D-1CD I- e e2,

as well as

CC C-1C (I + e_, + e)(I e + e12)C-1C

Thus 0 contains

(16) E I+e.
Assume next that o contains

(17) E I+e (2 k n- 2).

Then 0 contains

(18) C_ D-CD- I W pe,+ + aae_,+ (p = =1),

and thus contains

En C_I E- -C_ (I W e (I + pe,+ + aae_,+ E C1

(I e pe,+ aae_,+ + Pen,k+l)

I 2pe,+ pe,+ I pen,+.

By (3) we see that o contains I W e,+. This completes an inductive
proof of the fact that o contains

(19) I + e (m 2, ..., n 1).

But then we apply (13), (14), (3), and (9) to see that 0 contains every
IWefori-j 0, n- 1. Itfollowsthat0containslTe.,IT e,
and (9) implies that o contains I e. We have shown that o contains

(20) + e, (i ; i, , n).
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We use (15) to see that 0 contains

(I el.) (I + e12 ae,3) I ae,3

o contains I + aen3 50 contains I + aenk by (9) for all/ # 3, n. Since
30 has been shown to contain I + ae,3, we have proved that I + ae, is
in 0forevery k n. Using (13), (14), and (9) we see that IWae is
in o for all i # j.

If I + xe and I + ye are in 0 for x and y in , we use (9) to see that
I + xye is in 0. But if i and k are distinct, there is an inger j # i, k,
and the fct that I + ae nd I + ae are in 0 implies that I + ae is
in 0 for all i k. If IWeis in 0, then we use (9) with

A I +
B I + aei to see that I + at+leik is in @0. It follows that I + ateii
is in @0 for every i j and every integer t. Since a is a primitive element of
q, it follows that @0 contains every I + xe, o= (n, q). This com-
pletes a proof of our basic lemma.
Lemma 1 provides a proof of our theorem for p 2 and n 5, since it

should be obvious from (6) that C has period p. Assume then that

(21) p 2] - 1.

We shall then derive the following result.

LEMMA 2. Let p 2/c + 1, n -> 5, a be a primitive element of q, and
8 -ks, so that 28 a. Then the unimodular matrix

(22) A --(ell - e22) - Z--3 eli - oen-i,2 "- e,

has period two,

(23) B (-1)(e12 e - ’in_aei,i+l -- 8en-l, 2F ken2)

is unimodular, and @(n, q) is generated by the cosets A9 and B.

It is trivial to see that A and B are unimodular and that

(24) (--1)’B- Sen2 ke - e21 el2 - Zin--3 ei+l,i.

Compute

A1 B-lAB (e e2 + -3 ei+i,i- ]ell -- Sen2)

(--el e22 + ei-t- e_.2 - end)(--1)nB

(e e + e,+ + e_, + ]e.)

e22 e33 -- Zin-4 eii + e - (28 a) en3 - (2] - 1) el2.

Since 2k -[- 1 p 0 in q and 28 a, we have
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(25)

But then

(26)

and

A e (e: -t- ea) -[- ’ i==4 eii

A A --ell -- e22 ea - Ein4 e. -t- oen-l,2 "3
t- enl,

(27) (AIA) I + 23e_1..

Assume thut is the subgroup of (n, q) generated by our two mutrices
A and B and the generating matrix I of 9. Then (4) implies that con-
tains

(28) E I "k aen-l,2

Since -ka, we see that @ contains E- I kae_, I + en-,:
as well as

B (I + en_,)B

B + en-x,2(e2 e2a + iei,i+l + e_,a + ke)(--1)

B 1)e_, (- 1) (el ea + ae,+ + ke).
Define

(29) L 1 (e e: + e,+ + kent),

and see that L and

(30) L- (--1)(-kel + e21 ea2 + ,a e+l.i)

are in . Also

L-A L (-k01 + e2 e + a ei+l,i)

(e11 e2 eaa + 4 eii)(-- 1)’L

(--ell + e21 + ea2 e4a + i4ei+l,i)
(31) (el- e + :e,,+l + e)

o1+e22-- eaa-- e44+ e, J4
is in 9.
We have now seen that Ja A and J are in @. Suppose that contains

(32) j -2
Then a direct computation shows that contains

(33) L-J L J+l.
Hence 0 contains J for j 3, n. In particular, contains

(34) g. E"-:
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and also contains

Jn A [I 2(en-l.n-1 + e,,)]A

(35) A 2(en_l.n_l + e,, 2 oe,_ .2 + enl

i=a eii- (ell + e + en--l,n--1 + e, + en-l,2 + enl).
However,

(JnA) i-$ eli + (ell + e + e_._ + e + ae_. + e)
(36)

and it follows from (6) that the matrix C of Lemma 1 is in . Since
E I + ae_.e is in , so is

(37) E-C I + e,

and so is (E-C)- I enl. But then

(E-C)-L (I- ke)L

(38) i ke 1 "(e e + 2 ei.i+ + ke)

L k(-1)e D

is in , where D is the matrix of Lemma 1 By Lemma 1, the group
(n, q) as desired. This completes our proof of the theorem for the

general case n 5.

3. Theesen 4, q 9

We shall assume next that n 4, and redefine C and D by the formulas.

(39)

so that

(40)

Then we have

D- ea e32 e43 + e4.

(41) D-ej D e+.j+ (i 2,3 2;i =j 2),

while

(42) D-e2 D -ea..+, D-e D -e+.3 (i 2;j 2).

As before, we let 30 be the subgroup of (n, q) generated by C, D, and the
scalar matrix XI, and see that

C D-ICD I oe, C D-C D I- oea,
(43)

C3 D-IC2 D I + ce34
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are all in 0. Then (9) implies that if I -t- xe and I ye. are in o,
so is I -- xye.. But then 0 contains

I xye, D-(I + xye)D I xyea,
(44)

D-1(I xyo3)D I xye24, D-1(I xye24)D I + xye3l.

If I ze is in (C)0, so is

(45) (I + zel (I + xye. (I zel (I xye I -{-- xyze

by (9). As above, o contains

(46) I + (xyz)o, I -[- (xyz)e2, I + (xyz)ea, I + (xyz)e4a.

Finully, if o contains I + xye. and I -t- (abc)e, then (9) implies that
o contains IT (xy)(abc)el. Take a x y a b c to see that
:o contains

(47) I --[- a4ae4l
We next take x a, y a b c a to see that o contains

I W ael. But then it should be clear that o contains I -t- a4el, for all
integers k. By (3) we see that 0 contains all elements

(48) I + af(a*)e,

for all elements f(a4) of the field v[a*]. When q 9 it is easy to see that

(49) v(a) q,

and so g0 contains

(50) I +
for all x of q. By (43), (44), (45), (46) we see that 0 contains I T xe
for all i j, and so 0 (4, q).

If p 2, the period of C is two, and our proof of the theorem is complete
in that case. Hence take

(51) p 2k+ 1,

and define

a 2i,,

(52)
A en e22 -[- e33 e44 ae41,

B e12 e23 "- e34 "" e4 -{- (e42

Thus A has period two, and

(53) B-1 --en + 04 + e21 e32 "-I’- e43.



428 A. A. ALBERT AND JOHN THOMPSON

Then

A1 B-lAB

( )e. el ie. -{- e.. eaa -{- e4,
and we use (51) to see that

(54) J B-IAB -ell + e ea - e4

is in the subgroup of (n, q) generated by A, B, and I.
-JA I- ael is in , and so is

(55) (-JA)-I I - ae C.

Then contains Ck I -t- kae4 I- ie, since

Also

2(]a - i) (2] - 1)a 0.

It follows that CkB B 8e(e2 e2a - e3 el e.) B e.
e ea e34 - e41 D. Hence contains both C and D, and

(n, q). We state this result as follows.

LEMMA 3. The group @(4, q) is generated by C andD of (39) if q 9.
The coset C has period p and so has period two if p 2. If p 2, the
group @(4, q) is generated byA andB when q 9, where A and B are given
by (52), and A has period two.

d. She 9rcp @(4, 9)
The field is generated over a by an element a such that

(56) + 1.

Then

(57) 1 ,
so that is a primitive element of .
LEMMA 4. Let a be defined by (56).

and B, where A and B are given by

-1,

We shall derive the following result.

Then @(4, 9) is generated by A

A -ell -- e22 eaa - e - ea -[- e4l,
(58)

B el e.3 - e e e e,
and A has period two.

We let be the subgroup of (4, 9) generated by A, B, and , and com-
pute

(59) B- -e. + e ea + ea + e + ae.
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Then a direct computation, for this case of characteristic three, yields

(60) J B-lAB e e.: -]- eaa e

Also, it is clear that

(61) C JA I- oe -k e

Since C is in , so is

C-B (I + ae32 e41)B

B + (ae3 e4) (e e3 + e34 + e4 + e4 + ae33) B e33 e42,
that is, contains

(62) D C-B el2 e23 + e34 T e41.

It should now be clear that D-1 is given by (40), and that the conjugating
relations (41) and (42) hold. Hence contains

C1 D-CD I + ae4a W e2, C2 D-1CID (I + ael e2),
(63)

C D-C2 D I ae2 ea,
as well as

C CCaC- (I + ae43 + e) (I ae32 + e41)C1C-1

(I + ae43 + 02 ae32 + e4 a e4)

(I ae43 02 + ae32 e4t a e2)

I 2ae4+ ae4-- e4 I-- (1+a2)e4
I-- (a+2)e4 I+e4.

By conjugating by D and taking inverses we see that contains

L Lo I+e42, La I+ex3,
(64)

L2 I + Be4, L3 I + Be3a.

As next element we compute the commutator
--1L C3 L C (I e3) (I + ae2 + e34)L C

by (57). Then

R Lx-IC3 L1 C-1 C-x2 (I e14 e23 + e24) (I el q- e2z)

I #e4 e2 q-- e2 oel4 q- e2 I (a q--/)e4 q- e
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is in , and so is

JR (en e22 -[- e3 e44)(I-- e14 -]- e.4) en- e2 + e e, e e.
But

1 0 0 --1 1 0 0 --1 1 000

(6) (R)=
0 1 0 1 0 0 1
0 0 00-1 00

is in , and we have shown ghag contains I + e. Using (41) and (42),
and gaking inverses when necessary, we see

(66) I + e24, I + ea, I + e, I
are allin. Also (I e)R I- e + e e I- e is in , and
so @ contains

(67) I + e, I + e, I + e, I + e.
By (9) we see that contains (I + e) (I + e) (I + e)-(I + e)-
I+e. Hence I+e, I+e8, I+es, I+e, are allin , and we
have shown that contains I + ei for all i j. Clearly (I- e)C
I ae is in @, and thus @ contains I + aes, I + ae8, I + ae, I + ae.
Using (9) we show readily that contains I + ae, for all i j. But
(9) implies that if @ contains I + a ei for all i j, then contains

-1 -1 t+l(I + ae)(I + aey)(I +
for all i, j, k distinct. It follows immediately that contains I + xei for
all x in ,, and the proof of our lemma is complete.

5. Generation of @(3, q)
The principal result for the case where n 3 may be stated as follows.

LEMMA 5. Let q 4, let a be a primitive element of ., and let

(68) C I + aea, D e + e + ea.
Then C and D generate @(3, q), and C has period p. I] p 2k + 1, the
group @(3, q) is generated by A and B, where

(69) A e- en e- aea, B D-

and A has period two.

It is clear that
--1(70) D- e + e + es, D eii D e+.i+ (i, j 1, 2, 3).

We let 0 be the subgroup of (3, q) generated by C, D, and kI, and see
that 0 contains

C I + aea, C D-CD I + ae,
(71)

C D-C D I + ae.
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Assume then that I -f- xe31, I -t- yel, I -f- ze3 are in Yg0 for x, y, z in .
Then we use (9) to see that I -4- xye. is in 0, and (70) implies that
I -+- (xy)el is in go. We use (9) again to obtain I A" (xyz)el, and see that
I (xyz)e2 and I -t- (xyz)e are in g0. Take x y a, and use the results
iust stated to see that g)0 contains I W ae, I -t- a e3, I -t- 4e We can
then take x , y a, z a and see thatI-+- aTelising0. Thus

3k-l-1the values x y , z may be used to complete an inductive
argument implying that I -4- t+le3 is in 590 for all nonnegative integers
It follows immediately from (3) that Yg0 contains

(72) I A-- af(a)e
for all elements f() of (3). If (a) is a proper subfield of q ()
where pV q, then the degree over of v(a) must be a proper divisor

of X.
The period of a is q 1, and he period of a mus divide p 1. Thus

r (q- 1);3r,= q- 1 p- 1 musdivide3(p" 1). Burthen
p(X-1).

_
p(x-2)g

__ __
1 divides 3, and his can occur only if p 2, g 1,

), 2, sohaq=ganda 1.
We have now shown ha he assumption ha q 4 implies ha @0 con-

ains I + xea for every x of F. By (70) we know
for all of , and i follows ha @0 contains all I + xe for x in and
i j, so ha @0 (3, q) as desired.

This complees he proof of he firs par of our lemma, and we now assume
that p 2k A- 1. Compute

(73)

A B-iAB 1 0 0 -1 B
0 1 -a 0

o i) (i !) (Oo 2 _o Oo_ )-1 0 0 -1
0 -1 3 0 1

But we have taken -ka, and so 2 a -(2k -f- 1)a 0,

(74)
(oOA1 -1

0 1

AA -1 0
0 1

--1 1
0 0 1

(75) (AA) 0 1
a 0 1

10 0 1
0 1 -2a 0
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Hence the subgroup g of Yt(3, q) generated by the elements in the cosets
ATt and Bg contains I 2aeal, and also contains

(I 2ae) I 2tae I -- ae C.

Also C I - kae I e is in $9 and so is

(76) CkB 0 1 0 0 D.- 0 0

By the proof above, @ Yt(3, q), and the proof of our lemma is complete.
There remains the case n 3 and q 4. We shall derive the following

result.

LEMMA 6. Let a O, 1 be in , and let

(77) A 1 B 0
0 0

Then A has period two, and the group @(3, 4) is generated by A and B.

For we see easily that A I and

B-1= 0
1

(78) B-lAB 0 1 B
1 0

0 0 1
1 0 1

Thus I -t- e is in the subgroup of !gt(3, 4) generated by A, B, and aI.
Then (C) contains

AB-AB 1 1 1
(79) 0 1 1

as well as

I -k e.l -t- aeal -t-

(80) (AB-AB) 1 1 1 I - eal.
1 1 0
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We see also that

B-(I -t- e B 0 1
1 0

(81)

=(i i)(01 1!)0100
and

(82)

B

B-I I -l- el. B 0 1 B
1 0

(! i)(O11!)1 0
1 0

are in . 0!) I

Hence (I -t- 02)(I + e3) I -t- el -t- ea - ela is in , and so is

(83) 1 1 1 I W ea.
0 0 0

But this shows that (I + e23)(I -}- ea) I + e.3 + ea -}- e. is in , and so
is

(84) 1 1 1 I - est.
0 0 0

Hence I -}- e is in @ for all i j. Moreover

(85) (I + e)A 1 1 1 I d-
0 0 0

is in @. If I -t- e- is in @, then (9) implies that I -t- aeik and I -t- aeki are
in . It follows that I oe32 and I - ae21 are in
andI+ ae23arein,andsoI+ aei is in for all i j. By(9) wesee
thatifI aeisinforalli j, thenI+
It follows that contains I + xe for all i j and all x of , and the proof
of our lemma is complete.

6. Preliminary generation of @(2, q)
As in the previous cases we assume that is a primitive element of

q p so that the period of is q 1. Write

(86) s (q 1)/(p 1) 1 + p + p2 + ._ pm-i
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so that u is a primitive element of the prime subfield v of q. When p is
odd, we have

(87) s m (rood2),

and so u is an odd power of a if and only if m is odd. When m is even, all
nonzero elements of v are powers of u and so are even powers of a. We
state this elementary property as follows.

2+1LEMMA 7. If p is odd, there exists an integer u in such that u a if
and only if m is odd.

Observe now that the matrices

(88) B O/--1 C

are unimodular. We also observe that is generated by -I, and we shall
derive the following result.

LEMMA 8. The matrices B, --B, and C generate J(2, q).

For

(89)

so that
0

CB=
-a

(90) CBC_I 0

from which

(91) D CBC-1B
1 a O/-1

where

(92) k a(1 a2).

Let 0 be the subgroup of !)(2, q) generated by B, -B, and C.
(C)0 contains D and also

(93) D B-JDBJ ( 1 01)
for all integers j. It follows that the matrices

(94) D=( ) ( 1 )
are in 0 for all integers and j.

Then

When p is odd and m is odd, we have seen that v contains an integer
2a+lu a Then there exists an integer j such that one of k and ouk is

2j+1equal go a. Bug ghen (93) implies ghag (C)0 congains I -t" a e for every
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j, and (94) implies that 0 contaias I + ye21 for every y of
also contains

(95) T=( l-a 01)(0-1 )
and

(96) (_01 )(_ly 01)(01
(0__1 10)’ T-l- -T

Thus 0

It follows that @o (2, q) as desired.
When p 2 every nonzero element of q is an even power of a, and (93)

alone implies that @0 contains I + ye. for every y of q. As before, we use
(95) and (96) to see that 0 (2, q). There remains the case where p
is odd but m is even, so that every 0 in v is an even power of a.

Assume first that

(97) k a(1 a)(1 d- a) a,
for an integral exponent a.

(98) S= (1-1 01)
By (93) and (94) we see that 0 contains

S=B-SB=( 1 01)
and 0 also contains

(99) SC ( 1
\

Also the matrices
01)(_0 al)= ( 0 1 1)1 -1 a--

(100) S0= (11
are both in 0.

01) --1’ SC--(11 01) (-0-1
Since --1 is an even power of a and

--I aA-1

.(i .)(i + .)

is an even power of a, we know that either 1 a or 1 + a must be an even
power of a. Hence 0 contains a matrix

(102)

and

for some integer i, and we use (98) to see that 0 contains

But then EDo contains all of the matrices B-(CT-I)B I d-- (a’+l)e, and
we combine this with the fact that (C)o contains the (S.)- I d- (a)e to
see that o contains T and I ye. for every y of q, so that o !I}(2, q).
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The only case not taken care of is that where
212I i a ak a(1 2) a

By (93) we know that 0 contains

(104) E E0

and also contains

(105) Be

Also ,0 contains

0)’ Ei B-JEBj= I- (2j+l)e21,

01)(_?1 1)=(_01 10)
( 1 )(0 al)(0 1)(106) EiC _i+1 -1 -1 kj

where

(107) / a(1 12’).
If there is an integer i such that 1 a is an odd power of a, then

ki a(1 a2) a,
and @0 contains

(108) E(CT-1) (0_1 112) (01 -01) (la: 01).
It is then a simple matter to conclude that (C)0 (2, q). However suppose
that 1 a is an even power of a for every i and thus that 1 W aisan
even power of a. Then

It follows that the subset of q consisting of zero and all even powers of
the element a is a proper subfield of q containing a2. Hence 9(a) has
degree two over , m 2g, the period r of a divides p" 1, and the period
of a must divide 2(p" 1). Since a is primitive, we see that

p- 1 (p"- 1)(p" + 1)

divides 2(p" 1) and p" 1 divides 2, which is impossible since p > 1.
This completes our proof.

7’. The 9eneralors of ihe iheotem

We are now ready to construct the generators A and B of our theorem.
We use the matrix B of (88), and propose to determine a matrix

(109) A--(: 2a)
such that

(110) a A- bc 1,
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SO that A is unimodular.

(111)

Note that

A2 (: b--a)(: b__a)---I,
so that the coset A9 has period two as desired.
requirement

(112) ABJA ( 0
--1

\-p

for a suitable value of j.
Every nonzero element t of q is a power

(113)

of a. Then

(114)

where we are requiring (110) and

b-_a(-l](: b_a)
(115)

We shall also impose the

(o--1
--p

a2 + bc-1 (a + bc)(-1 O.

(r O,

Use (110) to see that (115) becomes

(116) d ai,

We also have

(117) p ab( -1), bc + a2(-1,
--1and the condition ac( 8-1) -p will follow from the fact that A and

B are unimodular.
When p 2, we assume q > 2 and (116) is satisfied if

a 1, t 1- a-1 0, d a8 a(l-a-1) a-{- 1.

Then

o. bc + a2-1 [(1 - a)(1 + a-) - a]-1

(1 -{- a a- - 1 -t- a2)ti- a-21t- 0.

Also p ab( -1) ab( 1)- a-lb}-i 0 if b 0. We now
form

:) ( o (o(118) BD -1 ----p --a p a o-/ -1
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if we selecta p a p a-lb so that
--i(119) h a o" a--2b.

We can take

(120) b aa/}2, c 1 -b a)b-1,
for any a 0, 1 and have

1 q- a-1,

(121) h a, BiD C.

It follows that the group @ generated by A, -A, B contains C, and so
@ 3(2, q). We state this result as follows.

LEMMA9. Let p 2, q > 2, and take a O, 1, and b andc as in (120).
Then the matrices A and B of (109) and (88) generate t(2, q) and Ag has
period two.

The only case that remains is that where p is odd. Then the most general
solution of (115) is given by

(122) a (w w-1)/2, (w -t-- w-1)/(w

wherew 1,--1. But then

bc -a, bc - a2}-1 tT2-1 a2} a2-l(1 ),
and we require that 1,

(123) 0, 1, -1, ab O.

Since p -abe-l(1 ) 0 if (123) is satisfied, we will have p a for
some i and will again have (118) where

h p.r -ab-1(1 i})a-1(1 4)
for

(124) b a-a[(1 )(4 1)]-1, c -5-1(1

It will then follow that the group generated by A, B, -B contains C and
hence is (2, q). The condition 1, --1 is equivalent to

(w + w-) (w w-)

and thus to w q- w- -b 2 w q- w-2 2, which is always true when p is
odd, and tow q- w- 0. But the relationw -b w- 0 holds only if
w -1. The condition w -1 is not satisfied for w a unless q 9,
p 3. Whenq 3, we havea 2, a 1, and (122) does not yield

--1solution since a a and the denominator of in (122) vanishes. When
q 5, a 2or3, and (122) gives 0. Otherwise 0, 1, -1, if we
take w a. Thus we have derived the following result.
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LEMMA 10. Let p be odd and q 3, 5, 9, and define the matrix of (109) by
(124) and

(125) a (a a-)/2, (a + a-)/(a a-).
Then the cosets A9 and B generate @(2, q).

@(2, 2) --- a, @(2, 3) _-- [, and @(2, 5) , and these three well-
known groups possess two generators, one of order 2. @(2, 9) has order
360 and is contained in the list of Brahana, so the proof of the theorem is
complete.
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