A CANONICAL FORM FOR ANTIDERIVATIVES

BY
E. J. McShane ${ }^{1}$

1. Introduction

In several recent studies of devices equivalent to Schwartz distributions, ${ }^{2}$ an essential part is played by sequences of functions f_{1}, f_{2}, \cdots such that on every interval J there are antiderivatives F_{1}, F_{2}, \cdots of f_{1}, f_{2}, \cdots of some fixed order convergent uniformly on J. The degree of arbitrariness of the $k^{\text {th }}$ antiderivative of f_{n} for $k>1$ is somewhat inconvenient in 1 -space and decidedly troublesome in spaces of higher dimension, and it is desirable to have a "canonical" expression for antiderivatives that will eliminate the arbitrariness without injuring the convergence. Such an expression does in fact exist, and is exhibited in Section 5 below. However, in the process of deriving the expression some auxiliary results were obtained that led to a new proof of the "fundamental lemma of the calculus of variations" ${ }^{3}$ with more generality and simplicity than previous proofs. This seemed worth writing up in its own right; it appears in Section 7 of this note. It also has an application, quite apart from the calculus of variations, to "weak solutions" of differential equations as devised by Bochner. ${ }^{4}$

2. Notation and definitions

Points in N-dimensional space R^{N} will be denoted by N-tuples such as $\left(x^{1}, \cdots, x^{N}\right)$, or for brevity by single letters such as x. The superfix indicates the coordinate, and is usually omitted if $N=1$. A subset H of R^{N} is a closed half space if there exist an integer $j(1 \leqq j \leqq N)$ and a real number r such that $H=\left\{x: x^{j} \geqq r\right\}$ or $H=\left\{x: x^{j} \leqq r\right\}$; it is an open half space if for some j and r we have either $H=\left\{x: x^{j}>r\right\}$ or $H=\left\{x: x^{j}<r\right\}$. A set J will be called an intersection of half spaces if it is nonempty and is either R^{N} itself or else the intersection of finitely many half spaces, without restriction as to

[^0]being open or closed. In particular, all intervals in R^{N} are intersections of half spaces.

The letters p and q will be reserved for ordered N-tuples of nonnegative integers $\left(p_{1}, \cdots, p_{N}\right),\left(q_{1}, \cdots, q_{N}\right)$, and $q \leqq p$ shall mean $q_{i} \leqq p_{i}$, $i=1, \cdots, N$. The sum $p_{1}+\cdots+p_{N}$ is denoted by $|p|$, and the differentiation operator

$$
\frac{\partial^{|p|}}{\left(\partial x^{1}\right)^{p_{1}} \cdots\left(\partial x^{N}\right)^{p_{N}}}
$$

is denoted by D^{p}. In particular, if $p=(0, \cdots, 0)$, then $D^{p} f=f$ for all functions f on subsets of R^{N}. A (real-valued) function f defined on a subset X of R^{N} is of class C^{p} on X if $D^{q} f$ exists and is continuous on X whenever $q \leqq p$; it is of class C^{∞} on X if it is of class C^{p} on X for every p.

Given N finite sets of real numbers $\left\{x_{0}^{1}, \cdots, x_{p_{1}}^{1}\right\}, \cdots,\left\{x_{0}^{N}, \cdots, x_{\left.p_{N}\right\}}^{N}\right\}$, we use the symbol $\left\{x_{0}, \cdots, x_{p}\right\}$ to denote their cartesian product, consisting of all the points $\left(x_{j_{1}}^{1}, \cdots, x_{j_{N}}^{N}\right)$ with $0 \leqq j_{i} \leqq p_{i}(i=1, \cdots, N)$. If for each $j(j=1, \cdots, N)$ the numbers $x_{0}^{j}, x_{1}^{j}, \cdots, x_{p_{j}}^{j}$ are all distinct, we say that $\left\{x_{0}, \cdots, x_{p}\right\}$ "satisfies the distinctness condition." Then $\left\{x_{0}, \cdots, x_{p}\right\}$ consists of $\left(p_{1}+1\right) \cdots\left(p_{N}+1\right)$ points.

If f is defined on a subset X of the real numbers, we define $\Delta\left(x_{0}\right) f$ to be $f\left(x_{0}\right)$ for all x_{0} in X, and by recursion, if x_{0}, \cdots, x_{p} are distinct points of X, we define

$$
\Delta\left(x_{0}, \cdots, x_{p}\right) f=\left[\Delta\left(x_{1}, \cdots, x_{p}\right) f-\Delta\left(x_{0}, \cdots, x_{p-1}\right) f\right] /\left(x_{p}-x_{0}\right)
$$

If x_{0}, \cdots, x_{p} are distinct numbers and j is any one of the numbers $0, \cdots, p$, we define

$$
\Pi_{k}^{\prime}\left(x_{j}-x_{k}\right)=1\left(x_{j}-x_{0}\right) \cdots\left(x_{j}-x_{j-1}\right)\left(x_{j}-x_{j+1}\right) \cdots\left(x_{j}-x_{p}\right)
$$

the factors following the 1 being simply omitted if $p=0$; in this case, $\mathrm{II}_{k}^{\prime}\left(x_{0}-x_{k}\right)=1$.

An easy induction on p establishes the following lemma.
Lemma 1. If f is defined on a set X of real numbers and x_{0}, \cdots, x_{p} are distinct points of X, then

$$
\Delta\left(x_{0}, x_{1}, \cdots, x_{p}\right) f=\sum_{j=0}^{p} f\left(x_{j}\right) / \Pi_{k}^{\prime}\left(x_{j}-x_{k}\right)
$$

It follows that $\Delta\left(x_{0}, \cdots, x_{p}\right) f$ is invariant under permutation of $x_{0}, x_{1}, \cdots, x_{p}$.

Let x_{1}, \cdots, x_{p} be distinct real numbers. To the familiar Lagrange interpolation coefficients we adjoin one nontraditional coefficient, L_{0} :

$$
\begin{aligned}
L_{j}(x) & =L_{j}\left(x ; x_{1}, \cdots, x_{p}\right) \\
& =\left(x-x_{1}\right) \cdots\left(x-x_{j-1}\right)\left(x-x_{j+1}\right) \cdots\left(x-x_{p}\right) / \Pi_{k}^{\prime}\left(x_{j}-x_{k}\right) \\
& j=1, \cdots, p \\
L_{0}(x) & =L_{0}\left(x ; x_{1}, \cdots, x_{p}\right)=-1 .
\end{aligned}
$$

In space of $N(>1)$ dimensions it is convenient to use a "place-marker" Greek letter to indicate the coordinate on which a difference operator acts; thus

$$
\Delta_{\xi}(1,2) f(\xi, y)=f(2, y)-f(1, y),
$$

while

$$
\Delta_{\xi}(1,2) f(x, \xi)=f(x, 2)-f(x, 1)
$$

If f is defined on a subset X of R^{N}, and the set $\left\{x_{0}, \cdots, x_{p}\right\}$ satisfies the distinctness condition and is contained in X, we define

$$
\begin{aligned}
& \Delta\left(x_{0}, \cdots, x_{p}\right) f \\
& \quad=\Delta_{\xi^{1}}\left(x_{0}^{1}, \cdots, x_{p_{1}}^{1}\right) \Delta_{\xi^{2}}\left(x_{0}^{2}, \cdots, x_{p_{2}}^{2}\right) \cdots \Delta_{\xi^{N}}\left(x_{0}^{N}, \cdots, x_{p_{N}}^{N}\right) f\left(\xi^{1}, \cdots, \xi^{N}\right)
\end{aligned}
$$

By N applications of Lemma 1 we obtain

$$
\begin{aligned}
& \Delta\left(x_{0}, \cdots, x_{p}\right) f \\
& \quad=\sum_{j_{1}=0}^{p_{1}} \cdots \sum_{i_{N}=0}^{p_{N}} f\left(x_{j_{1}}^{1}, \cdots, x_{j_{N}}^{N}\right) / \Pi_{k_{1}}^{\prime}\left(x_{j_{1}}^{1}-x_{k_{1}}^{1}\right) \cdots \Pi_{k_{N}}^{\prime}\left(x_{j_{N}}^{N}-x_{k_{N}}^{N}\right) .
\end{aligned}
$$

Hence $\Delta\left(x_{0}, \cdots, x_{p}\right)$ is invariant under change of order of application of the N difference operators $\Delta_{\xi i}\left(x_{0}^{j}, \cdots, x_{p_{j}}^{j}\right)$.

The Lagrange interpolation coefficients have a corresponding extension to N dimensions. If the set $\left\{x_{1}, \cdots, x_{p}\right\}$ satisfies the distinctness condition, for each $q \leqq p$ we define

$$
L_{q}(x)=L_{q}\left(x ; x_{1}, \cdots, x_{p}\right)=-\prod_{j=1}^{N}\left[-L_{q_{i}}\left(x^{j} ; x_{1}^{j}, \cdots, x_{p_{i}}^{j}\right)\right] .
$$

(Recall that $L_{0}=-1$.) This is a polynomial of degree at most $p_{j}-1$ in $x^{j}(j=1, \cdots, N)$, and for each j, if $q_{j}=0$, then $L_{q}(x)$ is independent of x^{j}. If we divide both members of the next to the last equation by the coefficient of $f\left(x_{0}^{1}, \cdots, x_{0}^{N}\right)$, we obtain, for all sets $\left\{x_{0}, \cdots, x_{1}\right\}$ satisfying the distinctness condition,

$$
\begin{align*}
f\left(x_{0}\right)=\sum^{\prime} L_{q}\left(x_{0} ; x_{1}, \cdots, x_{p}\right) f\left(x_{q_{1}}^{1}, \cdots,\right. & \left.x_{Q_{N}}^{N}\right) \\
+\left(x_{0}^{1}-x_{1}^{1}\right) \cdots\left(x_{0}^{1}-x_{p_{1}}^{1}\right)\left(x_{0}^{2}-x_{1}^{2}\right) & \cdots\left(x_{0}^{N}-x_{1}^{N}\right) \cdots \tag{1}\\
& \left(x_{0}^{N}-x_{p_{N}}^{N}\right) \Delta\left(x_{0}, \cdots, x_{p}\right) f,
\end{align*}
$$

the summation Σ^{\prime} extending over all $q \leqq p$ except $q=(0,0, \cdots, 0)$.

3. A mean-value theorem

Theorem 1. Let $J=[a, b]$ be a nondegenerate closed interval in R^{N}, and let p_{1}, \cdots, p_{N} be positive integers. Assume that f is continuous on J, and that $D^{q} f$ exists on the interior of J whenever $q \leqq p$. If $\left\{x_{0}, \cdots, x_{p}\right\}$ are points of J that satisfy the distinctness condition, there exists a point \bar{x} interior to J at which

$$
D^{p} f(\bar{x}) /\left(p_{1}!\right) \cdots(\hat{p} v!)=\Delta\left(x_{0}, \cdots, x_{p}\right) f
$$

First we consider the case $N=1$. By the remark after Lemma 1, there is no loss of generality in assuming $x_{0}^{1}<x_{1}^{1}<\cdots<x_{p_{1}}^{1}$. (For simplicity we drop the affix " 1 " which labels the coordinate.) Define

$$
g(x)=f(x)-\sum_{j=1}^{p} L_{j}(x) f\left(x_{j}\right) \quad(a \leqq x \leqq b)
$$

This vanishes at $x_{0}, x_{1}, \cdots, x_{p}$, so by Rolle's theorem there are p distinet. points (one in each of the open intervals $\left(x_{0}, x_{1}\right), \cdots,\left(x_{p-1}, x_{p}\right)$) at which g^{\prime} vanishes. By applying Rolle's theorem again, there are $p-1$ distinct points at which $g^{\prime \prime}$ vanishes, and so on; finally, there is a point \bar{x} at which $g^{(p)}$ vanishes. But then by Lemma 1 and the definition of L_{j}

$$
\begin{aligned}
0=g^{(p)}(\bar{x}) / p! & =f^{(p)}(\bar{x}) / p!-\sum_{j=1}^{p} f\left(x_{j}\right) / \Pi_{k}^{\prime}\left(x_{j}-x_{k}\right) \\
& =f^{(p)}(\bar{x}) / p!-\Delta\left(x_{0}, \cdots, x_{p}\right) f .
\end{aligned}
$$

This completes the proof for $N=1$.
For general N we proceed by induction. Assume the theorem proved for $N=M-1$, and let $x_{0}^{j}, \cdots, x_{p_{j}}^{j}$ be distinct points of $\left[a^{j}, b^{j}\right](j=1, \cdots, M)$. For x^{1} in $\left[a^{1}, b^{1}\right]$ define

$$
\psi\left(x^{1}\right)=\Delta_{\xi^{2}}\left(x_{0}^{2}, \cdots, x_{p_{2}}^{2}\right) \cdots \Delta_{\xi} M\left(x_{0}^{M}, \cdots, x_{p_{M}}^{M}\right) f\left(x^{1}, \xi^{2}, \cdots, \xi^{M}\right)
$$

By the proof completed, there is an \bar{x}^{1} in the open interval (a^{1}, b^{1}) such that

$$
\begin{aligned}
\Delta_{\xi^{1}}\left(x_{0}^{1}, \cdots, x_{p_{1}}^{1}\right) \psi\left(\xi^{1}\right)= & \psi^{\left(p_{1}\right)}\left(\bar{x}^{1}\right) /\left(p_{1}!\right) \\
= & \Delta_{\xi^{2}}\left(x_{0}^{2}, \cdots, x_{p_{2}}^{2}\right) \cdots \Delta_{\xi} M\left(x_{0}^{M}, \cdots, x_{p_{M}}^{M}\right) \\
& \cdot D^{\left(p_{1}, 0, \cdots, 0\right)} f\left(\bar{x}^{1}, \xi^{2}, \cdots, \xi^{M}\right) /\left(p_{1}!\right) .
\end{aligned}
$$

The left member is $\Delta\left(x_{0}, \cdots, x_{p}\right) f$; applying the formula to the ($M-1$)fold difference in the numerator of the right member yields the desired conclusion.

Corollary 1. Let f be continuous on a nondegenerate closed interval J in R^{N} and of class C^{p} interior to J, where p_{1}, \cdots, p_{N} are positive integers. If x_{1}, \cdots, x_{p} are points of J satisfying the distinctness condition and x is in J, there exists a point \bar{x} interior to J such that

$$
\begin{aligned}
& f(x)=\sum_{q}^{\prime} L_{q}\left(x ; x_{1}, \cdots, x_{q}\right) f\left(x_{q_{1}}^{1}, \cdots,\right.\left.x_{q_{N}}^{N}\right) \\
&+\left(x^{1}-x_{1}^{1}\right) \cdots\left(x^{1}-x_{p_{1}}^{1}\right) \cdots\left(x^{N}-x_{1}^{N}\right) \cdots \\
&\left(x^{N}-x_{p_{N}}^{N}\right) D^{p} f(\bar{x}) / p_{1}!p_{2}!\cdots p_{N}!
\end{aligned}
$$

the summation \sum^{\prime} extending over all q such that $q \leqq p$ and $q \neq(0,0, \cdots, 0)$.
This holds at first only if $\left\{x, x_{1}, \cdots, x_{p}\right\}$ satisfies the distinctness condition. If f is of class C^{p} on J, it extends by a simple continuity argument to the case in which for some $j(j=1, \cdots, N), x^{j}$ coincides with some $x_{q_{j}}^{j}$. In this case the coefficient of $D^{p} f(\bar{x})$ is 0 . So even if $D^{p} f$ exists only interior to J, we can apply the theorem as already proved to any C^{∞} function co-
inciding with f at the points x, x_{1}, \cdots, x_{p} and obtain the desired conclusion with x an arbitrary interior point of J.

4. Pseudopolynomials

We can now characterize those functions on N-space for which the divided differences of an assigned order vanish identically.

Let J be any set in R^{N}, and let p_{1}, \cdots, p_{N} be positive integers. A function f on J is a pseudomonomial of degrees less than p_{1}, \cdots, p_{N} if there are an integer $j(1 \leqq j \leqq N)$ and a nonnegative integer k such that $k<p_{j}$ and

$$
f(x)=\left(x^{j}\right)^{k} g(x) \quad(x \text { in } J)
$$

g being independent of x^{j}. A function f on J is a pseudopolynomial of degrees less than p_{1}, \cdots, p_{N} if it is the sum of finitely many pseudomonomials of degrees less than p_{1}, \cdots, p_{N}.

Lemma 2. Let p_{1}, \cdots, p_{N} be positive integers, and let $\left\{x_{1}, \cdots, x_{N}\right\}$ be a set in R^{N} that satisfies the distinctness condition. Let f_{0} be a real-valued function defined on the $p_{1}+\cdots+p_{N}$ hyperplanes

$$
\begin{equation*}
x^{1}=x_{1}^{1}, \cdots, x^{1}=x_{p_{1}}^{1}, \quad \cdots, x^{N}=x_{1}^{N}, \cdots, x^{N}=x_{p_{N}}^{N} \tag{*}
\end{equation*}
$$

Then there exists a pseudopolynomial f of degrees less than p_{1}, \cdots, p_{N}, defined on all of R^{N}, and coinciding with f_{0} on the hyperplanes (*).

Proof. We first define f_{1} to be the function on R^{N} which for fixed $\left(x^{2}, \cdots, x^{N}\right)$ is a polynomial of degree $p_{1}-1$ in x^{1} and coincides with $f_{0}\left(x^{1}, \cdots, x^{N}\right)$ whenever x^{1} has any of the values $x_{1}^{1}, \cdots, x_{p_{1}}^{1}$. Specifically,

$$
f_{1}\left(x^{1}, \cdots, x^{N}\right)=\sum_{j=1}^{p_{1}} L_{j}\left(x^{1} ; x_{1}^{1}, \cdots, x_{p_{1}}^{1}\right) f\left(x_{j}^{1}, x^{2}, \cdots, x^{N}\right)
$$

Next we define f_{2} to be the function on R^{N} which for fixed $x^{1}, x^{3}, \cdots, x^{N}$ is a polynomial of degree $p_{2}-1$ in x^{2} and coincides with the difference $g_{1}=f_{0}-f_{1}$ whenever x^{2} has any of the values $x_{1}^{2}, \cdots, x_{p_{2}}^{2}$. Specifically,

$$
f_{2}\left(x^{1}, \cdots, x^{N}\right)=\sum_{j=1}^{p_{2}} L_{j}\left(x^{2} ; x_{1}^{2}, \cdots, x_{p_{2}}^{2}\right) g_{1}\left(x^{1}, x_{j}^{2}, x^{3}, \cdots, x^{N}\right)
$$

When x^{1} has any of the values $x_{1}^{1}, \cdots, x_{p_{1}}^{1}$ the last factor in each term of the right member has value 0 , so f_{2} also vanishes. Thus $f_{0}-f_{1}-f_{2}$ vanishes on the $p_{1}+p_{2}$ hyperplanes

$$
x^{1}=x_{1}^{1}, \cdots, x^{1}=x_{p_{1}}^{1}, \quad x^{2}=x_{1}^{2}, \cdots, x^{2}=x_{p_{2}}^{2}
$$

We repeat this process until we finally reach an f_{N} which is a polynomial in x^{N} for fixed x^{1}, \cdots, x^{N-1}, coincides with $f_{0}-f_{1}-\cdots-f_{N-1}$ on the hyperplanes $x^{N}=x_{1}^{N}, \cdots, x^{N}-x_{p_{N}}^{N}$, and vanishes on the other hyperplanes $\left(^{*}\right)$. Now we define $f=f_{1}+\cdots+f_{N}$. This is easily seen to have the desired properties.

Theorem 2. Let J be a nondegenerate intersection of half spaces in R^{N}. Let p_{1}, \cdots, p_{N} be positive integers. Let f be defined on J. Then the following three statements are equivalent:
(i) f is a pseudopolynomial of degrees less than p_{1}, \cdots, p_{N} on J.
(ii) If the set $\left\{x_{0}, x_{1}, \cdots, x_{p}\right\}$ is contained in J and satisfies the distinctness condition, then $\Delta\left(x_{0}, \cdots, x_{p}\right) f=0$.
(iii) There exists a set of points $\left\{x_{1}, \cdots, x_{p}\right\}$ in J satisfying the distinctness condition and such that whenever x_{0} is in J and $\left\{x_{0}, x_{1}, \cdots, x_{p}\right\}$ satisfies the distinctness condition, $\Delta\left(x_{0}, \cdots, x_{p}\right) f=0$.

Proof. (i) \Rightarrow (ii). Let g be a pseudomonomial of degrees less than p_{1}, \cdots, p_{N}. Then for some integer $j(1 \leqq j \leqq N)$ and some integer k such that $0 \leqq k<p_{j}$ the equation

$$
\begin{equation*}
g(x)=\left(x^{j}\right)^{k} g^{*}(x) \tag{J}
\end{equation*}
$$

holds, g^{*} being independent of x^{j}. To this we apply the differencing operator $\Delta_{\xi j}\left(x_{0}^{j}, \cdots, x_{p_{j}}^{j}\right)$; the result is 0 , by Theorem 1. Hence $\Delta\left(x_{0}, \cdots, x_{p}\right) g=0$. Since f is a finite sum of pseudomonomials of degrees less than p_{1}, \cdots, p_{N}, it follows that $\Delta\left(x_{0}, \cdots, x_{p}\right) f=0$.
(ii) \Rightarrow (iii), obviously.
(iii) \Rightarrow (i). Let x_{1}, \cdots, x_{p} be the set of points specified in condition (iii). By Lemma 2, there is a pseudopolynomial g of degrees less than p_{1}, \cdots, p_{N} which coincides with f on the hyperplanes

$$
\begin{equation*}
x^{1}=x_{1}^{1}, \cdots, x^{1}=x_{p_{1}}^{1}, \quad \cdots, \quad x^{N}=x_{1}^{N}, \cdots, x^{N}=x_{p_{N}}^{N} \tag{**}
\end{equation*}
$$

By the part of the proof just completed, whenever $\left\{x_{0}, \cdots, x_{p}\right\}$ satisfies the distinctness condition, the difference $\Delta\left(x_{0}, \cdots, x_{p}\right) g$ vanishes, and hence so does $\Delta\left(x_{0}, \cdots, x_{p}\right) h$, where we write h for $f-g$. By equation (1), $h\left(x_{0}\right)$ has value 0 whenever x_{0}, \cdots, x_{p} satisfies the distinctness condition. But when this set does not satisfy the distinctness condition, x_{0} must belong to one of the hyperplanes in the list $\left({ }^{* *}\right)$, so in this case too we have $h\left(x_{0}\right)=0$. Hence $f(x)=g(x)$ for all x in R^{N}.

Corollary 2. The pseudopolynomial fof Lemma 2 is uniquely determined.
For if f_{1}, f_{2} both satisfy the requirements of Lemma 2, their difference g is a pseudopolynomial vanishing on the hyperplane (*). By Theorem 2, $\Delta\left(x_{1}, x_{1}, \cdots, x_{p}\right) g=0$ whenever x_{0}, \cdots, x_{p} satisfy the distinctness condition, so by equation (1) $g\left(x_{0}\right)=0$ for such x_{0}. Every other x_{0} is on one of the hyperplanes $\left(^{*}\right)$, which implies $g\left(x_{0}\right)=0$. So $f_{1}-f_{2}$ is zero everywhere.

It follows immediately from Theorem 2 that if f_{1}, f_{2}, \cdots is a sequence of pseudopolynomials on J of degrees less than p_{1}, \cdots, p_{N}, and for each x in J the sequence $f_{n}(x)(n=1,2, \cdots)$ has a limit $f_{0}(x)$ as n increases, then f_{0} is a pseudopolynomial of degrees less than p_{1}, \cdots, p_{N}. This extends easily from sequences to Moore-Smith "nets" of pseudopolynomials. A
corresponding result will now be proved for sequences (or nets) converging almost everywhere; it is not quite so superficial.

Theorem 3. Let J be an open intersection of half spaces in R^{N}, and let p_{1}, \cdots, p_{N} be positive integers. If f_{1}, f_{2}, \cdots is a sequence of functions on J such that for each closed interval J_{0} interior to J all but finitely many of the f_{n} are pseudopolynomials of degrees less than p_{1}, \cdots, p_{N} on J_{0}, and f_{0} is realvalued on J, and

$$
\begin{equation*}
\lim _{n \rightarrow \infty} f_{n}(x)=f_{0}(x) \tag{2}
\end{equation*}
$$

for almost all x in J, then f_{0} is equivalent to a pseudopolynomial of degrees less than p_{1}, \cdots, p_{N} on J. If (2) holds at all points of J, f_{0} is itself a pseudopolynomial of degrees less than p_{1}, \cdots, p_{N} on J.

Let E be a set of measure zero such that (2) holds on $J-E$. We shall reserve the letter σ for nonempty proper subsets of the set $\{1,2, \cdots, N\}$, and shall use $\nu(\sigma)$ to mean the number of elements in σ. Also, σ^{\prime} shall mean the complementary set $\{1, \cdots, N\}-\sigma$. For each such σ there is a projection P_{σ} of R^{N} into $R^{\nu(\sigma)}$ obtained by discarding the coordinates x^{j} with j not in σ; that is, if $\sigma=(a, b, \cdots, h)$ with $a<b<\cdots<h$, then $P_{\sigma} x=$ $\left(x^{a}, x^{b}, \cdots, x^{h}\right)$. Each point $\left(x_{0}^{s}: s \in \sigma\right)$ in $R^{\nu(\sigma)}$ has an inverse image under P_{σ} which is a $\nu\left(\sigma^{\prime}\right)$-dimensional flat surface in R^{N}, defined by the equations $x^{s}=x_{0}^{s}(s \in \sigma)$. By Fubini's theorem, for each σ there is a set E_{σ} in $R^{\nu(\sigma)}$ with $\nu(\sigma)$-dimensional measure zero, such that for all x_{0} in $R^{\nu(\sigma)}-E_{\sigma}$, the flat surface $P_{\sigma}^{-1} x_{0}$ meets E in a set of $\nu\left(\sigma^{\prime}\right)$-dimensional measure zero. Let E_{0} be the union of E and the sets $P_{\sigma}^{-1} E_{\sigma}$ for all nonempty proper subsets σ of $\{1,2, \cdots, N\}$. This has N-dimensional measure zero.

Now, with the integers p_{1}, \cdots, p_{N} of the hypothesis, we choose any set $\left\{z_{1}, \cdots, z_{p}\right\}$ of points interior to J and satisfying the distinctness condition. By rigid translation of this set by an amount (y^{1}, \cdots, y^{N}) we obtain another congruent set $\left\{z_{1}+y, \cdots, z_{p}+y\right\}$; if the $\left|y^{i}\right|$ are small, these points are also interior to J. For almost all choices of $\left(y^{1}, \cdots, y^{N}\right)$ in R^{N}, all points of the translated set $\left\{z_{1}+y, \cdots, z_{p}+y\right\}$ will be in the complement of E_{0}. Therefore we can and do choose and fix a $y=\left(y^{1}, \cdots, y^{N}\right)$ such that all the points of the translated set $\left\{z_{1}+y, \cdots, z_{p}+y\right\}$ are interior to J and in the complement of E_{0}. These points we rename $\left\{x_{1}, \cdots, x_{p}\right\}$. Now whenever σ is a nonempty proper subset of $\{1,2, \cdots, N\}$ and $c=\left(c^{s}: s \epsilon \sigma\right)$ is a point of $R^{\nu(\sigma)}$ such that each c^{s} is one of the numbers $\left\{x_{1}^{s}, \cdots, x_{p_{s}}^{s}\right\}$, the set $P_{\sigma}^{-1} c$ is a flat surface of dimension $N-\nu(\sigma)$. Since $c=P_{\sigma} x$ for some x in the set $\left\{x_{1}, \cdots, x_{p}\right\}$, and this x is not in E_{0}, hence not in $P_{\sigma}^{-1} E_{\sigma}$, it follows that c is not in E_{σ}. Therefore $P_{\sigma}^{-1} c$ meets E in a set of $\nu\left(\sigma^{\prime}\right)$-dimensional measure zero, which we call $E(c)$. Then the set $P_{\sigma^{\prime}}^{-1} P_{\sigma^{\prime}} E(c)$ has N-dimensional measure zero. All these sets $P_{\sigma^{\prime}}^{-1} P_{\sigma^{\prime}} E(c)$, for all c such as described, we adjoin to E_{0}, thus forming a set E_{1} of N-dimensional measure zero. If (2) holds at all points of J, the sets E, E_{0}, E_{1} can all be taken to be empty.

Let x_{0} be any point of $J-E_{1}$. If x is in the set $\left\{x_{0}, x_{1}, \cdots, x_{p}\right\}$, for each j in $\{1, \cdots, N\}$ there is a number $i(j)$ in the set $\left\{0,1, \cdots, p_{j}\right\}$ such that $x^{j}=x_{i(j)}^{j}$. If all the $i(j)$ are different from $0, x$ is in $\left\{x_{1}, \cdots, x_{p}\right\}$, hence not in E_{0}. If all $i(j)$ are $0, x=x_{0}$; hence x is not in E_{1} and not in E_{0}. Otherwise, let σ be the set of integers j such that $i(j) \neq 0$, and for each j in σ let c^{j} be $x_{i(j)}^{j}$. Since $P_{\sigma^{\prime}} x=P_{\sigma^{\prime}} x_{0}, x_{0}$ is in $P_{\sigma^{\prime}}^{-1} P_{\sigma^{\prime}} x$. But x_{0} is not in E_{1}, so x is not in $E(c)$. It is in $P_{\sigma}^{-1} c$, so it must be in the complement of E. Thus in all cases, x is not in E, and (2) holds at x whenever x is in $\left\{x_{0}, x_{1}, \cdots, x_{p}\right\}$.

Let x_{0} be any point in $J-E$ such that $\left\{x_{0}, x_{1}, \cdots, x_{p}\right\}$ satisfies the distinctness condition; and let J_{0} be a closed interval contained in J and containing the set $\left\{x_{0}, \cdots, x_{p}\right\}$. Except for finitely many values of n, f_{n} is a pseudopolynomial of degrees less than p_{1}, \cdots, p_{N} on J_{0}, so by Theorem 2 we have

$$
\Delta\left(x_{0}, x_{1}, \cdots, x_{p}\right) f_{n}=0
$$

If x_{0} is in $J-E_{1},(2)$ holds at each x in $\left\{x_{0}, x_{1}, \cdots, x_{p}\right\}$; this implies that $\Delta\left(x_{0}, x_{1}, \cdots, x_{p}\right) f_{0}=0$ for almost all x_{0}. Now (1) expresses f_{0} as the sum of a pseudopolynomial of degrees less than p_{1}, \cdots, p_{N} and a function which vanishes almost everywhere, and the proof is complete.

5. A class of auxiliary functions

For each positive integer k we define the function Y_{k} by

$$
Y_{k}(x)= \begin{cases}0 & \text { if } x \leqq 0 \\ x^{k-1} /(k-1)! & \text { if } x>0\end{cases}
$$

Then for $k=2,3, \cdots$ the function Y_{k} is of class C^{k-2}, and $Y_{k+1}^{\prime}=Y_{k}$.
For each set of distinct real numbers $\left\{x_{1}, \cdots, x_{p}\right\}$ we define for all real x and y

$$
\begin{aligned}
W(x, y) & =W\left(x, y ; x_{1}, \cdots, x_{p}\right) \\
& =Y_{p}(x-y)-\sum_{j=1}^{p} L_{j}\left(x ; x_{1}, \cdots, x_{p}\right) Y_{p}\left(x_{j}-y\right)
\end{aligned}
$$

This is of class C^{p-2} in both variables. By equation (1), if

$$
x \neq x_{j} \quad(j=1, \cdots, p)
$$

then

$$
W(x, y)=\left(x-x_{1}\right) \cdots\left(x-x_{p}\right) \Delta_{\xi}\left(x, x_{1}, \cdots, x_{p}\right) Y_{p}(\xi-y)
$$

On each half line $\{x: x<0\}$ and $\{x: x>0\}$ the functions Y_{p} are of class C^{∞}, and $D^{p} Y_{p}=0$. So by Theorem 1, if y is above the greatest or below the least of the numbers x, x_{1}, \cdots, x_{p}, the difference $\Delta_{\xi}\left(x, x_{1}, \cdots, x_{p}\right) Y_{p}(\xi-y)$ vanishes, and so does $W(x, y)$. (Alternatively, for fixed y the value of $W(x, y)$ is the error at x of Lagrange interpolation for $\left(Y_{p}(x-y): x\right.$ real). Except for y between the least and greatest of x, x_{1}, \cdots, x_{p}, this function is a polynomial of degree at most $p-1$, and the error is 0 .)

To extend this to N dimensions, let p_{1}, \cdots, p_{N} be positive integers and let $\left\{x_{1}, \cdots, x_{p}\right\}$ be a set of points of R^{N} satisfying the distinctness condition. For each x and y in R^{N} we define

$$
W(x, y)=W\left(x, y ; x_{1}, \cdots, x_{p}\right)=\prod_{j=1}^{N} W\left(x^{j}, y^{j} ; x_{1}^{j}, \cdots, x_{p_{j}}^{j}\right)
$$

If each p_{j} is greater than 1 , and $p-2$ means $\left(p_{1}-2, p_{2}-2, \cdots, p_{N}-2\right)$, then W is of class C^{p-2} in both x and y. If J is any interval containing $\left(x, x_{1}, \cdots, x_{p}\right), W(x, y)=0$ for y outside of J.

Given any ordered N-tuple $p=\left(p_{1}, \cdots, p_{N}\right)$ of nonnegative integers, we define D^{p} to be the set of all functions φ of class C^{p} on R^{N} such that $D^{q} \varphi$ is bounded for each $q \leqq p$, and for each φ in \mathscr{D}^{p} we define the norm

$$
\|\varphi\|=\sup \left(\left|D^{q} \varphi(x)\right|: q \leqq p, x \text { in } R^{N}\right)
$$

D^{p} with this norm is a familiar complete normed linear space. For every closed interval J in R^{N} we define \mathscr{D}_{J}^{p} to be the set of all φ in \mathscr{D}^{p} that vanish outside of J. This too is a complete normed linear space. If $\left\{x_{1}, \cdots, x_{p}\right\}$ is a set of points of J satisfying the distinctness condition, and each p_{j} is greater than 1, the mapping which to each x in J assigns the function ($W\left(x, y ; x_{1}, \cdots, x_{p}\right): y \in R^{N}$) is a mapping of J into \mathscr{D}_{J}^{p-2}. Also, if $q \leqq p-2$, for each fixed x in J we have for all y in J

$$
\begin{align*}
& D^{q} W(x, y)=(-1)^{|q|} \prod_{j=1}^{N}\left[Y_{p_{j}-q_{j}}\left(x^{j}-y^{j}\right)\right. \\
&\left.\quad-\sum_{h=1}^{p_{j}} L_{h}\left(x^{j} ; x_{1}^{j}, \cdots, x_{p_{j}}^{j}\right) Y_{p_{i}-q_{j}}\left(x_{h}^{j}-y^{j}\right)\right] . \tag{3}
\end{align*}
$$

The x^{j} enter only in the Lipschitzian functions $Y_{p_{j}-q_{j}}\left(x^{j}-y^{j}\right)$ and $L_{h}\left(x^{j}, x_{1}^{j}, \cdots, x_{p_{j}}^{j}\right)$, which have bounded coefficients, so the mapping from J into \mathscr{D}_{J}^{p-2} is Lipschitzian.

We wish to investigate the growth of $W(x, y)$ as x departs from the origin. We may assume $x_{1}<x_{2}<\cdots<x_{p}$. If $N=1$, the greatest absolute value of $W(x, y)$ is assumed for some y in the interval $\left(x_{1}, x_{p}\right)$, for if $x_{1} \leqq x \leqq x_{p}$, then $W(x, y)$ vanishes outside this interval, and otherwise, on the interval between x and the nearer (say x_{j}) of x_{1} and x_{p}, the function $W(x, y)$ is a multiple of $(x-y)^{p-1}$ and reaches its maximum absolute value on this interval at x_{j}. In equation (3) the coefficients $Y_{p-q}\left(x_{k}-y\right)$ are bounded for $x_{1} \leqq y \leqq x_{p}$, so the derivative is majorized by a polynomial in x of degree at most $p-1$. If $N>1$, we apply this to each factor in the definition of W and find that all derivatives $D_{y}^{q} W(x, y)(q \leqq p)$ are majorized by polynomials of degree at most $p_{j}-1$ in $x^{j}(j=1, \cdots, N)$. Hence there exists a constant k such that the norm of $\left(W(x, y): y\right.$ in $\left.R^{N}\right)$ in D^{p-2} does not exceed

$$
k\left(1+\left|x^{1}\right|^{p_{1}-1}\right) \cdots\left(1+\left|x^{N}\right|^{p_{N}-1}\right)
$$

6. A "canonical" antiderivative

The next lemma is related to the theorem of mean value with integral form of the remainder, which is in fact a limiting case of it.

Lemma 3. Let $x_{0}, x_{1}, \cdots, x_{p}$ be distinct points of a closed interval $[a, b]$ in R^{1}, and let k be an integer such that $1 \leqq k \leqq p$. If f is of class C^{k} on $[a, b]$, (or, more generally, if f is of class C^{k-1} and $f^{(k-1)}$ is absolutely continuous on $[a, b]$), then

$$
\Delta\left(x_{0}, x_{1}, \cdots, x_{p}\right) f=\int_{-\infty}^{\infty}\left[\Delta_{\xi}\left(x_{0}, x_{1}, \cdots, x_{p}\right) Y_{k}(\xi-y)\right] f^{(k)}(y) d y
$$

As observed in the previous section, the integrand vanishes for all y not in $[a, b]$. By repeated integration by parts,

$$
\begin{aligned}
\int_{a}^{b} \Delta_{\xi}(& \left.x_{0}, \cdots, x_{p}\right) Y_{k}(\xi-y) f^{(k)}(y) d y \\
& =\int_{a}^{b} \Delta_{\xi}\left(x_{0}, \cdots, x_{p}\right) Y_{1}(\xi-y) f^{\prime}(y) d y \\
& =\Delta_{\xi}\left(x_{0}, \cdots, x_{p}\right) \int_{a}^{b} Y_{1}(\xi-y) f^{\prime}(y) d y \\
& =\Delta_{\xi}\left(x_{0}, \cdots, x_{p}\right) \int_{a}^{\xi} f^{\prime}(y) d y \\
& =\Delta_{\xi}\left(x_{0}, \cdots, x_{p}\right)[f(\xi)-f(a)] \\
& =\Delta_{\xi}\left(x_{0}, \cdots, x_{p}\right) f(\xi)
\end{aligned}
$$

Theorem 4. Let f be continuous on R^{N}. Let p_{1}, \cdots, p_{N} be positive integers, and let the set of points $\left\{x_{1}, \cdots, x_{p}\right\}$ satisfy the distinctness condition. Then there exists a unique function F on R^{N} which satisfies $D^{p} F=f$ and vanishes on the hyperplanes

$$
\begin{aligned}
& x^{1}=x_{1}^{1}, \cdots, x^{1}=x_{p_{1}}^{1}, \quad x^{2}=x_{1}^{2}, \cdots, x^{2}=x_{p_{2}}^{2}, \cdots, \\
& \\
& x^{N}=x_{1}^{N}, \cdots, x^{N}=x_{p_{N}}^{N} .
\end{aligned}
$$

This F is continuous and is determined by the formula

$$
\begin{align*}
F(x)= & \int W\left(x, y ; x_{1}, \cdots, x_{p}\right) f(y) d y \\
= & \int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} W\left(x^{1}, y^{1} ; x_{1}^{1}, \cdots, x_{p_{1}}^{1}\right) \cdots W\left(x^{N}, y^{N} ; x_{1}^{N}, \cdots, x_{p_{N}}^{N}\right) \tag{4}\\
& \cdot f\left(y^{1}, \cdots, y^{N}\right) d x^{1} \cdots d y^{N} .
\end{align*}
$$

First consider the case $N=1$, and omit the superfix 1 on x^{1}, etc. Let G be any continuous function such that $D^{p} G(x)=f(x)$; for example, G may be obtained by p-fold integration from some point c. Let φ be a polynomial of degree less than p which coincides with G at x_{1}, \cdots, x_{p}, and let $F=G-\varphi$. Then F is continuous and vanishes at x_{1}, \cdots, x_{p}, and $D^{p} F=D^{p} G=f$. By Lemma 3 and equation (1), if $x \neq x_{1}, \cdots, x_{p}$,

$$
\begin{aligned}
F(x) & =\left(x-x_{1}\right) \cdots\left(x-x_{p}\right) \Delta\left(x, x_{1}, \cdots, x_{p}\right) F \\
& =\int_{-\infty}^{\infty} W\left(x, y ; x_{1}, \cdots, x_{p}\right) D^{p} F(y) d y
\end{aligned}
$$

By continuity $F(x)$ is equal to this integral for all x. For $N>1$ we apply this to the coordinates successively; the function F defined by (4) satisfies $D^{p} F=f$. To prove uniqueness, note that if F_{1} and F_{2} both have the required properties, then for $F=F_{1}-F_{2}$ we have $D^{p} F=0$. By Corollary 1, F vanishes identically, and $F_{1}=F_{2}$.

Corollary 3. Let J be an intersection of half spaces in R^{N}; let f be continuous on J; let p_{1}, \cdots, p_{N} be positive integers, and let $\left\{x_{1}, \cdots, x_{p}\right\}$ be a set of points in J that satisfies the distinctness condition. Then there exists a unique function F on J which satisfies $D^{p} F=f$ and vanishes on the intersection of J with the hyperplanes listed in Theorem 4. This F is continuous, and is determined by equation (4).

For each x in J, let J_{x} be the smallest closed interval containing the set $\left\{x, x_{1}, \cdots, x_{p}\right\}$. There is a function f_{1} continuous on R^{N} and coinciding with f on J_{x}. We apply Theorem 4 to f_{1}.

Theorem 4 has an analogue in which f is assumed only to be summable over every interval, but in order to state this theorem it is convenient to introduce a definition. A function F on R^{N} is of class $\mathrm{AC}^{(1, \cdots, 1)}$ (where the superscript is an N-tuple of 1's) provided that it is continuous, and there is a function f on R^{N} summable over every interval in R^{N} such that whenever $a^{j}<b^{j}(j=1, \cdots, N)$, the equation

$$
\Delta(a, b) F=\int_{a^{1}}^{b^{1}} \cdots \int_{a^{N}}^{b^{N}} f(x) d x / \prod_{j=1}^{N}\left(b^{j}-a^{j}\right)
$$

holds. (The integral is an N-tuple integral.) In this case F is said to be an indefinite N-tuple integral of f. If $N=1, f$ is $\mathrm{AC}^{(1)}$ if and only if it is absolutely continuous on every interval. By use of the Radon-Nikodym theorem it can be shown that a continuous function F is $\mathrm{AC}^{(1, \cdots, 1)}$ if and only if the associated interval function $\Delta F(J)$, defined for each interval $J=\left\{x: a^{1} \leqq x^{1} \leqq b^{1}, \cdots, a^{N} \leqq x^{N} \leqq b^{N}\right\}$ to be $\prod_{j=1}^{n}\left(b^{j}-a^{j}\right) \Delta(a, b) F$, has the following property: to each interval J^{*} and each positive ε there corresponds a positive δ such that if J_{1}, \cdots, J_{k} are subintervals of J^{*} whose interiors are disjoint, and whose total volume is less than δ, then $\sum_{i=1}^{k}\left|\Delta F\left(J_{i}\right)\right|<\varepsilon$. It is also easy to see that if F is the indefinite N-tuple integral of f, then for almost all x

$$
\frac{\partial}{\partial x^{1}} \cdots \frac{\partial}{\partial x^{N}} \Delta F(a, x)=f(x)
$$

the equation remaining valid if the order of the differentiation in the left member is permuted in any way.

If p_{1}, \cdots, p_{N} are positive integers, a function F on R^{N} is of class $\mathrm{AC}^{(p-1)}$ if it is of class $C^{(p-1)}$ and the partial derivative $D^{p-1} F$ is of class $\mathrm{AC}^{(1, \cdots, 1)}$.

If p_{1}, \cdots, p_{N} are positive integers and f is a function summable over every interval in R^{N}, a function F will be called an AC^{p-1} solution of the equation

$$
\begin{equation*}
D^{p} F(x)=f(x) \tag{5}
\end{equation*}
$$

provided that F is of class AC^{p-1} and $D^{p-1} F$ is an indefinite N-tuple integral of f.

We now state our extension of Theorem 4.
Theorem 5. Let f be Lebesgue-measurable on R^{N} and summable over every interval in R^{N}. Let p_{1}, \cdots, p_{N} be positive integers and $\left\{x_{1}, \cdots, x_{p}\right\}$ a set of points in R^{n} satisfying the distinctness condition. Then there is a unique AC^{p-1} solution F of equation (5) which vanishes on the hyperplanes

$$
x^{1}=x_{1}^{1}, \cdots, x^{1}=x_{p_{1}}^{1}, \quad \cdots, \quad x^{N}=x_{1}^{N}, \cdots, x^{N}=x_{p_{N}}^{N}
$$

This solution is determined by equation (4).
To prove uniqueness, let F_{1} and F_{2} both satisfy the requirements of the conclusion. For every interval $\left\{x: a^{1} \leqq x^{1} \leqq b^{1}, \cdots, a^{N} \leqq x^{N} \leqq b^{N}\right\}$ we then have

$$
\Delta(a, b) D^{p-1} F_{1}=\Delta(a, b) D^{p-1} F_{2}=\int_{a^{1}}^{b^{1}} \cdots \int_{a^{N}}^{b^{N}} f(x) d x / \Pi\left(b^{j}-a^{j}\right)
$$

so $\Delta(a, b) D^{p-1}\left[F_{1}-F_{2}\right]=0$. This is still true if we relax the condition $a^{j}<b^{j}(j=1, \cdots, N)$ and ask only that $\{a, b\}$ satisfy the distinctness condition, since interchange of a^{j} and b^{j} leaves the divided difference unchanged. Suppose first that $p=(1, \cdots, 1)$. We choose $a=x_{1}$ and recall that $F_{1}-F_{2}$ vanishes on the hyperplanes $x^{1}=x_{1}^{1}, \cdots, x^{N}=x_{1}^{N}$, and find that if $\left\{x_{1}, b\right\}$ satisfies the distinctness condition, then $F_{1}(b)-F_{2}(b)=0$. If $\left\{x_{1}, b\right\}$ does not satisfy the distinctness condition, then b is on one of the listed hyperplanes, so $F_{1}(b)=F_{2}(b)=0$. Thus if $p=(1, \cdots, 1)$, we have $F_{1}=F_{2}$. Second, suppose that at least two of the numbers p_{1}, \cdots, p_{N} are greater than 1. Since F_{1} and F_{2} vanish on the hyperplanes named in the theorem, $D^{p-1}\left[F_{1}-F_{2}\right]$ vanishes on each of the hyperplanes. As before, we find that $D^{p-1}\left[F_{1}-F_{2}\right]$ vanishes identically. By Corollary $1, F_{1}-F_{2}$ vanishes identically. This leaves only the case in which exactly one of the numbers p_{1}, \cdots, p_{N} exceeds 1 , say $p_{1}>1, p_{2}=\cdots=p_{N}=1$. Then the operator D^{p-1} is $\partial^{p_{1}-1} /\left(\partial x^{1}\right)^{p_{1}-1}$, and so $D^{p-1}\left[F_{1}-F_{2}\right]$ vanishes on the hyperplanes $x^{2}=x_{1}^{2}, \cdots, x^{N}=x_{1}^{N}$. If $\left\{x_{1}, x\right\}$ satisfies the distinctness condition,

$$
0=\Delta\left(x_{1}, x\right) D^{p-1}\left[F_{1}-F_{2}\right]
$$

whence

$$
0=D^{p-1}\left[F_{1}-F_{2}\right]\left(x^{1}, \cdots, x^{N}\right)-D^{p-1}\left[F_{1}-F_{2}\right]\left(x_{1}^{1}, x^{2}, \cdots, x^{N}\right)
$$

So for fixed x^{2}, \cdots, x^{N} the function $F_{1}-F_{2}$ is a polynomial in x^{1} of degree at most $p_{1}-1$. Since it vanishes at $x_{1}^{1}, \cdots, x_{p_{1}}^{1}$, it is identically zero, and the proof of uniqueness is complete.

Since f is summable over every interval, there exists a sequence f_{1}, f_{2}, \cdots of functions continuous on R^{N} and having

$$
\lim _{n \rightarrow \infty} \int_{J}\left|f_{n}(x)-f(x)\right| d x=0
$$

for every interval J in R^{N}. (The integral is an N -tuple Lebesgue integral.) Define F by equation (4), and define F_{n} to be the function obtained by substituting f_{n} for f in the right member of (4). Suppose now that q_{1}, \cdots, q_{N} are nonnegative integers such that $q_{j}<p_{j}(j=1, \cdots, N)$. By standard convergence theorems we can prove that $D^{q} F$ can be computed from (4) by differentiating with respect to x under the integral sign; thus

$$
D^{q} F(x)=\int D^{q} W\left(x, y ; x_{1}, \cdots, x_{p}\right) f(y) d y
$$

where the differentiation in the integrand is with respect to the variables x^{1}, \cdots, x^{N}. A similar equation holds with F_{n}, f_{n} in place of F, f respectively. If J^{*} is any interval containing the set $\left\{x_{1}, \cdots, x_{p}\right\}$, whenever x is in J^{*} the function $D^{q} W\left(x, y ; x_{1}, \cdots, x_{p}\right)$ vanishes for all x outside J^{*}, and for y in J^{*} it is bounded uniformly for all x in J^{*}. From this and the choice of the f_{n} we find

$$
\lim _{n \rightarrow \infty} D^{q} F_{n}(x)=D^{q} F(x)
$$

the convergence being uniform on every interval in R^{N}. This implies that $D^{q} F$ is continuous whenever $0 \leqq q_{j}<p_{j}, j=1, \cdots, N$.

Now let J be an interval $\left\{x: a^{1} \leqq x^{1} \leqq b^{1}, \cdots, a^{N} \leqq x^{N} \leqq b^{N}\right\}$. Since $D^{p} F_{n}$ is everywhere equal to the continuous function f_{n}, we have readily

$$
\Delta(a, b) D^{p-1} F_{n}=\int_{a^{1}}^{b^{1}} \cdots \int_{a^{N}}^{b^{N}} f_{n}(x) d x / \Pi\left(b^{j}-a^{j}\right)
$$

By virtue of the limit relation for the $D^{q} F_{n}$ this implies

$$
\Delta(a, b) D^{p-1} F=\int_{a^{1}}^{b^{1}} \cdots \int_{a^{N}}^{b^{N}} f(x) d x / \prod\left(b^{j}-a^{j}\right)
$$

so $D^{p-1} F$ is an indefinite N-tuple integral of f. That is, the function defined by (4) is an AC^{p-1} solution of equation (5).

In contrast with Theorem 4, the requirements that F be continuous, vanish on the specified hyperplanes, and satisfy $D^{p} F=f$ almost everywhere are insufficient to determine F uniquely, even if N and p_{1} are both 1. For there are infinitely many continuous functions $(f(x):-\infty<x<\infty)$ such that $f(0)=0$ and $D f(x)=0$ almost everywhere.

As an indication of a type of use of Theorem 4 , suppose that f_{1}, f_{2}, \cdots is a sequence of continuous functions on an interval J such that for some (p_{1}, \cdots, p_{N}), there exists a uniformly convergent sequence G_{1}, G_{2}, \cdots such that $D^{p} G_{n}=f_{n}$. For $j=1, \cdots, N$, choose distinct numbers $x_{1}^{j}, \cdots, x_{p_{j}}^{j}$, and define for x in J

$$
F_{n}(x)=\int W\left(x, y ; x_{1}, \cdots, x_{p}\right) f_{n}(y) d y
$$

Then $D^{p} F_{n}=f_{n}$, so by Theorem $1, \Delta\left(x_{0}, \cdots, x_{p}\right)\left[F_{n}-G_{n}\right]$ vanishes identically. By equation (1), applied to $F_{n}-G_{n}$, we find that the F_{n} are also
uniformly convergent on J. Hence if on J any uniformly convergent sequence with $D^{p} G_{n}=f_{n}$ exists, our sequence F_{1}, F_{2}, \cdots has this property.

7. The fundamental lemma of the Calculus of Variations

In establishing our form of the fundamental lemma of the Calculus of Variations we shall need some elementary remarks on approximation of Lebesgue-summable functions. Let δ_{1} be a nonnegative function of class C^{∞} on R^{N} that vanishes outside the sphere of radius 1 about the origin and satisfies

$$
\int_{R^{N}} \delta_{1}(x) d x=1
$$

and let M_{1} be the maximum value of δ_{1}. For each positive integer n we define

$$
\delta_{n}(x)=n^{N} \delta_{1}(n x) \quad\left(x \in R^{N}\right)
$$

its maximum value is $n^{N} M_{1}$.
Now let f be defined on R^{N} and summable over every bounded measurable set. For each x in R^{N} we define

$$
f_{n}(x)=\delta_{n} * f(x)=\int_{R^{N}} \delta_{n}(x-y) f(y) d y
$$

The integral obviously exists, and it is easy to show that f_{n} is of class C^{∞} on R^{N}.

It is well known that for almost all x (and in particular for each point of continuity of f), if S_{r} is the sphere of radius r and center x, then

$$
\begin{equation*}
\lim _{r \rightarrow 0}\left\{\int_{S_{r}}|f(y)-f(x)| d y / \operatorname{vol} S_{r}\right\}=0 \tag{6}
\end{equation*}
$$

Since vol S_{r} is $c_{N} r^{N}$, where c_{N} depends only on the dimensionality N of the space, we find

$$
\begin{aligned}
& \left|\int_{R^{N}} \delta_{n}(x-y) f(y) d y-f(x)\right| \leqq \int_{R^{N}}|f(y)-f(x)| \delta_{n}(x-y) d y \\
& \leqq \int_{S_{1 / n}}|f(y)-f(x)| n^{N} M_{1} \cdot d y=M_{1} c_{N} \int_{S_{1 / n}}|f(y)-f(x)| d y / \operatorname{vol} S_{1 / n}
\end{aligned}
$$

so that $\lim _{n \rightarrow \infty} f_{n}(x)=f(x)$ except on the set of measure 0 on which (6) fails to hold.

The next theorem is a form of the fundamental lemma of the Calculus of Variations.

Theorem 6. Let J be a closed interval $[a, b]$ in R^{N}, and let f be summable over J. Assume that there exist positive integers p_{1}, \cdots, p_{N} such that for every ordered N-tuple ($\varphi_{1}, \cdots, \varphi_{N}$) of infinitely differentiable functions of one variable with the property that for each j in $\{1, \cdots, N\}, \varphi_{j}$ vanishes on neighborhoods of a^{j} and of b^{j}, it is true that

$$
\int_{a^{1}}^{b^{1}} \cdots \int_{a^{N}}^{b^{N}}\left[D^{p_{1}} \varphi_{1}\left(\xi^{1}\right)\right] \cdots\left[D^{p_{N}} \varphi_{N}\left(\xi^{N}\right)\right] f\left(\xi^{1}, \cdots, \xi^{N}\right) d \xi^{1} \cdots d \xi^{N}=0
$$

Then there exists a pseudopolynomial of degrees less than p_{1}, \cdots, p_{N} that coincides with f at almost all points of J; if f is continuous on J, this pseudopolynomial coincides with f on all of J.

Proof. Let ε be a positive number less than the least of the numbers $\left(b^{j}-a^{j}\right) / 2(j=1, \cdots, N)$, and for each j in $\{1, \cdots, N\}$ let φ_{j} be a function of class C^{∞} on R^{1} that vanishes outside the interval ($a^{j}+\varepsilon, b^{j}-\varepsilon$). Extend f to all R^{N} by assigning it the value 0 outside J. If y^{1}, \cdots, y^{N} are numbers of absolute value less than ε, for each j the function

$$
\left(\varphi_{j}\left(x-y^{j}\right):-\infty<x<\infty\right)
$$

is of class C^{∞} and vanishes near a^{j} and near b^{j}, so by hypothesis
$\int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty}\left[D^{p_{1}} \varphi_{1}\left(\xi^{1}-y^{1}\right)\right] \cdots\left[D^{p_{N}} \varphi_{N}\left(\xi^{N}-y^{N}\right)\right] f\left(\xi^{1}, \cdots, \xi^{N}\right) d \xi^{1} \cdots d \xi^{N}=0$.
If $n>1 / \varepsilon, \delta_{n}\left(-y^{1}, \cdots,-y^{N}\right)=0$ if any $\left|y^{j}\right|$ is as great as ε, so the product of $\delta_{n}\left(-y^{1}, \cdots,-y^{N}\right)$ by the left member of the above equation vanishes for all y. Hence

$$
\begin{aligned}
\int_{R^{N}} \int_{R^{N}} \delta_{n}\left(-y^{1}, \cdots,-y^{N}\right)\left[D^{p_{1}} \varphi_{1}\left(\xi^{1}-y^{1}\right)\right] \cdots\left[D^{p_{N}} \varphi_{N}\left(\xi^{N}-y^{N}\right)\right] \\
\cdot f\left(\xi^{1}, \cdots, \xi^{N}\right) d \xi^{1} \cdots d \xi^{N} d y^{1} \cdots d y^{N}=0
\end{aligned}
$$

The integrand is 0 except on a bounded subset of $R^{N} \times R^{N}$. We change variables of integration from (ξ, y) to (ξ, η), where $\eta^{j}=\xi^{j}-y^{j}(j=1, \cdots, N)$, and perform the integration with respect to the ξ^{j}; in view of the definition of f_{n} this gives us

$$
\int_{R^{N}}\left[D^{p_{1}} \varphi_{1}\left(\eta^{1}\right)\right] \cdots\left[D^{p_{N}} \varphi_{N}\left(\eta^{N}\right)\right] f_{n}\left(\eta^{1}, \cdots, \eta^{N}\right) d \eta^{1} \cdots d \eta^{N}=0 .
$$

Integration by parts p_{j} times with respect to $\eta^{j}(j=1, \cdots, N)$ yields

$$
\begin{equation*}
\int_{R^{N}} \varphi_{1}\left(\eta^{1}\right) \cdots \varphi_{N}\left(\eta^{N}\right) D^{p} f_{n}\left(\eta^{1}, \cdots, \eta^{N}\right) d \eta^{1} \cdots d \eta^{N}=0 \tag{7}
\end{equation*}
$$

If there were a point x^{*} in the interval

$$
J_{\varepsilon}=\left\{x: a^{j}+\varepsilon \leqq x^{j} \leqq b^{j}-\varepsilon, j=1, \cdots, N\right\}
$$

at which $D^{p} f_{n}\left(x^{*}\right)$ were not $0, D^{p} f_{n}$ would remain nonzero and of one sign on some open interval $I=\left\{x: \alpha^{j}<x^{j}<\beta^{j}, j=1, \cdots, N\right\}$ contained in J_{ε}. By choosing φ_{j} to be of class C^{∞}, zero outside the interval (α^{j}, β^{j}) and positive inside it, we would obtain a contradiction to (7). Hence $D^{p} f_{n}$ vanishes everywhere in J_{ε} whenever $n>1 / \varepsilon$. If J_{0} is any closed interval interior to J, it is contained in J_{ε} for some small positive ε. Then except for finitely many $n, D^{p} f_{n}$ vanishes on J_{0}, and by Corollary $1, f_{n}$ is a pseudopolynomial
of degrees less than p_{1}, \cdots, p_{N} on J_{0}. By Theorem $3, f$ is equivalent to a pseudopolynomial on J. If f is continuous on J, so that (6) holds everywhere in J, by Theorem $3, f$ is a pseudopolynomial of degrees less than p_{1}, \cdots, p_{N} on the interior of J. By (1) with $\Delta\left(x_{0}, \cdots, x_{p}\right) f=0$ we express f as a pseudopolynomial of degrees less than p_{1}, \cdots, p_{N} interior to J; by continuity this remains valid on the boundary of J.

8. Weak solutions

Let n_{0} be a positive integer, and for each N-tuple p such that $|p| \leqq n_{0}$ let a_{p} be a real number. Then

$$
\Delta f=\sum_{|p| \leqq n_{0}} a_{p} D^{p} f
$$

is a linear differential operator. Following Bochner, ${ }^{4}$ if $n \geqq n_{0}$, a function f on an open set D in R^{N} is a weak solution of class C^{n} of the equation $\Lambda f=0$ on D if it is Lebesgue-summable over every compact subset of D, and if for each x_{0} in D there exist a neighborhood U of x_{0} and a sequence f_{1}, f_{2}, \cdots of functions, of class C^{n} on U and satisfying $\Lambda f_{k}=0$ on U, such that, for every function ψ bounded and measurable in U,

$$
\begin{equation*}
\lim _{k \rightarrow \infty} \int_{U} f_{k}(x) \psi(x) d x=\int_{U} f(x) \psi(x) d x \tag{8}
\end{equation*}
$$

We here consider only the very special operator D^{p}, where p is an N-tuple of positive integers. For this we can find the form of all weak solutions of the differential equation $D^{p} f=0$.

Theorem 7. Let D be an open set in R^{N}, and let p be an N-tuple of positive integers. The following statements are equivalent:
(i) For some q such that $q \geqq p, f$ is a weak solution of class C^{q} of the equation $D^{p} f=0$ on D.
(ii) f is a weak solution of class C^{∞} of $D^{p} f=0$ on D.
(iii) Each point x_{0} of D has a neighborhood U in D such that f coincides almost everywhere in U with a pseudopolynomial of degrees less than p_{1}, \cdots, p_{N}.
Obviously (ii) implies (i). Suppose (i) true, and let x_{0} be a point of D. By hypothesis, there are a neighborhood U of x_{0} and a sequence f_{1}, f_{2}, \cdots of functions of class C^{q} on U such that $D^{p} f_{k}=0$ on $U(k=1,2, \cdots)$ and (8) holds whenever ψ vanishes outside U and is of class C^{∞}. Let J be a closed interval contained in U and having x_{0} as interior point. If ψ is of class C^{∞} and vanishes with all its derivatives on the boundary of J, by integration by parts

$$
\int_{J} f_{k}(x) D^{p} \psi(x) d x=(-1)^{|p|} \int_{J} D^{p} f_{k}(x) \psi(x) d x=0 \quad(k=1,2, \cdots)
$$

Since (8) holds with $D^{p} \psi$ in place of ψ,

$$
\int_{J} f(x) D^{p} \psi(x) d x=0
$$

whenever ψ is of class C^{∞} and vanishes with all its derivatives on the boundary of J. By Theorem 6, f coincides almost everywhere on J with a pseudopolynomial of degrees less than p_{1}, \cdots, p_{N}. Hence (i) implies (iii).

Assume finally that (iii) holds. Let x_{0} be any point of D and U a neighborhood of x_{0} on which f coincides almost everywhere with a pseudopolynomial g of degrees less than p_{1}, \cdots, p_{N}. We may assume that U is an open interval. Let J be a closed interval contained in U, and let ε be the distance from J to the complement of U. With the function δ_{k} of the preceding section we define $f_{k}=\delta_{k} * f$, that is

$$
f_{k}(x)=\int_{U} \delta_{k}(y) f(x-y) d y=\int_{U} \delta_{k}(y) g(x-y) d y
$$

for all x in J and all k greater than $1 / \varepsilon$. By Lemma 1 and Theorem 2, if $\left\{x_{0}, \cdots, x_{p}\right\}$ is a set of points in J satisfying the distinctness condition then

$$
\Delta\left(x_{0}, \cdots, x_{p}\right) f_{k}=\int_{U} \delta_{k}(y) \Delta_{\xi}\left(x_{0}, \cdots, x_{p}\right) g(\xi-y) d y=0
$$

Now equation (1) exhibits $f_{k}\left(x_{0}\right)$ as a pseudopolynomial of degrees less than p_{1}, \cdots, p_{N} and with all coefficients $f_{k}\left(x_{q_{1}}^{1}, \cdots, x_{q_{N}}^{N}\right)$ of class C^{∞} in $\left(x^{1}, \cdots, x^{N}\right)$. Hence the differentiation operator D^{p} can be applied to f_{k}, yielding $D^{p} f_{k}=0$. It remains to show that (8) holds for every function ψ bounded and measurable on J. We shall prove more than this; we shall prove that f_{k} tends to f in the norm of L_{1} over J. By definition of f_{k},

$$
\begin{aligned}
\int_{J}\left|f_{k}(x)-f(x)\right| d x & =\int_{J}\left|\int_{U} \delta_{k}(x-y) f(y) d y-f(x)\right| d x \\
& =\int_{J}\left|\int_{U} \delta_{k}(x-y)[f(y)-f(x)] d y\right| d x \\
& \leqq \int_{J} \int_{U} \delta_{k}(x-y)|f(y)-f(x)| d y d x
\end{aligned}
$$

To simplify notation we assume that f vanishes outside U; any of the integrals can be written as an integral over the whole space, but the integrands vanish outside some bounded set. We change the variable of integration from (x, y) to (t, y), where $t=x-y, y=y$; this yields

$$
\int_{J}\left|f_{k}(x)-f(x)\right| d x \leqq \int_{U} \int \delta_{k}(t)|f(y)-f(y+t)| d y d t
$$

But $\int|f(y)-f(y+t)| d y$ is a continuous function of t which vanishes at
$t=0$, so the right member of the last inequality approaches zero as k increases. This completes the proof.

From the proof it is apparent that when we are dealing with the equation $D^{p} f=0$, it makes no difference if we change the definition of weak solution by asking only that (8) hold for functions ψ of class C^{∞}, or by making the apparently stronger requirement that $\int_{U}\left|f_{k}-f\right| d x$ shall converge to zero.

University of Virginia
Charlottesville, Virginia

[^0]: Received March 13, 1958.
 ${ }^{1}$ This work was carried out under a National Science Foundation grant. Presented to the American Mathematical Society June 21, 1958.
 ${ }^{2}$ J. Korevaar, Distributions defined from the point of view of applied mathematics, Nederl. Akad. Wetensch. Proc. Ser. A, vol. 58 (1955), pp. 368-378; 379-389; 483-493; 494-503; 663-674.
 J. G. Mikunsinski, Sur la méthode de généralisation de M. Laurent Schwartz et sur la convergence faible, Fund. Math., vol. 35 (1948), pp. 235-239.
 L. Schwartz, Théorie des distributions, Paris, 1950-51.
 ${ }^{3}$ For a detailed study of the fundamental lemma and its uses, see the dissertation of Aline Huke (Contributions to the Calculus of Variations, University of Chicago, 1930, pp. 45-160; University of Chicago Press).
 ${ }^{4}$ S. Bochner, Linear partial differential equations with constant coefficients, Ann. of Math. (2), vol. 47 (1946), pp. 202-212.

