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This paper is devoted to the study of the structure of the R-module
Ext (A, C) where R is a Dedekind ring and A, C are R-modules. In the first
part of the paper the particular objects of study are the submodules
I Ext (A, C) where I is a nonzero ideal of R. For any R-module M we
show that IM is the kernel of the connecting homomorphism

’M -- Ext (I-/R, M)
associated with the exact sequence 0 ----> R I- I-/R O. Using the
associativity law

Ext (I-/R, Ext (A, C)) Ext (Tor (I-/R, A), C),

we show that I Ext (A, C) is the kernel of the homomorphism

EExt (f C)" Ext (A C)--. xt (Tor (I-/R, A), C)

where f’Tor (I-/R, A) -- A is the appropriate connecting homomorphism.
By investigating the structure of Tor (I-/R, A) we obtain various proper-

Eties of I xt(A,C)
The elements of Ext (A, C) are in 1-1 correspondence with the equivalence

classes of extensions of C by A. Suppose ():0 --* C -- E A --* 0 is such
an extension. We show that its characteristic class x() lies in I Ext (A, C)
if and only if JC C JE for every ideal J containing I.

In the second part of the paper we begin to determine the kinds of modules
Ext (A, C) can be. The main result is that, mod its submodule of divisible
elements, Ext (A, C) is a direct product of its P-adic completions, P ranging
over the prime ideals of R. It follows that a module M which is either torsion-

Efree or torsion is isomorphic to xt (A, C) for some modules A and C if and
only if it is the direct product of its P-adic completions. In particular R
itself has this property if and only if it is a complete discrete valuation ring.
The final section records some properties of A and C which follow from the

relation Ext (A, C) 0. One curious result is that, if R is not a complete
discrete valuation ring, then Hom (A, R) 0 Ext (A, R) implies that
A 0. We also show that if A is a module such that Ext (A, C) 0 for
every torsion module C, then every submodule of A with countable rank is
proiective. This extends a result of Baer [1] to modules over Dedekind rings.
The properties of Dedekind rings that are needed here are developed in

[2, VIII and in [4]. In the first two sections of this paper the base rings can
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be more general. In the first section any ring with unity will do; in the
second any hereditary ring.

1. An extension of C by A is an exact sequence

(e) 0-C. >E )A--0.

The characteristic class x(e) of (e) is Oi where O:Hom (C, C) -- Ext (A, C)
is the connecting homomorphism defined by (e) and i is the identity endo-
morphism of C. It is shown in [2, XIV, 1] that the correspondence (e) -- x(e)
is 1-1 between equivalence classes of extensions of C by A and the elements
of Ext (A, C). The extension (e) is equivalent to an extension

if there is a homomorphism/ :E -+ E’ such that the diagram

commutes.
Let

(e)

(e’)

0-M / >p a )A-*0

be an exact sequence with P projective. Then a commutative diagram

0-M >p a ;A-.0

(e) 0--C + >E : ,A--,0

exists, and x(e) 0, where 0 :Hom (M, C) Ext (A, C) is the connecting
homomorphism induced by the top row of (1). We also have an exact
sequence

(2) 0---,M t ;C- P v ,)E0,

where

(3) tm (--/m, m) and 7(c, p) c -b rp.

The various homomorphisms in (1) and (2) are related by

(4) bc 7(c, o), rp 7(0, p), +7(c, p) ap.

It is shown in [2, XIV, 1] that x(e) 0, if and only if a sequence (2) exists
such that a, , /, t, 7, , b are related as in (3) and (4). Then the remaining
homomorphism r is defined by (4) and a diagram (1) results.
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THEOREM 1.1. The diagram

can be made commutative by a homomorphism h:E -- E’ if and only if
x(e) Ext (f, C)x(e’).

The implication in the forward direction is an immediate consequence of
the definition of x and the elementary properties of Ext. To show the
opposite implication we start from (1), (2), and the commutative diagram

O--M ;P a ;A

4)’ ,=k", A’ ---> 00--->

which exists because P is projective.
commutative square

From this diagram we deduce the

Hom (C, C)
Hom (’, C) Hom (M, C)

Ext (A’, C)
Ext (f, C) Ext (A, C).

In view of (1) and (2) we have x(e) 0% Now assuming x(e) Ext (j’, C)x(d)
we get0 Ext (f, C)x(e’) Ext (f, C)O(e’)i 0 Hom (,/, C)i O’r’. Thus
0 0’ and there exists a map w:P -- C such that -/ /+ . We de-
fine f:C + P -- E’ by

(c, p) 4/c 4’%P + r’p.

It is easily verified that tv 0, so that a homomorphism h:E -- E’ exists
such that hv 12. This is the required homomorphism.

THEOREM 1.2. The diagram

(e) 0 -+ C -- E --* A --o 0

(e’) 0 -- C’ -- E’ -o A -- 0

can be made commutative by a homomorphism h:E ---> E’ if and only if
x(e’) Ext (A, g)x(e).

The proof of this theorem is similar to that of the previous theorem and is
omitted.



MODULES OF EXTENSIONS OVER DEDEKIND RINGS 225

2. The only property of Dedekind rings used in this section is that they
are hereditary in particular Tor 0 xt for all n > 1 Ext is right
exact, and Tor is left exact.

Let R, S be Dedekind rings; let A be an R-module, C an S-module, and
B an R-S-bimodule. There is a natural isomorphism

(1) Homs (A (R) B, C) Hom (A, Homs (B, C))

which sends each g’A (R) B ---. C into the f:A -- Homs (B, C) such that
f(a)b g(a (R) b).

Let Y be an S-injective resolution for C. We then have

Exts (A (R) B, C) H(Homs (A (R) B, r)) H(Hom (A, Homs (B, Y)).

We apply the homomorphism a’ of [2, IV, 6.1a] to get

H(HomR (A, Homs (B, Y))) > HomR (A, H(Homs (B, Y)))

HomR (A, Exts (B, C)).

Thus we obtain a homomorphism

(2) 7"Exts (A (R)R B, C) -- Hom (A, Exts (B, C))

which reduces to (1) in dimension 0. If A is R-proiective, the functor
T(D) Hom (A, D) is exact. Then a’, and hence 7, is an isomorphism.
Now define functors T’(A) Ext (Tor (A, B), C). For an exact se-

quence 0 -- A’ -o A -- At’ __. 0 of R-modules with connecting homomorphisms
0 Tor+l (A", B) orn (A’, B), define the map Tn(A’) ---. T+I(A) to be
Ext (0n, C). Then the sequence T {T is a connected sequence of
covariant functors. If we set U(A) Hom (Exts (B, C)), (2) provides us
with a natural transformation 71 t" T-- U.

Since Exts is right exact, it is easily verified that the conditions of [2, III,
5.2] are satisfied and 0 can be extended to a unique map ’T SU defined
for n _-> 0, where SU {SU} is the sequence of satellites of U. In par-
ticular we have a natural homomorphism

(3) El"Exts (Wor (A B) C) --. xtR (A, Ext (B, C)).

THEOREM 2.1. The homomorphism 1 is an isomorphism. If 0 A’ -->

A ---> A" 0 is an exact sequence of R-modules inducing a connecting homo-
morphism 0"Tor (A’, B) ---. A’ (R) B, then the diagram

Ext (A’ (R) B, C)
Exts (0, C..)..> Exts (Torf (A", B), C)

Hom. (A’, Exts (B, C)) Ext (A ’r, Exts (B, C))

commutes, where is the appropriate connecting homomorphism.
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Since t’T -* SU is a map between connected sequences of functors and
r, the commutativity of the diagram is immediute. We hve only to

show that 1 is an isomorphism. Let 0 -, M - P -- A -- 0 be an exact
sequence with P R-projective. Since R is a Dedekind ring, M is also R-pro-
jective. We have a commutative diagram

Ext (P (R), B, C) Ext (i (R), B, C) -- Ext (Tor (A, B), C) --, 0

gom (P, (A,

The op row is exaeg because Exts C) is righ exact. Since P is R-pro-
ieetive, xg (P, Exg (B, (2)) 0, hence the bogtom row is exact. Since M
is also R-proieegive, re and r are isomorphisms. Therefore is an iso-
morphism by ghe 5-1emma.

Suppose ghag A is an R-module, B is an S-module and is an R-S-bi-
module. We ge similar results if we sart from the natural isomorphism

(4) Hom (A, Horns (B, )) Homs (B, Hom (A, (2))

which sends f:A Homs (B, C) into the g’B Hom (A, ) such that
g(b)a f(a)b.

THEOREM 2.2. There is a natural homomorphism

a’Ext (A, Homz (B, C)) -- Homs (B, Ext, A, C))

which reduces to (4) in dimension 0 and is an isomorphism when B is S-pro-
jective; and an isomorphism

E xt, (A, C))xt, (A, Ext (B, C)) - Ext (B, E

such that, for any exact sequence 0 -- B’ - B -- B’ -- O, commutativity holds
in the diagram

Ext (A, Homs (B’, C))
Ext (A, ) Ext (A, Exts (S", C))

Homs (B’, Ext (A, C)) Ext (B", Ext (A, C))

where ti’Homs (B’, C) ----> Ext (B, C) and A are the appropriate connecting
homomorphisms.

The proof is similar to that of Theorem 2.1 using first an R-projective
resolution of A and then an S-injective resolution of C.

3. Throughout the remuinder of the paper R is a fixed Dedekind ring; all
modules are R-modules. Since Ext 0 for n _-> 2, and R is fixed, we shall
use Ext for Ext and Tor for Tor.
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Let Q denote the field of quotients of R. If I is any nonzero ideal of R,
then 1-1 is the set of all elements q in Q such that qI R. Since R is a
Dedekind ring I1-1 R and both I and 1-1 are proiective. It follows that
the sequence

0 R "- 1-1 "-> I-/R -’ 0

is proiective resolution for I-I/R; hence Tor (I-/R, C) Ker nd
Ext (I-/R, C) Coker where ’C -o I- (R) C nd "Horn (I--, C) -- Cre defined by c 1 (R) c nd Cf f(1) respectively. Let An (I, C) denote
the set of elements c in C such that Ic O.

ThEOrEM 3.1. If I is a nonzero ideal of R, then

Tor (I-/.R, C) An (I, C) and Ext (I-/R, C) C/IC.

Since II- R, there re q in I- nd r in I such that r q 1. For
ny c in An (I, C) wehvec rq(R) c q(R) rc 0. Hence
An (I, C) Ker . Suppose that c is in Ker nd r is ny element of I.
Define h’1-1 (R) C -- C by h(q (R) c) (rq)c. Then 0 hCc h(1 (R) c) re.
Since r ws rbitrry in I, we hve Ker An (I, C). This shows that
Tor (I-/R, C) Ker An (I, C).
To show that Coker b C/IC we must show that Im IC. Let

f:I- -- C. Then f f(1) rf(q) which belongs to IC. Thus
Im IC. If, on the other hnd, c is in IC, there exist elements c in C
such that c rc because the r generate I. The homomorphism
f:1-1 -- C defined by fq (r q)c stisfies Cf c; hence IC Im .

Let P be prime ideal in R. We use te C to denote the P-primary com-
ponent of C nd tC to denote the torsion submodule of C. The module
Q/R will be denoted by K, nd te K will be denoted by Ke.. The union of
the submodules P- of Q for 11 n __> 0 will be denoted by Qe. Then
Ke Qe/R. A module C is P-divisible if PC C. The union of 11 the
P-divisible submodules of C is itself P-divisible nd will be denoted by de C;
if de C 0, then C will be sid to be P-reduced. The mximl divisible
submodule of C will be denoted by dC; if dC 0 then C is reduced. To
simplify the statements of some of the theorems we shll use t C for tC,
dCfordC, nd Kfor K. Now letPbeprimeidel of R. Since the
sequence

0--* R - Qe -* Ke -- 0

is exact nd Qe is torsion-free, we derive exact sequences

0 a
0--Tor(Kp,C) C QR (R) C,

Hom (Kp, C) -- Hom (Qe, C) / C -- Ext (Ke, C),

where ac 1 (R) c and ff f(1).
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THEOREM 3.2. Let P be a prime ideal or R. Then
(a) Ker te C; hence 0 induces an isomorphism

Tor (Ke, C) te C.

(b) Im de C. If te C O, then induces an isomorphism

Hom (Qe, C) de C.

The module C is P-reduced if and only if Horn (Qe, C) 0.

To prove (a) assume first that P is a prime ideal. Since Qe is the direct
limit of the submodules P- of Q and commutes with direct limits, Ker is
the union of the kernels of an’C --* p-n (R) C where an c 1 (R) c. By Theorem
3.1, Kera An (pn, C) hence Ker a te C. The proof for the case P R is
similar.
To prove (b) assume first that P R. If f:Q -. C, then Im f is divisible.

Therefore f is in dC. On the other hand suppose c is any element of dC.
Since dC is iniective, the homomorphism fo" R -- dC sending 1 into c has an
extension f:Q -- dC. The composition of f with the inclusion dC C is
mapped by into c. Hence c is in Im f. This shows that Im/ dC. The
remaining parts of (b) are then easily proved.
Now suppose that P is a prime ideal. The only part of the proof requiring

different treatment is the proof of the statement de C Im . To show this
let c be any element of de C. We want a homomorphism f:Qe -* C with
f(1) c. Since Qe is the union of the modules R p0, p-l, p-2, ..., it
suffices to define a sequence of homomorphisms f,.p--n ._ C such that (i)
fn+l extends fn, (ii) Im f de C, and (iii) fo(r) rc for every r in R. We
use (iii) to define f0 and proceed by induction. Suppose fo,’", fn have
been defined satisfying (i) and (ii). There exists elements r in P, q in P-l,
s in pn, tj in P- such that

1 rq- .sjt..
Since f satisfies (ii) and the r generate P, we have elements c. in dp C such
that f(t) r c. If u is any element of p-n-l, then r; s. u is in R;
hence we define f+i by

f+(u) " (r, s u)c.

Clearly f+ satisfies (ii). As for (i) we have, for any t,

f+x(t) (r s t)c (s t) r c_, (s t)f,(t) f,(_,s s tj t) J’(t).

Since the t generate p--n, (i) is established.

4. The results of the last two sections will now be used to investigate
divisibility in Ext (A, C).
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THEOREM 4.1. If I is a nonzero ideal and if fx:An (I, A) A and
gx: C C/IC are the inclusion and quotient homomorphisms respectively, then
the homomorphisms

"Ext (A, C) - Ext (I-1/R, Ext (A, C))

Ext (f, C)’Ext (A, C) --* Ext (An (I, A), C)

Ext (A, gr)" Ext (A, C) --. Ext (A, C/IC)

are all epimorphisms with kernel I Ext (A, C). Hence they induce isomorphisms

Ext (A, C)/I Ext (A, C) Ext (I-/R, Ext (A, C))

Ext (An (I, A), C)

Ext (A, c/ic).

The homomorphism i has already been considered in Theorem 3.1. If we
apply Theorem 2.1 to the sequence 0 ---. R I- ---. I-/R ---. O, we get the
commutative diagram

Ext (A, C)
Ext (f, C)

Ext (An (I, A), C)

Ext (I-/R, Ext (A, C))

where An (I, A) has been identified with Tor (I-l/R, A) according to Theorem
3.1. Since Ext (f, C) is an epimorphism and is an isomorphism,
Ker Ext (fr, C) Ker i I Ext (A, C). The remaining part of the theorem
is proved similarly using Theorem 2.2.
A similar description of the submodule de Ext (A, C) is contained in the

following theorem.

THEOREM 4.2. If P is a prime ideal or R and je" te A -- A is the inclusion
homomorphism, then

Ext (je, C)’Ext (A, C) -+ Ext (re A, C)

is an epimorphism with kernel de Ext (A, C). If ke’A --. A/te A is the quotient
homomorphism, de Ext (A, C) is the image of Ext (/e, C).

The first part of this theorem is proved in the same manner as the previous
theorem using Theorem 3.2 instead of Theorem 3.1. The second state-
ment of the theorem follows from the first statement and the exactness of the
sequence Ext (A/te A, C) --. Ext (A, C) -- Ext (te A, C) --. 0.
The following corollary is an immediate consequence of the theorem.

COROLLARY 4.3.
reduced (P-reduced).

If A is a torsion (P-primary) module, then Ext (A, C)is
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We are now in a position to give necessary and sufficient conditions on the
modules A and C so that Ext (A, C) will be divisible. Since each ideal of R
can be expressed as a product of prime ideals it is sufficient to investigate
P-divisibility for each prime P.
We will need the equality of I-/R and R/I. This is proved in

LEMMA 4.4. If I is any nonzero ideal, then

I-/R R/I.
It is sufficient to find an element q in I- which, together with 1, generates

I-. Let r be any nonzero element of I. Then rI- is an ideal of R contain-
ing r. Since R is a Dedekind ring, there is un element s of R such that r and
s generate rI-. Then the element q s/r has the required properties.

THEOREM 4.5. If P is a prime ideal, then Ext (A, C) is P-divisible if and
only if either A has no P-torsion or C is P-divisible.

Suppose Ext (A, C) is P-divisible and A has P-torsion (i.e., te A 0).
Since P is a prime ideal, A contains an element a with order ideal P. The
submodule generated by a is isomorphic to R/P, hence to P-1/R by the lemma.
Hence there exists a monomorphism P-/R -- A. Pussing to Ext we get ,an

epimorphism Ext (A, C) -- Ext (P-/R, C) C/PC. Since Ext (A, C) is
P-divisible, so is.C/PC. Hence C/PC 0 or, equiwlently, C PC.
On the other hand te A 0 or C/PC 0 implies Ext (A, C) is P-divisible

in view of the isomorphisms estublished in Theorem 4.1.

5. Suppose A’ is submodule of A. An extension () :0 -- C E -- A -- 0is trivial on A’ if there is a homomorphism A’ --. E such that the composite
A’ - E - A is the identity on A’. In view of Theorem 1.1, this is equivalent
to the statement Ext (f, C)x() 0 where f is the inclusion of A’ in A. If
C’ is quotient module of C, then () is trivial over C’ if a homomorphism
E --+ C’ exists such that the composite C -- E -- C’ is the quotient homo-
morphism g:C -- C’. According to Theorem 1.2 this is equivalent to
Ext (A, g)x(e) 0.
Now suppose I is a nontrivial ideal of R. Applying the above paragraph

to Theorem 4.1 we find that the statements (i), (ii), (iii) in the following
theorem are equivalent.

THEOnEM 5.1. For i a proper ideal of R the following statements about an
extension () are equivalent:

(i) x(e) is in I Ext (A, C).
(ii) (e) is trivial on An (I, A).
(iii) () is trivial over C/IC.
(iv) JC C n JE for every proper ideal J containing I.

In order to prove (iv) equivalent to the others we need a lemma.
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LEMMA 5.2. If J is a proper ideal of R, then JC C n JE if and only i]
every homomorphism J-1/R ---, A can be lifted into a homomorphism J-I/R E.

Consider a commutative diagram

0 -- R --, J- --, J-/R -- 0

0--- C-- A O.

Ig is easily shown ha he existence of :-/R such gha n is
equivalen o he existence of :- such ha .IR. Now suppose
ha n JN and ha "-/R A is given. Since - is proeegive,
a diagram (1) exisgs. hen (1) is in n N, hence in . This implies
ghe exisgenee of :- such ghag (1) c. husR and can
be lifted o n. On ghe oher hand, suppose every such can be lifted, and
suppose c is any elemeng of n IN. This implies ghe exisgenee of B:-t N
such ghag c (1). Then a diagram (1) is obgained. Since can be lifged,
ghere is a :- such hag (1) c; i.e., c is in . Thus n N.
emrning go ghe proof of ghe gheorem, assume ghag (e) is grivial on An (I, A).

There is a homomorphism :An (I, A) N such ghag is ghe idengigy
where :N A is ghe epimorphism of (e). If :-/R A wigh J eongain-

ing I, ghen he image of is eongained in An (I, A). he homormorphism
is a lifting of into N. By Lemma .2 his implies n N. Thus

(iv) is proved.
Conversely, suppose (iv) rue. Since An (I, A) has bounded order, ig is a

direeg sum of eyelie modules each of which is isomorphic o J-/R for some
J eongaining I. In view of ghe lemma, (iv) implies ghag (e) is grivial on each
of ghese direeg summands. Since Exg eommues wigh diree sums in ghe firsg

factor, his implies ha (e) is rivial on An (I, A).
An extension (e) is a pure extension if rC C n rE for every r in R. Kap-

lnsky [4] has shown that purity is equivMent to the following: for ech
element a of A with order ideal I, there is an element e in E mpping onto a
and having order ideal i. If a in A has order ideal , then the submodule of
A generated by a is isomorphic to I-/R. It follows from Lemm 5.2 that
purity is equivalent to the relation IC C IE holding for every ideM I.
For any module M let RM denote the intersection of all the modules IM
with I ranging over the proper ideals of R. We can then state

COROLLARY 5.3. (e) is a pure extension if and only if x(e) is in R Ext (A, C).

In [3] Eilenberg and Mac Lane have considered the group of abelian group
extensions which are trivial on finitely generated subgroups. These are evi-
dently equivalent to the pure extensions.
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6. The further discussion of the module Ext (A, C) will be facilitated by
the introduction of the P-adic topology. If P is a prime ideal and M is any
R-module, the P-adic topology on M has, as a base at 0, all submodules PM
where n ranges over the positive integers. Addition is continuous in both
variables jointly, and the maps x ---> rx, r in R, are continuous. The topology
is, in general, not Hausdorff, the closure of zero being the submodule
PM f. P"M. If we say that M is complete in the P-adic topology, we
shall also mean that M is Hausdorff, i.e. PM ,0.

For any M, the modules M/P"M form an inverse system in a natural
fashion. Its limit will be denoted by Me*. The natural homomorphism
M -- Me* induced by the projections M --. M/P"M has PM as it kernel.
The discrete topology on each M/P"M induces a complete topology on Me*
whose base at zero consists of the kernels of the various projections
M*v ---* M/P"M. It will be proved presently that this topology on Me* is the
P-adic topology; hence Me* is complete in the P-adic topology. Thus Me* will
be called the P-adic completion of M.

Let A be the direct limit of modules A. with maps .., :A. --. A,. Then,
for any module C, the modules Ext (A., C) form an inverse system of modules
with maps Ext (..,, C). The homomorphisms Ext (., C):Ext (A, C)
Ext (A., C) induce a map

p:Ext (A, C) -- Lim Ext (A., C).

If the system A. is indexed by the positive integers in their natural or-
der, the maps of the system are completely determined by the maps
,+l:Ai --* Ai+l. In this case we will call the system A a direct sequence
of modules.

LEMM/k 6.1. If A is the direct limit of a sequence of modules A, then the
map p is an epimorphism.

Let y be any element of Lim Ext (A, C) and let y be its component in

Ext (A, C). Then yi Ext (+, C)y+ where ,+:A+ -- A is a map
of the sequence A.. If ():0 -- C -. E --, A --, 0 is such that y x()
we can find (+1):0 --. C -, Ei+l -+ A+ - 0 such that the diagram

(ei) O--, C E A ;0

II i@’+i i’-I
(e+) 0 -* C --E A+ 0

commutes. Starting with any (et) such that y x(e), we define by recursion
a direct sequence (e) of extensions of C by A. Since the tang of direct
limits commutes with exact sequences, we have, setting E Lim E, an

extension (e):0 C E A 0 as the direct limit of the extensions
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(e). Therefore, for every i, a commutative diagram

(e) 0 -- C --* E -- A --. 0

(e) 0--C --. E --. A --.0

exists. Thus y x(e) Ext (, C)x(e) for every i and y x(e) by the
definition of p.

TIEORV.M 6.2. If P is a prime ideal and A, C are any modules, then the
natural map p’Ext (A, C) -- Ext (A, C)* is an epimorphism with kernel
P Ext (A, C), and the module Ext (A, C)*e is complete in the P-adic topology.

Since tp A Lim An (pn, A), the map

p’Ext (tp A, C) --, Lim Ext (An (P, A), C)

is an epimorphism. Since the map Ext (A, C) - Ext (re A, C) is an epi-
morphism, their composite pP’Ext (A, C) -- Lim Ext (An (Pn, A), C) is also

epimorphic. From Theorem 4.1 we have identifications Ext (An (pn, A), C)
Ext (A, C)/P Ext (A, C), and therefore Lira Ext (An (pn, A), C)

Ext (A, C)*. The map p’ then becomes identified with the map e.
The module Ext (A, C)* is complete in the topology having as a base at 0

the kernels of the maps f*’Ext (A, C)e* -- Ext (A, C)/P Ext (A, C). To
show that the module is complete in the P-adic topology we need only show
that Ker f* pn Ext (A, C)*. It is clear that P Ext (A, C)* Ker f*.
To show the converse inclusion we use the fact that e is epimorphic. If y
is any element of Kerf*, there is an element z of Ext (A, C) such that y e z;
hence 0 f* p z. Now f* e" Ext (A, C) --, Ext (An (pn., A), C) is induced
by the inclusion An (Pn, A) --, A. It therefore follows from Theorem 4.1
that z is in pn Ext (A, C), and therefore y z is in pn Ext (A, C)*.
THEOREM 6.3. If P is a prime ideal, there exists a natural isomorphism

Ce* Ext (Ki., C)e
such that the diagram

C Ext (Kp, C)

C Exg (K,C)

commutes, where is the connecting homomorphism associated with the sequence
0 R -- Q --, K, --, O. Thus C* is always complete in the P-adic topology.
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For each positive integer n there is a commutative diagram

C Ext (Ke, C)

c/PC x (P/, c) gx (g, C)/P gx (g, ).
he wo isomorphisms are provided by heorems .1 and 4.1 respectively.
he ougside vergieal maps are quogien maps, while he eengral one is induced

by ghe inclusion P-/R K. Composing he wo isomorphisms gives, for
each , /PC Nx (K )/P Nx (K ). hus

C; Lim c/pnc Lim Ext (Ke, C)/P Ext. (Ke, C) Ext (Ke, C)e.

This is the required isomorphism. The commutativity of the diagram follows
from (*). The remainder of the proposition is then an immediate consequence
of the preceding theorem.
The preceding discussion considered each prime ideal separately. There

remains the task of fitting the pieces together. This is quite simple to do.
The epimorphisms e mentioned in Theorem 6.2 define an epimorphism
’Ext (A, C) e Ext (A, C), the product ranging over the prime
ideals of R. The kernel of . is fie P Ext (A, C) R Ext (A, C). Thus
Ext (A, C) is, modulo R Ext (A, C), the direct product of its P-adic comple-
tions.
By introducing yet another topology one can give the above discussion a

little more unity. The R-topology, on a module M, has all the submodules
IM (for I a nonzero ideal of R) as a base at zero. The closure of 0 is now
RM. We denote by M the completion of M in the R-topology. Using
Theorem 2 of [5] and the fact that each module M/IM is the direct product
of its P-primary components, one can show thatM He M. InM one
has the relationIM *P Me, for any ideal I, where pn is the highest power
of P dividing I. It is then easy to show that the cartesian product topology
on eM is the R-topology. Hence M is complete in the R-topology.
Now Theorem 5.2 is still true if P is everywhere replaced by R.

7. A module M will be called realizable if there are modules A and C such
that M Ext (A, C). The basic theorem for the study of realizable modules
is the following"

THEOREM 7.1. The following four statements about M are equivalent:
(a) Ext (A, M) 0 for every torsion-free module A.
(b) Ext (Q, M) 0.
(c) M/dM Ext (K, M).
(d) M/dM is realizable.

COnOLRY 7.2. If M is reduced, then it is realizable if and only if
Ext (Q, M) 0.



MODULES OF EXTENSIONS OVER DEDEKIND RINGS 235

It is clear that (a) implies (b) and (c) implies (d). To show that (b) im-
plies (c), we consider the exact sequence

Horn (Q, M) -- M -. Ext (K, M) - Ext (Q, M).

The image of the leftmost homomorphism is dM, while (b) gives
Ext (Q, M) 0. This proves (c). Now suppose (d) is true so that
M/dM ’ Ext (B, C) for some modules B and C. Since Ext (A, M)
Ext (A, M/dM), we have, by Theorem 2.1, Ext (A, M) Ext (Tor (A, B), C).
If A is torsion-free, Tot (A, B) 0, so Ext (A, M) 0. This proves (a).
The corollary is an immediate consequence of the theorem.

THEOREM 7.3. Let M be any module, and let L be a submodule of M. Then
the following statements are true"

(a) If M is reduced and realizable, then (M/L)/d(M/L) is realizable and

(1) Hom (Q, M/L) Ext (Q, L).

(b) If M is reduced and realizable and either M/L is reduced or L is real-
izable, then both L and M/L are reduced and realizable.

(c) If L and M/L are both reduced and realizable, then M is reduced and
realizable.

(d) If M is reduced and realizable, so is every direct summand of M.
(e) The direct product of a family of reduced realizable modules is also

reduced and realizable.

We consider the exact sequence

(2)
Horn (Q, M) -- Hom (Q, M/L) Ext (Q, L)-- Ext (Q, M) --* Ext (Q, M/L) -- O.

As stated in Theorem 3.2b, M is reduced if and only if ttom (Q, M) 0. If
M is reduced and realizable, then Hom (Q, M) 0 Ext (Q, M). This
and the exactness of (2) give the isomorphism (1) and Ext (Q, M/L) O.
Then (a) is an immediate consequence of Theorem 7.1.
To prove (b) we note first that, in view of the isomorphism (1), the condi-

tions M/L reduced and L realizable are equivalent. If either condition is
true, then so is the other, and M/L is reduced and realizable by (a). But
Ext (Q, L) 0 follows from consideration of the sequence (2); hence L, being
reduced, is realizable according to Corollary 7.2.
The proof of (c) is similar to theforegoing, using the exactness of (2).
A direct summand of M is a submodule, hence reduced if M is, and a

factor module. Thus (d) is a direct consequence of (b).
As for (e), suppose that M II, M, with each M, reduced and realizable.

Then Horn (Q, M) I]-Hom (Q, M,) 0 so that M is reduced; and
Ext (Q, M) II, Ext (Q, M,) 0 so that M is realizable.
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TEOR 7.4. Every module complete in $he R-topology is realizable.

If M is complete in the R-topology, then M He M*. In view of
Theorem 7.3e we cn ssume M is complete in P-dic topology. Since M
is reduced, the sequence 0 -- M -- Ext (Ke, M) - Ext (Qe, M) --. 0 is exact.
Since M Me*, Theorem 6.3 shows that the homomorphism

M -- Ext (Ke, M)
hs left inverse, and hence the bove sequence splits. Since Ext (Ke, M)
is reduced nd Ext (Qe, M) is divisible (Ke is torsion module nd Qe is
torsion-free), this implies that Ext (Qe, M) 0. Thus M Ext (Ke, M)
nd is realizable.

LEMM. 7.5. If A is a torsion module and C is torsion-free, hen
R Ext (A, C) 0.

Since the elements of R Ext (A, C) re lust the pure extensions of C by
A, it suffices to show that if E is ny module containing C s pure sub-
module nd E/C is torsion module, then C is direct summnd of E Since
C tE 0, it is sufficient to show that C - E E. Let x be any element
of E nd suppose it maps onto y in E/C where ry 0 with r nonero ele-
ment of R. Thenrx zisinC. By purity, z rwwithwinC. Then
x w W (x w) is the desired expression showing that x is in C - E.

LEMM/k 7.6. A torsion module is complete in $he R-topology if and only if it
has bounded order.

If M is complete in the R-topology, then M Ie M* where the M*
range over the P-dic completions of M. Ech M*e is P-primary for the cor-
responding prime ideal. Hence the number of ideals P for which M* 0 is
finite because n element of M with nonzero component in ech Me* hs
order ideal 0. This reduces the problem to showing that P-primary module
complete in the P-dic topology hs bounded order. Suppose M is such

module. For ech positive integer n, An (P, M) is closed nd
M tg An (P, M). Since M is complete, it is of the second ctegory.
Therefore An (P, M) hs an interior for some n, nd being submodule, it
is open. Then an integer exists for which P’M An (P, M). Therefore
P’+M O, showing that M hs bounded order. On the other hand, sup-
pose M is module such that IM 0 for some I 0. Then the R-topology
on M is discrete; hence M is complete.

THEOREM 7.7. If M is reduced, realizable, and either a torsion module or a

orsion-free module, hen M is complete in $he R-$opology.

Since M is reduced nd realizable, M Ext (K, M); hence M/RM is
complete in the R-topology by Theorem 6.2. If M is torsion-free,
RM R Ext (K, M) 0, by Lemm 7.5. Hence M is complete in this
cse. If M is torsion module, M/RM has bounded order, by Lemm 7.6.
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Suppose 0 r in R annihilates M/RM so that rM R’M. If u is any ele-
ment of RM and s is any nonzero element of R, then u srv for some v in
M. But rv is in RM; hence u is divisible by s in RM. Hence RM is di-
visible. Since M is reduced, this implies RM 0 and M is complete.

COROLLARY 7.8. A reduced realizable torsion module has bounded order. If
C is a torsion module, then Ext (A, C) 0 for every torsion-free module A if
and only if C is the direct sum of a divisible module and a module with bounded
order.

The second part of the corollary was first proved by Baer in [1] for R the
ring of rational integers.

COROLLARY 7.9. The ring R is realizable as an R-module if and only if it
is a complete discrete valuation ring.

Since R is torsion-free it is realizable if and only if it is complete in the
R-topology. If it is complete in this topology, then it is ring isomorphic to
the direct product of its P-adic completions (see [5]). If there is more than
one factor present, R has zero-divisors. Hence R has only one prime ideal.

THEOREM 7.10. If any nonzero projective R-module is realizable, then R is
realizable. If R is realizable, then every finitely generated module is realizable.
If R is not realizable, then a finitely generated module is realizable if and only if
it is a torsion module.

In view of [4, Theorem 4], every projective module is a direct sum of ideals.
Hence the existence of a nonzero realizable projective module implies, by
Theorem 7.3d, the existence of a nonzero realizable ideal I. Since R/I has
bounded order, it is reduced and realizable. Thus both I and R/I are reduced
and realizable; hence R is realizable by Theorem 7.3c.

It is shown in [4, Theorem 1] that a finitely generated module A is the
direct sum of its torsion submodule tA and a finitely generated projective
module B. Suppose R is realizable. Every ideal of R is realizable by
Theorem 7.3b. Then B, being a direct product of ideals, is realizable by
Theorem 7.3e. The module tA has bounded order, and hence is realizable in
any case. Thus A tA -+- B is realizable by Theorem 7.3e. If, on the
other hand, B is not zero and A is realizable, then B is also realizable; hence
R is realizable by the first part of the theorem. This proves the last statement
of the theorem.
The preceding results concerned the realizability of reduced modules. The

final result of this section goes to the opposite extreme.

THEOREM 7.11. Every torsion-free divisible module is realizable.

Let C be a torsion-free divisible module. Suppose the existence of a re-
duced module M and a submodule L such that C ’ M/L. By Theorem
7.3a, C Hom (Q, C) Ext (L, C); hence C is realizable. To find such an
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M and L we proceed as follows. The module C, being torsion-free divisible,
is a direct sum of copies of Q. The number of copies is the rank of C. Let F
be a torsion-free module not complete in the R-topology, and let F* be its
completion. If R is not complete, then F can be taken to be R; in any event,
F can be taken to be a countable direct sum of copies of R. Then F* is re-
duced realizable, and F*/F is torsion-free divisible. By taking the direct
product of sufficiently many copies of the sequence 0 -- F F* F*/F O,
we get a sequence 0 -- L M M/L’ ---. 0 in which M is reduced realizable
and M/L’ is torsion-free divisible with rank -> rank C. Then M/L’ C - D
for some module D; hence there exists an epimorphism M/L’ -- C. Let L be
the kernel of the composite map M ---> M/L’ C. The modules M and L
have the required properties.

8. In view of Theorem 7.1 the reduced realizable modules have the follow-
ing property: A module M is a direct summand of every module containing it as
a submodule closed under division if and only if M is the direct sum of a divisible
module and a reduced realizable module. A submodule M of a module E is
closed under division if ElM is torsion-free.

Corollary 7.8 states that a torsion module satisfies the first half of the above
equivalence if and only if it is the direct sum of a divisible module and a
module with bounded order. This result is due, for R the ring of integers,
to Baer [1].
Baer also attempts to determine all those abelian groups A which are a

direct summand of every abelian group E such that A E/tE. He finds
that if A has countable rank, then it is free. This result, generalized to
Dedekind rings, can be rephrased as follows: If Ext (A, C) 0 for every
torsion module C and A has countable ran]c, then A is projective. This will be
proved in Theorem 8.4.

LEMMA 8.1. If I is a nonzero ideal of R, I Ext (A, C) O, and A has an
element with nonzero order ideal J, then IC JC.

The hypothesis states the existence of a monomorphism J-1/R ---. A. This
produces an epimorphism Ext (A, C) --. Ext (J-I/R, C) C/JC. If
I Ext (A, C) 0, we have I(C/JC) 0, hence IC JC.

LEMMA 8.2. If R is not realizable and Ext (A, R) is finitely generated, then
tA has bounded order.

Since R is not realizable, Ext (A, R) is a torsion module by Theorem 7.10.
Hence it has bounded order. Suppose r Ext (A, R) 0 for r 0. Let a be
any nonzero element of tA, and let J be its order ideal. In view of Lemma
8.1 we have rR J, i.e., r is in I. Hence ra O. Since a was arbitrary in
tA, we have r(tA) O.
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LEMMA 8.3. If A is a torsion-free module for which every submodule with

finite ran is projective, then every submodule of A with countable ran]c is pro-
jective.

We my as well assume that A itself has countable rank. We build a
sequence {Ks.} of submodules of A with the properties:

(i) K1 K2 K3 ...,
(ii) each Ks is projective,
(iii) K.+I is the direct sum of Ks. and a projective module,
(iv) A is the union of the K’s.

It is clear that the existence of such a sequence implies that A is projective.
Since A has countable rank, there exists a countable maximal independent

subset {xs.}. Let Ks be the pure submodule of A generated by x, xs..
Then (i) is satisfied and (ii) holds by hypothesis, since K. has finite rank. To
prove (iii) note that each K. is pure in Ki+ so that Ki+/Ki is torsion-free.
Since K.+ is projective and has finite rank, it is finitely generated. Thus
Ks’+I/Ks is finitely generated and, hence, projective by [4, Theorem 1]. We
then have Ks’+ Ki @ (Ki+/Ks’) so that (iii) holds. Since {x.} is a maxi-
mal independent subset of A, we have, for each a in A, a nonzero r in R and
a natural number j such that ra is a linear combination of x, xi. Thus
a is in Kj, because K. is closed under division. This proves (iv).

THEOREM 8.4. If A satisfies any one of the hypotheses:
(i) Ext (A, C) 0 for every torsion module C,
(ii) Ext (A, C) 0 for C (I-/R) where I ranges over the nonzero

ideals of R,
(iii) Ext (A, R) 0 and R is not realizable,

then A is torsion-free and every submodule of A with countable rank is projective.

If A satisfies hypothesis (i), it also satisfies hypothesis (ii). We there-
fore assume that Ext (A, C)= 0, where either C (I-I/R)or C R
with R not realizable. In either alternative C is divisible by no prime ideal.
For each prime ideal P, Ext (A, C) is P-divisible; hence A has no P-torsion
by Theorem 4.5. Thus A is torsion-free.

In view of Lemma 8.3 we need only show that every submodule of A with
finite rank is projective. Since Ext (A, C) 0 implies Ext (B, C) 0 for
every submodule B of A, we can assume that A itself has finite rank and
show that it is projective.

If A has finite rank, there is a positive integer n and a torsion module T
such that

(1) 0--R --A --. T--0

is exact. If T has bounded order, then A is projective. Indeed, suppose
rT O for r # O, and embed A in A (R)Q. Leta,...,anbeelementsofA
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generating R as a submodule of A. The a are linearly independent, and,
for any a in A, ra is a linear combination of them. Then r-lal, r-la,,
generates a free submodule of A (R) Q containing A. Hence A as a submodule
of a projective module is itself proiective. Therefore, we have only to show
that the module T in (1) has bounded order.

If we apply Hom( C) to the sequence (1) and identify Horn (Rn, C) with
C we get an exact sequence

(2) C’--. Ext (T, C) --, 0,

where the 0 occurs because Ext (A, C) 0. If C R, then Ext (T, C) is
finitely generated. If R is not realizable, then T has bounded order by
Lemma 8.2. If C (I-l/R), then C is a torsion module. From (2) we
deduce that Ext (T, C) is a torsion module. Since T is a torsion module,
Ext (T, C) is reduced;hence it has bounded order by Corollary 7.8. Suppose
r Ext (T, C) 0 for some r 0 in R, suppose a is any nonzero element of
T, and let its order ideal be I. Then Lemma 8.1 gives us rC IC. Since
I-/R is a direct summand of C, we have r(I-I/R) I(I-/R) O. There-
fore r is in I. This means that ra O. Since a was arbitrary in T, rT O.
Thus in either case T has bounded order as required.

THEOREM 8.5. If Hom (A, R) 0 Ext (A, R), then A is a divisible torsion-

free module. If, in addition, R is not realizable, then A O.

Since R is P-divisible for no prime ideal, Theorem 4.5 and the hypothesis
Ext (A, R) 0 imply that A is torsion-free. Now let r be any nonzero ele-
ment of R. The sequence

r
O--- A A -o A/rA -- 0

is exact. Applying Ext R) we get an exact sequence:

Hom (A, R) -- Ext (A/rA, R) Ext (A, R).

The hypotheses of the theorem imply Ext (A/rA, R) O. Hence A/rA
is torsion-free. Since, on the other hand, A/rA is a torsion module, it is 0;
hence rA A. Since r was arbitrary, it follows that A is divisible.

If R is realizable, no more can be said; every torsion-free divisible module
satisfies the hypotheses of the theorem. If R is not realizable and A is a
nonzero torsion-free divisible module, A contains Q as a direct summand.
Since Ext (Q, R) 0, it follows that Ext (A, R) 0. This proves the last
statement of the theorem.
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