MODULES OF EXTENSIONS OVER DEDEKIND RINGS'

BY
R. J. NUNKE

This paper is devoted to the study of the structure of the R-module
Extr (4, C) where R is a Dedekind ring and 4, C are R-modules. In the first
part of the paper the particular objects of study are the submodules
I Exty (A, C) where I is a nonzero ideal of R. For any R-module M we
show that M is the kernel of the connecting homomorphism

8:M — Extp (I"'/R, M)

associated with the exact sequence 0 — R — I* — I*/R — 0. Using the
associativity law

Extr (I"'/R, Ext; (4, C)) ~ Ext; (Tori (I"'/R, A), C),
we show that I Ext (4, C) is the kernel of the homomorphism
- Ext (f:, C):Ext} (4, C) — BExty (Torf (I"'/R, A), C)

where fr:Torf (I"'/R, A) — A is the appropriate connecting homomorphism.
By investigating the structure of Torf (I"'/R, A) we obtain various proper-
ties of I Exty (4, C).

The elements of Exty (4, C) are in 1-1 correspondence with the equivalence
classes of extensions of C by A. Suppose (¢):0 > C — E — A — 0 is such
an extension. We show that its characteristic class x(e) lies in I Exty (4, C)
if and only if JC = C n JE for every ideal J containing I.

In the second part of the paper we begin to determine the kinds of modules
Exty (4, C) can be. The main result is that, mod its submodule of divisible
elements, Exty (4, C) is a direct product of its P-adic completions, P ranging
over the prime ideals of R. It follows that a module M which is either torsion-
free or torsion is isomorphic to Exty (4, C) for some modules 4 and C if and
only if it is the direct product of its P-adic completions. In particular R
itself has this property if and only if it is a complete discrete valuation ring.

The final section records some properties of A and C which follow from the
relation Exty (4, C) = 0. One curious result is that, if R is not a complete
discrete valuation ring, then Homy (4, R) = 0 = Extx (4, R) implies that
A = 0. We also show that if 4 is a module such that Exty (4, C) = 0 for
every torsion module C, then every submodule of A with countable rank is
projective. This extends a result of Baer [1] to modules over Dedekind rings.

The properties of Dedekind rings that are needed here are developed in
[2, VII] and in [4]. In the first two sections of this paper the base rings can
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1 This paper is based on a doctoral dissertation submitted to the University of
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be more general. In the first section any ring with unity will do; in the
second any hereditary ring.

1. An extension of C by A is an exact sequence

© 00—, 5-¥,40

The characteristic class x(e) of (e) is @ where ®:Hom (C, C) — Ext' (4, C)
is the connecting homomorphism defined by (e¢) and ¢ is the identity endo-
morphism of C. It is shown in [2, XIV, 1] that the correspondence (¢) — x(e)
is 1-1 between equivalence classes of extensions of C by A and the elements
of Ext' (4, C). The extension (¢) is equivalent to an extension

/ !
©) 0o ¥ .a-.0
if there is a homomorphism k:E — E’ such that the diagram

© 00 2E Y450

| Ey

(e 0»-C— F —— A4
commutes.
Let
B

0-M-LsP-%,450
be an exact sequence with P projective. Then a commutative diagram

B

O—)M————)P—)A-—)O

T,

() 0——>C——-—>E'———>A-—>0

exists, and x(e) = dy where ¢:Hom (M, C) — Ext' (4, C) is the connecting
homomorphism induced by the top row of (1). We also have an exact
sequence

() 0o-M-Lsc+P-T15E>0,
where
3) pm = (—ym, Bm) and 9(c, p) = é¢ + 7p.

The various homomorphisms in (1) and (2) are related by

4) Yo = nlc,0), 1 =nlo,p), ¢nlc,p) = ap.

It is shown in [2, XIV, 1] that x(¢) = v if and only if a sequence (2) exists
such that a, 8, v, u, 1, ¢, ¥ are related as in (3) and (4). Then the remaining
homomorphism 7 is defined by (4) and a diagram (1) results.
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TaeorEM 1.1. The diagram
(e) 0->C—o>E—>A—-0
7
(&) 0—-C—oE —-A-0

can be made commutative by a homomorphism h:E — E' if and only if
x(e) = Ext (f, C)x(¢).

The implication in the forward direction is an immediate consequence of
the definition of x and the elementary properties of Ext. To show the
opposite implication we start from (1), (2), and the commutative diagram

B8 a

0-M— P —A4A-—-0

by vyl

0—-C —"——5FE X5 4"—-0

which exists because P is projective. From this diagram we deduce the
commutative square

Hom (v, €)

Hom (C, C) Hom (M, C)
O() ¢
Ext (47, ) — 2 (h O pe 4, ).

In view of (1) and (2) we have x(¢) = dvy. Now assuming x(e) = Ext (f,C)x(¢)
we get 9y = Ext (f, ()x(¢/) = Ext (f,C)0(¢')¢ = ¢ Hom (y/,C)¢ = dv'. Thus
dv = Jv' and there exists a map w:P — C such that v/ = v 4+ oB. We de-
fine Q:C + P — E’ by

e, p) = ¢'c — ¢'wp + 7'p.

It is easily verified that Qu = 0, so that a homomorphism h:E — E’ exists
such that hn = Q. This is the required homomorphism.

TaroreEM 1.2. The diagram
(e) 0—-C—o>E—-A-0
3
(") 0—>C"->E —A—0

can be made commutative by a homomorphism h:E — E' if and only if
x(¢') = Ext (4, g)x(e).

The proof of this theorem is similar to that of the previous theorem and is
omitted.
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2. The only property of Dedekind rings used in this section is that they
are hereditary: in particular Torf = 0 = Extj for all » > 1, Ext is right
exact, and Tory is left exact.

Let R, S be Dedekind rings; let A be an R-module, ¢ an S-module, and
B an R-S-bimodule. There is a natural isomorphism

1) Hom; (A ® 5 B, C) =~ Homg (4, Hom; (B, C))

which sends each g:4A ® ; B — C into the f:A — Homg (B, C) such that
f(@)b = g(a ® b).

Let Y be an S-injective resolution for C. We then have
Exts (A ®: B, C) = H(Homg (A ®z B, Y)) =~ H(Hom, (4, Homs (B, Y)).

We apply the homomorphism o’ of [2, IV, 6.1a] to get

’

H(Homj (4, Homs (B, ¥))) ——— Homy (4, H(Homs (B, Y)))

~ Hom; (4, Exts (B, C)).
Thus we obtain a homomorphism
2) 7:Exts (A ®r B, C) —» Hom; (4, Exts (B, C))

which reduces to (1) in dimension 0. If A is R-projective, the functor
T(D) = Hompg (4, D) is exact. Then o/, and hence 7, is an isomorphism.

Now define functors T"(4) = Exts (Tor% (4, B), C). For an exact se-
quence 0 > A’ — A — A” — 0 of R-modules with connecting homomorphisms
8,:Tor% ., (A”, B) — Tor% (4’, B), define the map T"(4") — T"*(4”) to be
Exts (3., C). Then the sequence T = {T"} is a connected sequence of
covariant functors. If we set U(4A) = Hom, (Exts (B, C)), (2) provides us
with a natural transformation 7' = u*:7° — U.

Since Extg is right exact, it is easily verified that the conditions of [2, III,
5.2] are satisfied and .’ can be extended to a unique map u:T — SU defined
for n = 0, where SU = {8"U} is the sequence of satellites of U. In par-
ticular we have a natural homomorphism

3) WM Ext} (Tor® (4, B), C) — Extl (4, Ext} (B, C)).

TuporeM 2.1. The homomorphism u' is an isomorphism. If 0 — A’ —
A — A” — 0 1s an exact sequence of R-modules inducing a connecting homo-
morphism 9:Tory (A”, B) — A’ ® p B, then the diagram

Exts (9,
Ext! (A’ ® B, C) Exts 0,0, ekt (Tor® (47, B), ©)

Tll ll‘l
8
Homy (4’, Exts (B, C)) — Extr, (4”7, Exts (B, C))

commutes, where 8 s the appropriate connecting homomorphism.



226 R. J. NUNKE

Since u:T — SU is a map between connected sequences of functors and
u’ = 7', the commutativity of the diagram is immediate. We have only to
show that u' is an isomorphism. Let 0 — M — P — A — 0 be an exact
sequence with P R-projective. Since R is a Dedekind ring, M is also E-pro-
jective. We have a commutative diagram

Exts (P ®z B, C) — Exts (M ®z B, C) — Exts (Torf (4,B),C) — 0

lTp lTM lul
Hom; (P, Exts (B, C))— Homz (M, Ext} (B, C))—Ext: (4, Exts (B, C))—0.
The top row is exact because Exts ( , C) is right exact. Since P is R-pro-
jective, Exty (P, Exts (B, C)) = 0, hence the bottom row is exact. Since M

is also R-projective, 7» and i are isomorphisms. Therefore ' is an iso-
morphism by the 5-lemma.

Suppose that A is an R-module, B is an S-module and C is an R-S-bi-
module. We get similar results if we start from the natural isomorphism

(4) Homj (A, Homg (B, C)) =~ Homg (B, Homg (4, C))
which sends f:4 — Homg (B, C) into the g:B — Homg (4, C) such that
g(b)a = f(a)b.
TueoreEM 2.2. There is a natural homomorphism
o:Extz (4, Homg (B, C)) — Homg (B, Exty (4, C))

which reduces to (4) in dimension 0 and is an isomorphism when B is S-pro-
jective; and an tsomorphism

v:Exty (4, Exts (B, C)) — Exts (B, Ext; (4, C))
such that, for any exact sequence 0 — B’ — B — B” — 0, commutativity holds
in the diagram

Ext (4,5
Ext} (4, Homs (B, C)) _Ext (4,0, Exty (4, Exts (B, C))

ld’l llf
A
Homs (B, Exty (4, 0)) —— Exts (B”, Exty (4, C))

where 8:Homs (B’, C) — Exts (B”, C) and A are the appropriate connecting
homomorphisms.

The proof is similar to that of Theorem 2.1 using first an R-projective
resolution of A and then an S-injective resolution of C.

3. Throughout the remainder of the paper R is a fixed Dedekind ring; all
modules are R-modules. Since Extz = 0 for n = 2, and R is fixed, we shall
use Ext for Exty and Tor for Torf.
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Let @ denote the field of quotients of B. If I is any nonzero ideal of R,
then I™' is the set of all elements ¢ in Q@ such that ¢ < R. Since R is a
Dedekind ring 77~ = R and both I and I~ are projective. It follows that
the sequence

0—>R—->I'—>I"'R—0

is a projective resolution for I~'/R; hence Tor (I '/R,C) = Ker ¢ and
Ext (I"'/R, C) = Coker ¢ where ¢:C — I ® C and ¢:Hom (I}, C) — C
are defined by ¢¢ = 1 ® c and yf = f(1) respectively. Let An (I, C) denote
the set of elements ¢ in C such that Ic¢ = 0.

Taeorem 3.1. If I s a nonzero ideal of R, then
Tor I"'/R, C) = An (I, C) and Ext (I"'/R,C) = C/IC.

Since II™* = R, there are ¢;in I " and r; in I such that D>_;r;¢; = 1. For
any cin An (I, C) we have¢c = D iriqi ® ¢ = 2.:q; ® ric = 0. Hence
An (I, C) g Ker ¢. Suppose that ¢ is in Ker ¢ and r is any element of I.
Define h: I ® C— Cby k(g ® ¢) = (rg)c. Then0 = h¢c = h(l ® ¢) = rc.
Since r was arbitrary in I, we have Ker ¢ € An (I, C). This shows that
Tor (I"'/R, C) = Ker¢ = An (I, C).

To show that Coker ¢y = C/IC we must show that Im ¢ = IC. Let
fiI'" — C. Then yf = f1) = D :r:f(g;) which belongs to IC. Thus
Im ¢ € IC. If, on the other hand, ¢ is in IC, there exist elements ¢; in C
such that ¢ = D>_;7;¢; because the r; generate I. The homomorphism
fiI™" — C defined by fg = D_: (ri g)c; satisfies yf = c¢; hence IC & Im y.

Let P be a prime ideal in R. We use tp C to denote the P-primary com-
ponent of C and {C to denote the torsion submodule of C. The module
Q/R will be denoted by K, and t» K will be denoted by K. The union of
the submodules P™" of Q for all n = 0 will be denoted by Q. Then
Kr = Qp/R. A module C is P-diisible if PC = C. The union of all the
P-divisible submodules of C is itself P-divisible and will be denoted by d» C;
if dp C = 0, then C will be said to be P-reduced. The maximal divisible
submodule of C will be denoted by dC; if dC = 0 then C is reduced. To
simplify the statements of some of the theorems we shall use tz C for tC,
dr C for dC, and K, for K. Now let P be a prime ideal of R. Since the
sequence

0—-R—->Qr—>Kp—0

is exact and @ is torsion-free, we derive exact sequences
a o
0— Tor (K, C)—C— @z ® C,

Hom (K7, C) — Hom (Q,C) —@-—> C — Ext (Kp, C),
where ac = 1 ® c and Bf = f(1).
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TuroreM 3.2. Let P be a prime ideal or R. Then
(a) XKer a = tp C; hence 9 induces an isomorphism

Tor (K, C) =t C.
®) ImpB=4dpC. IfteC = 0, then B induces an isomorphism
Hom (Qr, C) = d» C.
The module C is P-reduced if and only if Hom (Q, C) = 0.

To prove (a) assume first that P is a prime ideal. Since Qp is the direct
limit of the submodules P~" of @ and commutes with direct limits, Ker « is
the union of the kernels of a,:C — P™" ® C where a, ¢ = 1 ® ¢. By Theorem
3.1,Ker a, = An (P", C);hence Ker « = tp C. The proof for the case P = R is
similar.

To prove (b) assume first that P = R. If f:Q — C, then Im f is divisible.
Therefore 8f is in dC. On the other hand suppose ¢ is any element of dC.
Since dC is injective, the homomorphism fy: R — dC sending 1 into ¢ has an
extension f:Q — dC. The composition of f with the inclusion dC g C is
mapped by 8 into ¢. Hence ¢isin Im 8. This shows that Im 8 = dC. The
remaining parts of (b) are then easily proved.

Now suppose that P is a prime ideal. The only part of the proof requiring
different treatment is the proof of the statement d» C @ Im 8. To show this
let ¢ be any element of dp C. We want a homomorphism f:Q, — C with
f(1) = ¢. Since Qp is the union of the modules R = P°, P, P™* ... | it
suffices to define a sequence of homomorphisms f,:P~" — C such that (i)
fas extends f, , (il) Im f, € dp C, and (iii) fo(r) = rc for every r in R. We
use (iii) to define f, and proceed by induction. Suppose fo, -+, f. have
been defined satisfying (i) and (ii). There exists elements 7; in P, ¢; in P/,
s, in P", ¢; in P™" such that

L= 2origi= 22isit;-

Since f, satisfies (ii) and the r; generate P, we have elements c;; in d, C such
that fu(t;) = D irici;. If uis any element of P~"™" then r; s;u is in R;
hence we define f,41 by

fn+l(u) = Zij ('ri 8; u)cij .
Clearly f.41 satisfies (ii). As for (i) we have, for any ¢ ,
Fana(te) = 220 (resjta)ess = 205 (site) 2imi iy

225 (sitfalts) = (2 sitite) = fulti).
Since the ¢, generate P™", (i) is established.

4. The results of the last two sections will now be used to investigate
divisibility in Ext (4, C).
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TueoreMm 4.1. If I is a nonzero ideal and if fr:An (I, A) — A and
gr:C — C/IC are the inclusion and quotient homomorphisms respectively, then
the homomorphisms

8:Ext (4, C) — Ext (I"'/R, Ext (4, C))
Ext (fr, C):Ext (4, C) — Ext (An (I, 4), C)
Ext (4, ¢g1):Ext (4, C) — Ext (4, C/IC)
are all epimorphisms with kernel I Ext (A, C'). Hence they induce isomorphisms
Ext (4, C)/I Ext (4, C) ~ Ext (I"'/R, Ext (4, C))
~ Ext (An (I, 4), C)
~ Ext (4, C/IC).

The homomorphism & has already been considered in Theorem 3.1. If we
apply Theorem 2.1 to the sequence 0 - R — I™* — I"'/R — 0, we get the
commutative diagram

Ext (4, C) CExt (U0 g (An (I, 4), C)

N [
N
Ext (I"*/R, Ext (4, ())

where An (I, A) has been identified with Tor (I™*/R, A) according to Theorem
3.1. Since Ext (f;, C) is an epimorphism and u is an isomorphism,
Ker Ext (fi, C) = Ker 6 = I Ext (4, C). The remaining part of the theorem
is proved similarly using Theorem 2.2.

A similar description of the submodule dr Ext (4, C) is contained in the
following theorem.

TueoREM 4.2. If P is a prime ideal or R and jpitp A — A s the inclusion
homomorphism, then

Ext (j», C):Ext (4, €) — Ext (ir 4, C)

18 an epimorphism with kernel dp Ext (A, C). Ifkps:A — A/tp A is the quotient
homomorphism, dp Ext (4, C) is the image of Ext (kg , C).

The first part of this theorem is proved in the same manner as the previous
theorem using Theorem 3.2 instead of Theorem 3.1. The second state-
ment of the theorem follows from the first statement and the exactness of the
sequence Ext (4/tr A, C) — Ext (4, C) — Ext (1 4, C) — 0.

The following corollary is an immediate consequence of the theorem.

CoroLLARY 4.3. If A is a torsion (P-primary) module, then Ext (A4, C) ¢s
reduced (P-reduced).
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We are now in a position to give necessary and sufficient conditions on the
modules A and C so that Ext (4, C) will be divisible. Since each ideal of R
can be expressed as a product of prime ideals it is sufficient to investigate
P-divisibility for each prime P.

We will need the equality of I™"/R and R/I. This is proved in

LemMA 4.4. If I vs any nonzero ideal, then
I''/R =~ R/I.

It is sufficient to find an element ¢ in I~* which, together with 1, generates
I'". Let r be any nonzero element of I. Then rI" is an ideal of R contain-
ing r. Since R is a Dedekind ring, there is an element s of R such that r and
s generate rI~". Then the element ¢ = s/r has the required properties.

TueoreM 4.5. If P is a prime ideal, then Ext (A, C) is P-divisible if and
only if either A has no P-torsion or C is P-divisible.

Suppose Ext (4, C) is P-divisible and A has P-torsion (i.e., tr A = 0).
Since P is a prime ideal, A contains an element a with order ideal P. The
submodule generated by a is isomorphic to R/P, hence to P~'/R by the lemma.
Hence there exists a monomorphism P~'/R — A. Passing to Ext we get an
epimorphism Ext (4, C) — Ext (P™'/R, C) = C/PC. Since Ext (4, C) is
P-divisible, so is-C/PC. Hence C/PC = 0 or, equivalently, C = PC.

On the other hand i, A = 0 or C/PC = 0 implies Ext (4, C) is P-divisible
in view of the isomorphisms established in Theorem 4.1.

b. Suppose A’ is a submodule of A. An extension (¢):0 >C—>E—A4 —0
is travial on A’ if there is a homomorphism A’ — E such that the composite
A’ — E — A is the identity on A’. In view of Theorem 1.1, this is equivalent
to the statement Ext (f, C)x(e) = 0 where f is the inclusion of A" in 4. If
('’ is a quotient module of C, then (e) is trivial over C’ if a homomorphism
E — (' exists such that the composite C — E — (' is the quotient homo-
morphism ¢g:C — (’. According to Theorem 1.2 this is equivalent to
Ext (4, g)x(e) = 0.

Now suppose I is a nontrivial ideal of R. Applying the above paragraph
to Theorem 4.1 we find that the statements (i), (i), (iii) in the following
theorem are equivalent.

TueoreM 5.1. For I a proper ideal of R the following statements about an
extension (¢) are equivalent:
(1) x(e)isin I Ext (4, C).
(ii) (e) s travial on An (I, A).
(iii)  (e) 4s trivial over C/IC.
(iv) JC = C n JE for every proper ideal J containing I.

In order to prove (iv) equivalent to the others we need a lemma.
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Lemma 5.2. If J is a proper ideal of R, then JC = C n JE if and only if
every homomorphism J /R — A can be lifted into a homomorphism J*/R — E.

Consider a commutative diagram

0—>R—>J'>J'/R—0

(1) la lﬁ l‘y
0— C—»EJ—*A—»O.

It is easily shown that the existence of #:J'/R — E such that v = Yy is
equivalent to the existence of u:J ' — C such that « = u|R. Now suppose
that JC = C n JE and that y:J™"/R — A is given. Since J~" is projective,
a diagram (1) exists. Then «(1) is in C n JE, hence in JC. This implies
the existence of u:J ' — C such that u(1) = ¢. Thus u|R = « and v can
be lifted to 4. On the other hand, suppose every such y can be lifted, and
suppose ¢ is any element of C n IE. This implies the existence of 3:J " — E
such that ¢ = B(1). Then a diagram (1) is obtained. Since v can be lifted,
there is a u:J ' — C such that u(1) = ¢;i.e., cisin JC. Thus JC = C n JE.

Returning to the proof of the theorem, assume that (e) is trivial on An (7, 4).
There is a homomorphism w:An (I, A) — E such that yw is the identity
where ¢:E — A is the epimorphism of (¢). If y:J /R — A with J contain-
ing I, then the image of v is contained in An (I, A). The homormorphism
wy is a lifting of v into £. By Lemma 5.2 thisimplies JC = C n JE. Thus
(iv) is proved.

Conversely, suppose (iv) true. Since An (/, 4) has bounded order, it is a
direct sum of cyclic modules each of which is isomorphic to J™'/R for some
J containing I. In view of the lemma, (iv) implies that (e) is trivial on each
of these direct summands. Since Ext commutes with direct sums in the first
factor, this implies that (e) is trivial on An (I, A).

An extension (e) is a pure extension if rC = C n rE for every rin B. Kap-
lansky [4] has shown that purity is equivalent to the following: for each
element a of A with order ideal I, there is an element ¢ in £ mapping onto a
and having order ideal I. If a in A has order ideal I, then the submodule of
A generated by a is isomorphic to I~'/R. It follows from Lemma 5.2 that
purity is equivalent to the relation IC = C n IE holding for every ideal I.
For any module M let R°M denote the intersection of all the modules 7M
with I ranging over the proper ideals of R. We can then state

COROLLARY 5.3.  (e) 7s a pure extension if and only if x(e) isin R® Ext (4, C).

In [3] Eilenberg and Mac Lane have considered the group of abelian group
extensions which are trivial on finitely generated subgroups. These are evi-
dently equivalent to the pure extensions.
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6. The further discussion of the module Ext (4, C) will be facilitated by
the introduction of the P-adic topology. If P is a prime ideal and M is any
R-module, the P-adic topology on M has, as a base at 0, all submodules P"M
where n ranges over the positive integers. Addition is continuous in both
variables jointly, and the maps z — rz, r in R, are continuous. The topology
is, in general, not Hausdorff, the closure of zero being the submodule
P°M = N, P"M. If we say that M is complete in the P-adic topology, we
shall also mean that M is Hausdorff, i.e. P°M = 0.

For any M, the modules M/P"M form an inverse system in a natural
fashion. Its limit will be denoted by M %. The natural homomorphism
M — My induced by the projections M — M/P"M has P*M as its kernel.
The discrete topology on each M/P"M induces a complete topology on M :
whose base at zero consists of the kernels of the various projections
M3y — M/P"M. Tt will be proved presently that this topology on M » is the
P-adic topology; hence M7 is complete in the P-adic topology. Thus M 7 will
be called the P-adic completion of M.

Let A be the direct limit of modules A, with maps ¢aa':4.— Aa’ . Then,
for any module C, the modules Ext (4, , C) form an inverse system of modules
with maps Ext (¢ae’ , C). The homomorphisms Ext (¢, , C):Ext (4, C) —
Ext (4., C) induce a map

0:Ext (4,C) —» I(_JE_I_I Ext (4., C).

If the system A, is indexed by the positive integers in their natural or-
der, the maps of the system are completely determined by the maps
i1 A; — A . In this case we will call the system A; a direct sequence
of modules.

Lemma 6.1. If A s the direct limit of a sequence of modules A; , then the
map p 18 an eprmorphism.
Let y be any element of gr_n Ext (4;, C) and let y; be its component in

Ext (4:,C). Then y; = Ext (¢iy1, C)yit1 Where ¢i,i41: 4 — A is a map
of the sequence A;. If (¢;):0 — C — E; — A;— 0 is such that y; = x(e:)
we can find (e;41):0 — C — E; 43 — A1 — 0 such that the diagram

H l‘l/i.ﬂ—l ld’i,i—i—l
(eirv) 0—-C—Ey—Apm—0

commutes. Starting with any (e;) such that y, = x(e1), we define by recursion
a direct sequence (e;) of extensions of C by A4;. Since the taking of direct
limits commutes with exact sequences, we have, setting £ = Lim E;, an

extension (¢):0 — C — E — A — 0 as the direct limit of the extensions



MODULES OF EXTENSIONS OVER DEDEKIND RINGS 233

(e;). Therefore, for every ¢, a commutative diagram

(e5) 0—-C—-E,—>A;,—>0

| b

(e) 0—-C—>FE—>4—0

exists. Thus y; = x(e;)) = Ext (¢, C)x(e) for every 7 and y = x(e) by the
definition of p.

TueoreEM 6.2. If P is a prime ideal and A, C are any modules, then the
natural map 1»:Ext (4, C) — Ext (4, O)r is an epimorphism with kernel
P* Ext (4, C), and the module Ext (A, C)F is complete in the P-adic topology.

Since tp A = Lim An (P, A), the map
—
p:Ext (tp 4, C) — I:_iln_Ext (An (P, 4),0)

is an epimorphism. Since the map Ext (4, C) — Ext (tr 4, C) is an epi-
morphism, their composite o' :Ext (4, ) — (Iing Ext (An (P", A), C) is also

epimorphic. From Theorem 4.1 we have identifications Ext (An (P", 4), C) =
Ext (4, C)/P" Ext (A, (), and therefore Iﬂl Ext (An (P, 4), C) =

Ext (4, C)r . The map o’ then becomes identified with the map ¢p .

The module Ext (4, C)7 is complete in the topology having as a base at 0
the kernels of the maps fi:Ext (4, C)r — Ext (4, C)/P" Ext (4, C). To
show that the module is complete in the P-adic topology we need only show
that Ker fi = P" Ext (4, C)5 . It is clear that P" Ext (4, C)7 & Ker fn .
To show the converse inclusion we use the fact that . is epimorphic. If y
is any element of Ker f , there is an element z of Ext (4, C) such that y = ¢p 2;
hence 0 = f 1p2. Now fi wp:Ext (4, C) — Ext (An (P, A), C) is induced
by the inclusion An (P", A) — A. It therefore follows from Theorem 4.1
that z is in P" Ext (4, C), and therefore y = «p2 is in P" Ext (4, O)r .

TaeoreEM 6.3. If P is a prime ideal, there exists a natural isomorphism

Cr ~ Ext (K, O)F
such that the diagram

)
C — Ext (K¢, C)

J

*

Cr ~ Ext (KP,C):

commutes, where 8 is the connecting homomorphism associated with the sequence
0> R— Qr— Kp—0. Thus Cy is always complete in the P-adic topology.
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For each positive integer n there is a commutative diagram

5
¢ —— Ext (K», C)

* | |

C/P"C ~ Ext (P"/R, C) ~ Ext (K»,C)/P" Ext (Kp, C).

The two isomorphisms are provided by Theorems 3.1 and 4.1 respectively.
The outside vertical maps are quotient maps, while the central one is induced
by the inclusion P""/R — K. Composing the two isomorphisms gives, for
each n, C/P"C ~ Ext (Kp, C)/P" Ext (Kp, C). Thus

CF = Lim ¢/P"C ~ Lim Ext (K, C)/P" Ext (K>, 0) = Ext (K7, O)F .

This is the required isomorphism. The commutativity of the diagram follows
from (*¥). The remainder of the proposition is then an immediate consequence
of the preceding theorem.

The preceding discussion considered each prime ideal separately. There
remains the task of fitting the pieces together. This is quite simple to do.
The epimorphisms t» mentioned in Theorem 6.2 define an epimorphism
w:Ext (4, ¢) — ]I Ext (4, C)3, the product ranging over the prime
ideals of B. The kernel of ¢z is N P* Ext (4, C) = R* Ext (4, C). Thus
Ext (4, C) is, modulo R” Ext (4, C), the direct product of its P-adic comple-
tions.

By introducing yet another topology one can give the above discussion a
little more unity. The R-topology, on a module M, has all the submodules
IM (for I a nonzero ideal of R) as a base at zero. The closure of 0 is now
R“M. We denote by Mj the completion of M in the R-topology. Using
Theorem 2 of [5] and the fact that each module M/IM is the direct product
of its P-primary components, one can show that Mz ~ [[» M ». In M7 one
has the relation IM3 = P"M , for any ideal I, where P" is the highest power
of P dividing I. It is then easy to show that the cartesian product topology
on [[-M ¥ is the R-topology. Hence My is complete in the R-topology.
Now Theorem 5.2 is still true if P is everywhere replaced by E.

7. A module M will be called realizable if there are modules A and C such
that M ~ Ext (4, C). The basic theorem for the study of realizable modules
is the following:

TrarEOREM 7.1. The following four statements about M are equivalent:
(a) Ext (A4, M) = 0 for every torsion-free module A.

(b) Ext (Q, M) = 0.

(¢) M/dM =~ Ext (K, M).

(d) M/dM is realizable.

COROLLARY 7.2. If M 1s reduced, then it is realizable if and only if
Ext (Q, M) = 0.
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It is clear that (a) implies (b) and (¢) implies (d). To show that (b) im-
plies (c), we consider the exact sequence

Hom (@, M) - M — Ext (K, M) — Ext (Q, M).

The image of the leftmost homomorphism is dM, while (b) gives

Ext (@, M) = 0. This proves (¢). Now suppose (d) is true so that

M/dM =~ Ext (B, C) for some modules B and C. Since Ext (4, M) =

Ext (A, M/dM), we have, by Theorem 2.1, Ext (4, M) =~ Ext (Tor (4, B), C).

If A is torsion-free, Tor (4, B) = 0, so Ext (4, M) = 0. This proves (a).
The corollary is an immediate consequence of the theorem.

THEOREM 7.3. Let M be any module, and let L be a submodule of M. Then
the following statements are true:

(a) If M s reduced and realizable, then (M /L)/d(M /L) is realizable and
1) Hom (Q, M/L) ~ Ext (Q, L).

(o) If M is reduced and realizable and either M /L is reduced or L is real-
1zable, then both L and M /L are reduced and realizable.

(¢) If L and M/L are both reduced and realizable, then M s reduced and
realizable.

(d) If M is reduced and realizable, so is every direct summand of M.

(e) The direct product of a family of reduced realizable modules ¢s also
reduced and realizable.

We consider the exact sequence
@ Hom (@, M) — Hom (@, M/L) — Ext (Q, L)
— Ext (Q, M) — Ext (Q, M/L) — 0.

As stated in Theorem 3.2b, M is reduced if and only if Hom (@, M) = 0. If
M is reduced and realizable, then Hom (Q, M) = 0 = Ext (Q, M). This
and the exactness of (2) give the isomorphism (1) and Ext (Q, M/L) = 0.
Then (a) is an immediate consequence of Theorem 7.1.

To prove (b) we note first that, in view of the isomorphism (1), the condi-
tions M /L reduced and L realizable are equivalent. If either condition is
true, then so is the other, and M/L is reduced and realizable by (a). But
Ext (@, L) = 0 follows from consideration of the sequence (2); hence L, being
reduced, is realizable according to Corollary 7.2.

The proof of (¢) is similar to the foregoing, using the exactness of (2).

A direct summand of M is a submodule, hence reduced if M is, and a
factor module. Thus (d) is a direct consequence of (b).

As for (e), suppose that M = Ha M, with each M, reduced and realizable.
Then Hom (Q, M) = J].Hom (Q, M.,) = 0 so that M is reduced; and
Ext (Q, M) = [].Ext (Q, M,) = 0 so that M is realizable.
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TuroREM 7.4. Every module complete in the R-topology s realizable.

If M is complete in the R-topology, then M = [[» M5. In view of
Theorem 7.3e we can assume M is complete in a P-adic topology. Since M
is reduced, the sequence 0 — M — Eixt (Kp , M) — Ext (Qr , M) — 0 is exact.
Since M = M3 , Theorem 6.3 shows that the homomorphism

M — Ext (Kp, M)

has a left inverse, and hence the above sequence splits. Since Ext (Kp , M)
is reduced and Ext (Qr, M) is divisible (Kp is a torsion module and Qp is
torsion-free), this implies that Ext (Qs, M) = 0, Thus M =~ Ext (K, M)
and is realizable.

Lemma 7.5. If A is a torsion module and C <s torsion-free, then
R® Ext (4, C) = 0.

Since the elements of R Ext (4, C) are just the pure extensions of C by
A, it suffices to show that if E is any module containing C as a pure sub-
module and E/C is a torsion module, then C is a direct summand of E. Since
C ntE = 0, it is sufficient to show that C + tE = E. Let x be any element
of E and suppose it maps onto y in E/C where ry = 0 with r a nonzero ele-
ment of R. Then 7z = zisin C. By purity, 2 = rw with w in C. Then
z = w + (x — w) is the desired expression showing that z is in C + (E.

LemMma 7.6. A torsion module is complete in the R-topology if and only f it
has bounded order.

If M is complete in the R-topology, then M = [[, M + where the M}
range over the P-adic completions of M. Each M ¥ is P-primary for the cor-
responding prime ideal. Hence the number of ideals P for which M F = 0is
finite because an element of M with a nonzero component in each M3 has
order ideal 0. This reduces the problem to showing that a P-primary module
complete in the P-adic topology has bounded order. Suppose M is such
a module. For each positive integer n, An (P", M) is closed and
M = U, An (P", M). Since M is complete, it is of the second category.
Therefore An (P", M) has an interior for some n, and being a submodule, it
is open. Then an integer exists for which P"M g An (P", M). Therefore
P™*"M = 0, showing that M has bounded order. On the other hand, sup-
pose M is a module such that IM = 0 for some I 0. Then the R-topology
on M is discrete; hence M is complete.

TaeorEM 7.7. If M is reduced, realizable, and either a torsion module or a
torsion-free module, then M <s complete ¢n the R-topology.

Since M is reduced and realizable, M = Ext (K, M); hence M/R“M is
complete in the R-topology by Theorem 6.2. If M is torsion-free,
R°M = R® Ext (K, M) = 0, by Lemma 7.5. Hence M is complete in this
case. If M is a torsion module, M/R“M has bounded order, by Lemma, 7.6.
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Suppose 0  r in R annihilates M/R“M so that rM g R°M. If wisany ele-
ment of R“M and s is any nonzero element of R, then u = srv for some v in
M. But rvisin R°M; hence w is divisible by s in R°M. Hence R“M is di-
visible. Since M is reduced, this implies R“M = 0 and M is complete.

CoROLLARY 7.8. A reduced realizable torsion module has bounded order. If
C is a torsion module, then Ext (A, C) = 0 for every torsion-free module A if
and only if C s the direct sum of a divisible module and a module with bounded
order.

The second part of the corollary was first proved by Baer in [1] for R the
ring of rational integers.

CorOLLARY 7.9. The ring R is realizable as an R-module if and only if it
18 a complete discrete valuation ring.

Since R is torsion-free it is realizable if and only if it is complete in the
R-topology. If it is complete in this topology, then it is ring isomorphic to
the direct product of its P-adic completions (see [5]). If there is more than
one factor present, R has zero-divisors. Hence R has only one prime ideal.

TaeOoREM 7.10. If any nonzero projective R-module is realizable, then R is
realizable. If R is realizable, then every finitely generated module ts realizable,
If R is not realizable, then a finitely generated module is realizable if and only if
it 18 a torsion module.

In view of [4, Theorem 4}, every projective module is a direct sum of ideals.
Hence the existence of a nonzero realizable projective module implies, by
Theorem 7.3d, the existence of a nonzero realizable ideal I. Since R/I has
bounded order, it is reduced and realizable. Thus both I and R/I are reduced
and realizable; hence R is realizable by Theorem 7.3c.

It is shown in [4, Theorem 1] that a finitely generated module A is the
direct sum of its torsion submodule tA and a finitely generated projective
module B. Suppose R is realizable. Every ideal of R is realizable by
Theorem 7.3b. Then B, being a direct product of ideals, is realizable by
Theorem 7.3e. The module ¢4 has bounded order, and hence is realizable in
any case. Thus A = tA + B is realizable by Theorem 7.3e. If, on the
other hand, B is not zero and A is realizable, then B is also realizable; hence
R is realizable by the first part of the theorem. This proves the last statement
of the theorem.

The preceding results concerned the realizability of reduced modules. The
final result of this section goes to the opposite extreme.

TuaeorEM 7.11.  Every torsion-free divisible module s realizable.

Let C be a torsion-free divisible module. Suppose the existence of a re-
duced module M and a submodule L such that ¢ &~ M/L. By Theorem
7.3a, C &~ Hom (@, C) = Ext (L, C); hence C is realizable. To find such an
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M and L we proceed as follows. The module C, being torsion-free divisible,
is a direct sum of copies of . The number of copies is the rank of C. Let F
be a torsion-free module not complete in the R-topology, and let F* be its
completion. If R is not complete, then F can be taken to be R; in any event,
F can be taken to be a countable direct sum of copies of B. Then F¥* is re-
duced realizable, and F*/F is torsion-free divisible. By taking the direct
product of sufficiently many copies of the sequence 0 — F — F* — F*/F — (),
we get a sequence 0 — L — M — M /L' — 0 in which M is reduced realizable
and M /L’ is torsion-free divisible with rank = rank C. Then M/L' ~C + D
for some module D; hence there exists an epimorphism M /L’ — C. Let L be
the kernel of the composite map M — M/L' — C. The modules M and L
have the required properties.

8. In view of Theorem 7.1 the reduced realizable modules have the follow-
ing property: A module M s a direct summand of every module containing it as
a submodule closed under division if and only if M is the direct sum of a divisible
module and a reduced realizable module. A submodule M of a module F is
closed under division if E/M is torsion-free,

Corollary 7.8 states that a torsion module satisfies the first half of the above
equivalence if and only if it is the direct sum of a divisible module and a
module with bounded order. This result is due, for R the ring of integers,
to Baer [1].

Baer also attempts to determine all those abelian groups A which are a
direct summand of every abelian group E such that A = E/tE. He finds
that if A has countable rank, then it is free. This result, generalized to
Dedekind rings, can be rephrased as follows: If Ext (4, C) = 0 for every
torsion module C' and A has countable rank, then A is projective. This will be
proved in Theorem 8.4.

Lemma 8.1.  If I is a nonzero ideal of R, I Ext (4, C) = 0, and A has an
element with monzero order ideal J, then IC & JC.

The hypothesis states the existence of a monomorphism J /R — A. This
produces an epimorphism Ext (4, ) — Ext (J /R, 0) = C/JC. If
I Ext (A, C) = 0, we have I(C/JC) = 0, hence IC & JC.

LemMma 8.2. If R s not realizable and Ext (4, R) s finitely generated, then
tA has bounded order.

Since R is not realizable, Ext (4, R) is a torsion module by Theorem 7.10.
Hence it has bounded order. Suppose r Ext (4, R) = Oforr £ 0. Let a be
any nonzero element of t4, and let J be its order ideal. In view of Lemma
8.1 we have rR ¢ J,ie., risinI. Hence ra = 0. Since a was arbitrary in
tA, we have r(t4) = 0.
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Lemma 8.3. If A is a torsion-free module for which every submodule with
finite rank is projective, then every submodule of A with countable rank is pro-
Jectwve.

We may as well assume that A itself has countable rank. We build a

sequence {K;} of submodules of A with the properties:
i) KigKeQKig---,

(ii) each K; is projective,

(ili) K,y is the direct sum of K; and a projective module,

(iv) A is the union of the K’s.
It is clear that the existence of such a sequence implies that A is projective.

Since A has countable rank, there exists a countable maximal independent
subset {x;}. Let K; be the pure submodule of 4 generated by x,, -+, x;.
Then (i) is satisfied and (ii) holds by hypothesis, since K; has finite rank. To
prove (iii) note that each K; is pure in K ;i1 so that K;,1/K; is torsion-free.
Since K41 is projective and has finite rank, it is finitely generated. Thus
K;.1/K; is finitely generated and, hence, projective by [4, Theorem 1]. We
then have K;,, = K; ® (K;.1/K;) so that (iii) holds. Since {z;} is a maxi-
mal independent subset of 4, we have, for each a in 4, a nonzero r in R and
a natural number j such that ra is a linear combination of 2, , - -+, z;. Thus
ais in K; , because K is closed under division. This proves (iv).

TuroreMm 8.4. If A satisfies any one of the hypotheses:
(i) Ext (4, C) = 0 for every torsion module C,
(i) Ext(4,C) =0forC = Y. (I"*/R) where I ranges over the nonzero
ideals of R,
(iii) Ext (4, R) = 0 and R s not realizable,
then A s torsion-free and every submodule of A with countable rank is projective.

If A satisfies hypothesis (i), it also satisfies hypothesis (ii). We there-
fore assume that Ext (4, C) = 0, where either C = ZI (I'/R)orC =R
with R not realizable. In either alternative C is divisible by no prime ideal.
For each prime ideal P, Ext (4, C) is P-divisible; hence 4 has no P-torsion
by Theorem 4.5. Thus 4 is torsion-free.

In view of Lemma 8.3 we need only show that every submodule of A with
finite rank is projective. Since Ext (4, C) = 0 implies Ext (B, C) = 0 for
every submodule B of A, we can assume that A itself has finite rank and
show that it is projective.

If A has finite rank, there is a positive integer n and a torsion module T
such that

1) 0>R"—>A—->T—0

is exact. If T has bounded order, then A is projective. Indeed, suppose
rT = 0forr 2 0,andembed Ain4d ® Q. Leta;, -, a, be elements of 4
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generating R" as a submodule of A. The a; are linearly mdependent and
for any a in A, ra is a linear combination of them. Then ra;, «+-, 7 a,
generates a free submodule of A ® @ containing A. Hence A as a submodule
of a projective module is itself projective. Therefore, we have only to show
that the module T in (1) has bounded order.

If we apply Hom ( , C) to the sequence (1) and identify Hom (R", ) with
C" we get an exact sequence

(2) " — Ext (T, C) —0,

where the 0 occurs because Ext (4, C) = 0. If C = R, then Ext (T, C) is
finitely generated. If R is not realizable, then T has bounded order by
Lemma 8.2. If C = D (I"'/R), then C is a torsion module. From (2) we
deduce that Ext (T, C) is a torsion module. Since 7' is a torsion module,
Ext (T, C) is reduced ; hence it has bounded order by Corollary 7.8. Suppose
r Ext (T, C) = 0 for some r # 0 in R, suppose a is any nonzero element of
T, and let its order ideal be I. Then Lemma 8.1 gives us rC g IC. Since
I'"'/R is a direct summand of C, we have r(I"*/R) G I(I"*/R) = 0. There-
fore r isin I. This means that ra = 0. Since a was arbitrary in T, 7T = 0.
Thus in either case T has bounded order as required.

TurorEM 8.5. If Hom (4,R) = 0 = Ext (A4, R), then A s a divisible torsion-
free module. If, in addition, R is not realizable, then A = 0.

Since R is P-divisible for no prime ideal, Theorem 4.5 and the hypothesis
Ext (A, R) = 0 imply that A is torsion-free. Now let r be any nonzero ele-
ment of B. The sequence

0> A—— A A/rd >0
is exact. Applying Ext ( , R) we get an exact sequence:
Hom (A4, R) — Ext (A/r4, R) — Ext (4, R).

The hypotheses of the theorem imply Ext (4/r4, R) = 0. Hence A/r4
is torsion-free. Since, on the other hand, A/rA is a torsion module, it is 0;
hence rA = A. Since r was arbitrary, it follows that 4 is divisible.

If R is realizable, no more can be said; every torsion-free divisible module
satisfies the hypotheses of the theorem. If R is not realizable and 4 is a
nonzero torsion-free divisible module, A contains @ as a direct summand.
Since Ext (@, R) # 0, it follows that Ext (4, R) ¢ 0. This proves the last
statement of the theorem.
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