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Introduction

In 1 we discuss the structure of Tor(K, K) when R is a commutative,
noetherian ring, and K is a homomorphic image of R which is a field. If
we view K as an R-module, Tor’(K, K) is defined [1, Chapter VII, and,
because R is commutative, it is a module over R. Since the kernel of the
homomorphism yielding K annihilates Tor(K, K), as R-module it is merely
a K-module, i.e., a vector space over K. It does, in fact, possess more struc-
ture: Two maps,

m:TorR(K, K) (R)K Tor(K, K) --* Tor(K, K)
and

M:Tor’(K, K) --* TorR(K, K) (R)K TorR(K, K),

can be defined which equip Tor’(K, K) with an algebra and coalgebra struc-
ture respectively.

If R is a local ring, then K is the unique homomorphic image of R which is
a field; in this case rn and M are compatible in the sense that Tor’(K, K)
becomes a Hopf Algebra. This is the theorem of 1.
As corollaries we prove a result of Serre’s [4, Theorem 4] and a result of

Tate’s [3, Theorem 7]. The characterization of regular local rings as those
of finite homological dimension, first announced in [5], has been given three
proofs: in [3], [4], and [6]. Each of them uses crucially the structure of
Tor’(K, K), in particular, Serre’s Theorem. Thus the first corollary would
yield still another proof of that result.

In 2 we add to the riches of the Koszul complex, a less well-known homo-
logical invariant. Defined in a general setting in [1] and exploited by Auslan-
der and Buchsbaum in [7] it is shown to be rich enough to distinguish not
only regular local rings but also local complete intersections, i.e., those local
rings which are homomorphic images of regular local rings by ideals whose
rank is equal to the number of elements needed to generate them.

This paper is the essential contents of 1 and 3 of [10]. I wish to thank
John Tare for his help and advice during the preparation of the thesis. I
also wish to thank Professor O. Zariski for his guidance during the final
stages of preparation and M. Auslander and D. A. Buchsbaum for the use of
the manuscript of [7]. The suggestion that Tor’(K, K) should be a Hopf
Algebra was made by Eilenberg and Serre.
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1. The natural algebra and coalgebra
structure of Tor(K, K)

Throughout, we will use the word "ring" in a restricted sense, meaning a
nontrivial, commutative, noetherian ring with a unit element. For modules
over such rings we demand that the unit element act as the identity automor-
phism of the underlying abelian group. Thus, if the ring R is a field, the
modules over R (more briefly, R-modules) are simply the vector spaces over
R. In this case we will use IX :R] to denote the dimension of X as a vector
space over R.
We assume that the reader is acquainted with the notions of tensor product

and module with differentiation, and their extensions to the graded case; we
also assume that he is acquainted with the torsion functor, TorR Tor.
A discussion of these matters, and of most others basic to this paper, can be
found in that famed repository, [1].
Our gradings will always be of the form =0 X. Recall that if X
@=0X and Y @q0 Yq are graded R-modules, then the isomorphism

expressing the commutativity of the tensor product, X (R) R Y, is given by
x (R) y---. (-1)qy (R) x, where x e X and y e Yq. Our differentiations will
all be of degree -1; i.e., d(X)

_
X_I for all p. Recall that any module X

can be trivially graded (set X0 X and X 0 for p > 0), and thut any
module X can be trivially made into a module with differentiation (set d 0).
Notice that the trivial structures are compatible; indeed, if the grading is
trivial, the differentiation must be. If a module comes to us without grading
or differentiation, we will always assume it equipped with the trivial grading
and differentiation.

1.1 DEFINITION. An algebra is a module X together with a module homo-
morphism m:X (R) X X called the "multiplication." It is said to be
graded if X is a graded module and m is of degree 0 (i.e., m((X (R) X),)

_
Xn).

X is said to have a unit element if there is an element 1 e X with m(x (R) 1)
m(1 (R) x) x for all x e X. X is said to be associative if the following dia-
gram commutes:

x x) (x x) x

m(m lx)m(l m)

X
where the isomorphism (expressed by the symbol ) is the natural one giving
the associativity of the tensor product, lx is the identity isomorphism of X,
and juxtaposition indicates the composing of mps. X is said to be commu-
tative if the following diagram commutes"

X @X X @X

X
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where the isomorphism is the natural one giving the commutativity of the
tensor product.

Observe that if X has a unit element it is unique, and if X is graded it must
be of degree 0; that the usual axioms for algebras can be captured by inter-
preting the fact that m is a module homomorphism; and that when X is graded,
the commutativity involves a sign, due to the sign in the isomorphism giving
the commutativity of the tensor product of modules. Throughout we will
use the word "algebra" to mean a nontrivial, associative, commutative M-
gebra with a unit element.
We demand of an algebra homomorphism, f:X Y, that it be a module

homomorphism, and that, furthermore, the following diagram commute:

X@RX mx) X

Y@RY Y

Since all our algebras will have unit elements, we require also that f(1) 1.
A subalgebra, X, of X is a submodule with m(x (R) x’) X whenever

X7 Xx" and x" X’. The multiplication m"X’ (R) -- is given by m
m(i @ i) where i:X’ X is the injection map. Clearly i becomes an al-
gebr homomorphism. A submodule X’ of X is an ideal if m(x’ @ x") X’
whenever x’ or x’ e X’. (Actually, since we are assuming that X is commu-
tative, it would be enough to say "whenever x’ X’.") If X’ is an ideal,
then X/X’, the factor algebra, has as its module the factor module X/X’,
and as its multiplication the unique module homomorphism

" (X/X’) (X/X’) X/X’

which stisfies the commutativity relation"

m
X@X X

where is he natural map of X onto X/X’. hus his natural map becomes
an algebra homomorphism.
Suppose ha X and Y are algebras. We wan to make X Y into an

algebra in a nagural way. Le m and mr be he mulgiplieaions in X and Y
respectively, and le T’Y X X Y be ghe isomorphism expressing
he eommugagivigy of he module ensor produe. hen

m (mx(R)my)(lx (R) T(R)
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is a module homomorphism of (X(R)RY) (R)R (X (R)R Y) -- X (R). Y and
furnishes X (R). Y with the unique algebra structure such that

m((x(R) 1) (R) (1 (R)y)) x(R)y

and the maps x -- x (R) 1 and y -- 1 (R) y are algebra homomorphisms. In
the usual notation we have that (x (R) y,)(x, (R) y)= (-1)mxx (R) yn y,
where xm Xm and y e Y.

1.2 DEFINITION. A coalgebra is a module X together with a module
homomorphism M:X--. X (R) X called the "comultiplication." It is said
to be graded if X is a graded module and M is of degree 0.

The notions of associativity and commutativity are similar to those for
algebras; we will make no use of them. The definition of the tensor product
is also similar; again, we will make no use of it.
We will want to use simultaneously the notions of graded algebra and

module with differentiation, also the notions of graded lgebra and coMgebra.
We make them compatible as follows:

If a graded algebra X has as its graded module a complex (more accurately,
"left complex," i.e., a graded module with differentiation with the restrictions
on the grading and differentiation as above) with d satisfying the commu-
tativity relation

m
X@X >X

dx(R)x I
X @X -’X

where dx(R)Rx d (R) lx + lx (R) d, then we call it a differential graded algebra
We have, thus, a complex

dnX X,_- X0O

with an associative and commutative multiplication satisfying

d(xm x,, (dx)x’, W (- 1) x,,,(dx,, ).

Observe that if R contains an inverse of 2, then for m odd we have from the
commutativity that x 0. We want this property for all our differential
graded algebras and hence demand it. They will then be strictly commutative.
We will, in addition, demand that the complex be finite (i.e., that each X
be finitely generated) and, in particular, that X0 be generated by the unit
element of the algebra (connectivity). Thus, our differential graded algebras
are the objects called R-algebras in [3].
One checks easily that if X and Y are differential graded algebras, and

if X (R), Y is equipped with the grading, multiplication, and differentiation of
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the tensor product, then X (R) R Y is a differential graded algebra. Observe
that R, in fact any factor ring of R, trivially equipped, is a differential graded
algebra.

Observe also that if X is a differential graded lgebra, then Z(X) is a graded
sublgebra, and B(X) is a graded ideal of Z(X). Thus, H(X) is a graded
algebra. It inherits the associtivity and strict commutativity of X and
possesses a unit element (since Zo(X) Xo). And it is finite (i.e., H,,(X)
is finitely generated for every m). Moreover, ulgebra homomorphisms which
commute with d induce lgebra homomorphisms when passing to homology.

If we hve a graded algebra which is also a coalgebra, then we require that
the coalgebra mp be a graded algebra homomorphism. If, in addition, X
is a finite complex with X0 generated by the unit element of the lgebm, and,
for x e Xm with m > 0, the projections of M(x,) into X (R)R X0 and
X0 (R) R X are, respectively,

(*) x(R) 1 and l(R)x,

then we cll X Hopf Algebra.
We will be concerned with a situation in which u differential graded algebra

X yields a homology algebra H(X) which is a Hopf Algebra. In this case we
will, in order to prove that H(X) is a Hopf Algebra, merely have to construct
an algebra homomorphism M:H(X) H(X) (R) H(X) stisfying (*) since
the other requirements for H(X) are inherited from the corresponding proper-
ties of X.

Let X and Y be complexes. Then there is a canonical homomorphism
a:H(X) (R) H(Y) -- H(X (R) Y) defined as follows: For A H(X) nd
B eH(Y), pick representatives x and y. Then x (R) y is n element of
Z(X (R) Y), and the homology class of x (R) y does not depend on the choice
of x nd y. Thus, a(A (R) B) the homology class of x (R) y defines a. It
is a module homomorphism; moreover, if X and Y are differential graded
lgebras, it is easy to see that a is an algebra homomorphism. One can
compute directly, or derive as an immediate consequence of Theorem IV.7.2.
of [1], that when R is a field, a is an isomorphism.
We are interested in Tor(K, L) where K and L are factor rings of R viewed

as R-modules. It is, of course, an R-module (since R is commutative), but
only to the extent that it is n R/(M N)-module, where M nd N re,
respectively, the kernels of the ntural maps of R onto K nd L. To see
this simply note that M(K (R) Y) 0 and N(X (R) L) 0; thus, M nd
N nnihilate the homology of K (R) Y and X (R) L which means that M N
annihilates Tor(K, L).
Now, TorR(K, L) is naturally an algebra over R/(M N). To see this

let X be a proiective resolution of K. Then X (R) X is projective complex
overK(R)KK. Hence there isamp of X(R)RX--Xover the iso-
morphism K (R) K --. K. This yields a mp of (X (R) X) (R) R (L (R) L) --X(R)L and thus a mp of (X@L) (R)(X(R)L)-X(R)L. Passing
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to homology we have a map of H((X (R) R L) (R) (X (R) L)) H(X (R) L)
and applying a, we obtain the module homomorphism

H(X (R) , L) (R) H(X (R) L) ---. H(X (R) , L)
which furnishes Tor’(K, L) with a multiplication. (Observe that the middle
tensor product on the left might just as well be over R/(M q- N).) It is the
"m-product" of [1]. Notice that the only "nonexplicit" map in the above
construction is that of X (R) X --. X over K (R). K -- K. Tare has shown
[3] that there exist resolutions X of K for which this map can be made asso-
ciative and strictly commutative, that is, resolutions which are themselves
differential graded, strictly commutative algebras. This is an efficient way
of seeing that is associative and strictly commutative.
Now assume that M N and that M is a maximal ideal. K RIM

is a field, and we can describe a canonical coalgebra structure for T
Tor(K, K), which, by the above, is an algebra over K.

Let X be a projective resolution of K, ’X-- K the "augmentation."
Since X (R) K X/MX K (R)X, we have the natural map of
X @X --* (X @, K) @ (K @ X). (Notice that the middle tensor
product on the right is taken over K, permissible since as R-modules X (R) K
and K (R) X are merely K-modules.) Passing to homology we have a map
H(X (R) X) H((X (R) K) @ (K (R) X)). Since K is a field,

c’H(X (R), K) (R), H(K (R), X)----> H((X (R), K) (R),: (K (R) X))

is an isomorphism, and hence applying a-1 yields a map

H(X (R) , X) ---. H(X (R) K) (R),: H(K (R) X).

Using the canonical isomorphisms (1 (R) e)l and (e @ 1) we have a map
T --. T (R) x T, which equips T with a coalgebra structure.
Observe that if X is a differential graded algebra resolution, then, since all

the maps used in the above are algebra homomorphisms, the canonical coal-
gebra structure of T is compatible with the canonical algebra structure.
Even more is true. We have

1.3 THEOREM. Let R
K RIM. Then

is a Hopf Algebra over K.

be a local ring, M the maximal ideal, and set

T Tor’(K, K)

Proof. What remains to be shown is that for r e Tn, n > 0, the image of
under the comultiplication is of the form

1(R) r-F -t- r(R) 1,

where the "middle terms" are contained in

n--1()i==l T @K Tn_.
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Now, let X be a minimal projective resolution of K. (X is said to be minimal
if dX

_
MX. Minimal resolutions are extremely advantageous since the

differentiation in X (R) K is zero and hence H(X (R) K) X (R) R K; thus
knowing X means knowing Tor(K, K). That minimal projective resolu-
tions always exist is an immediate consequence of the fact that if A is any
R-module with a finite minimal base {xl, x,}--in the sense that no x
can be expressed as a linear combination of the remaining x’s--then

r x 0 implies that r M for all i, this last fact being Nakayama’s
Lemma. It is, of course, Axiom 5 of [9], where minimal resolutions are dis-
cussed in a more general setting.) Suppose that r e T H(X (R) X) is
represented by

t= x0()(R) y0
() +... + x(:)(R) y),

the superscripts indicating the degree of the element and the "middle terms"
being contained in

@-I X @ X._.

The first step in computing the image of r is to take into

(zo( (R) ) (R) ( (R) y0(’) +... + (zY) (R) ) (R) ( (R)

Because of the minimality each term in the sum is a homology class. Thus,
we must show that the first term is (1 (R) 1) (R) ((e @ 1).(r)) and the last
((1 (R) ).(r)) (8) (1 (8) 1). But(e (R) 1).(r)and (1 (R) ).(r)are, respectively,
e(x0()) (R) y0

() and x() (R) e(y()), and therefore we have the assertion, since
e(x0()) and e(y()) can pass through the tensor signs, dropping the e in transit.
It needs only to be remarked that the comultiplication is "natural," i.e., does
not depend on the resolution chosen.
As immediate consequences of the above theorem we will prove a result of

Serre’s [4, Theorem 4] and a result of Tate’s [3, Theorem 7]. That we are
able to prove these results is merely a reflection of the fact that they are
consequences of the Hopf structure of Tor(K, K). Thus, before proving
them, we will state and prove the necessary lemmas concerning Hopf Alge-
bras.

1.4 LEMMA. Suppose that T @___o T, is a Hopf Algebra over a field
K. Then the subalgebra generated by TI is an exterior algebra over K with
[T :K] generators.

Proof. Let x, x, x. be a base for T as K-module. Then the sub-
algebra generated by T is the subalgebra generated by the x’s, and, more-
over, it is clear that it is a homomorphic image of the exterior algebra over
K on n generators. To show that this homomorphism is, in fact, an iso-
morphism, we must show that no nontrivial relation of the form

(**) a,,,...,,(x, ) 0
il<...<ir
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exists, where, of course, the a’s are in K. We do this by induction on r.
For r 1 the assertion follows from the fact that the x’s form a base for
T1. Now, suppose given a relation of the form (**). Observe that if M is
the comultiplication, then M(x) x (R) 1 -4- 1 @ x for all i. Let P be the
projection of T (R) T onto T1 (R) T_. Applying PM to (**), remember-
ing that M is an algebra homomorphism, we have that

al,...,(x (R) x... 2i... x) O.
il<...<i

But the elements of the form x (R) xl i x, are linearly independent
elements of T (R)K T_ (by the induction hypothesis). Hence all the a’s
are zero.

1.5 LEMMA. Suppose T @--o Tv is a Hopf Algebra over a field K.
Then, if L is the subalgebra generated by T1, T can be viewed as a graded module
over the graded algebra L, and, as such, it is free with a homogeneous base.

Proof. Pick a set {v, of elements of T which are homogeneous and whose
residues form a base for the K-module TILT. To prove that the v’s together
with 1 form a free base for T as L-module, it will be enough to show that
the elements of the form xl x v,, where i < < i and the v, may
be absent, are linearly independent over K. We do this by induction on the
degree. When the degree is equal to 1, the assertion is a consequence of the
linear independence over K of the x’s. Now suppose that

(***) ai,...,i,, x x v, 0

is homogeneous of degree n > 1, and that elements of the above form of
degree less than n are linearly independent over K. Let v,,..., v,,
be the v’s (not necessarily distinct) appearing in (***) which are of maximum
degree. Now, degree (v,) < n because otherwise we have a contradiction
of their residues’ linear independence over K. We will draw a contradiction
by proving that the coefficients of the terms in which the v,’s appear are
all zero. Apply PM to (***), where P is as in the proof of the above lemma.
We have that

ail,...,ir,a Xiv Xi
il<...<ir
r.=l,j.=l

where is in the subspace of T1 (R) T_I generated by elements of the form
x, (R) x...x,v, where degree (v,) < degree (v,). By the induction
hypothesis we can conclude that a,,...,,:,, 0 for j 1, s.

1.6 COROLLARY (Serre). Let R be a local ring and M the maximal ideal.
Let K R/M, and set T Tor’(K, K). Then M/M is a finite-dimensional
vector space over K, and, if we put n [M/M" K], we have that

[Tv’K] _>- ()
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for all p. (As is customary, () 0 whenever p > n.)

Proof. By [1, Chapter VI, Exercise 19] we have that T1 is isomorphic to
M/M2. Thus, n [TI’K]. By the above theorem T is a Hopf Algebra
over K, and the first lemma tells us that T contains a copy of the exterior
algebra on n generators; hence the inequality follows.

1.7 COROLLARY (Tate). Let R be a local ring and M the maximal ideal.
Let K R/M, and set T TorR(K,K). Then, if we put L the subal-
gebra generated by T, T can be viewed as a graded module over the graded al-
gebra L, and, as such, it is free with a homogeneous base.

Proof. The corollary follows immediately from the theorem and the
second lemma.

Remark. The above lemmas display elementary properties of Hopf
Algebras. For Hopf Algebras over perfect fields a structure theorem exists;
it can be found in [8, p. 137].

2. Homological characterizations of local
complete intersections

Here, we will restrict ourselves to local rings which can be obtained as
homomorphic images of regular local rings. (The definition of "regular
local ring" and, more generally, the elementary facts concerning local rings
that we will use are contained in [2].) The notation will be that of [3].

It will be convenient for us to restrict ourselves to those homomorphic
images R R’/A’ in which A’ M’2, M’ being the maximal ideal of the
regular local ring R’. That this is no loss of generality can be seen as fol-
lows" If A’ M’, choose a’ e A’, a’ M’. Form R" R’/(a’). R" is a
regular local ring, and R R"/A" where A" is the image of A’ in R" under
the natural map. If A" M"2, we repeat this process, and because R’ is
noetherian we must, after a finite number of steps, be able to express R as
the homomorphic image of a regular local ring with the kernel in the square
of the maximal ideal.

2.1 DEFINITION. If R is a local ring and a, a, a8 e M, we say that
a, a_, a8 is an R-sequence if a is not a zero divisor in R and ai is not
a zero divisor modulo (al, a, a_l) for 2 -< i =< s.

The above definition is a special case of the "E-sequences," where E is an
R-module, of [4], [6], and [7].

Since the Krull dimension of R/(a) is one less than the Krull dimension
of R when a e M is not a zero divisor of R, we have that s is less than or
equal to the Krull dimension of R for any R-sequence al, as, a8

2.2 DEFINITION. The codimension of R, denoted by codim R, is the num-
ber of elements in the "longest" R-sequence. Codim R 0 will mean that
every element of M is a zero divisor.
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If we denote the Krull dimension of R by dim R, the above remark shows
that codim R -< dim R for every local ring.

In [7], where Auslander and Buchsbaum exploit the so-called "Koszul
complexes," there appear, as special cases of more general results, charac-
terizations of R-sequences and codim R. In the notation of [3] we have,
in fact, that al, a., a8 is an R-sequence if and only if

HI(R(T, Ts, Ts); dT a) O.

And the codimension of R can be computed as follows" Set

E R(T, Ts, T,); dT t

where t, t., t, minimally generate M; then codim R n q if and
only if q is the greatest integer such that Hq(E) 0 and Hq+(E) O.

This characterization of R-sequences means that they are merely sets;
i.e., if al, a., a, is an R-sequence, then so is a(), a(s), a(,) for
any permutation p of 1, 2,..., s. In fact, if a, a.,..., a, and
a, as,..., a are minimal generating systems for an ideal A, then
R<T, Vs, V,>; dV a and R<T, T, V>; dT a, are iso-
morphic, and hence if the R-sequence al, as, a, generates the ideal A,
then any minimal generating system of A is an R-sequence. These facts
for regular local rings are consequences of the homological characterizations
of local complete intersections given below.
We proceed now to the main business of this section, the homological

characterization of local complete intersections. For completeness we in-
clude their definition.

2.3 DEFINITION. R R’/A’ is called a local complete intersection if R’ is
a regular local ring and A can be generated by an R-sequence.

Now, let R R’/A’ be a local ring with maximal ideal M, where R is
regular and A’

_
Ms, M’ being the maximal ideal of R’. Let us choose

tl, t., t, as a minimal generating system for M, forming

E R(TI, Ts,..., T,); dT t.

E is an invariant of R as a differential graded algebra [3, 6], and so is H(E).
It follows easily from elementary results in [2] that h, t., t, is an R-
sequence if and only if R is a regular local ring, and the Auslander-Buchs-
baum characterization of R-sequences gives immediately Eilenberg’s char-
acterization of regular local rings" R is a regular local ring if and only if
H(E) 0. Thus, H(E) is rich enough as an invariant of R to give the
codimension of R and to give a criterion for regularity. The theorem below
shows that H(E) is capable of distinguishing local complete intersections.
Suppose that [A/M’A’K] m. It is easy to see that [HI(E):K] m;

a) and we write a .= c t., where t. isin fact, if A’ (a as,
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an element of M’ whose image under the natural map is t, then

’_.’ i < i < m,
are a minimal generating system for ZI(E) modulo Bi(E), the c being the
images under the natural map of the c..

Construct F E(S1, S S) dS s It is slightly more tedious
to verify, but F, like E, is an invariant of R as a differential graded algebra,
and hence so is H(F). We will give characterizations of local complete
intersections in terms of H(E) and H(F). Those in terms of H(E) will be
analogous to Eilenberg’s characterization of regular local rings mentioned
above. Of course, not merely H(E) but also H2(E) will have to play a role
in the characterization. In order to examine the connection between H(E)
and H(F) we prove preliminary lemmu.

2.4 LEMMA. Suppose X is a differential graded algebra with Ho(X) K
and s represents (r, a nonzero homology class of degree 1. Then, setting

Y X<S>; dS s,

we have that is..:H.(X) -- H.(Y) is a surjection with kernel zHI(X), where
i.’Xs - Ys is the injection map. Moreover, if Hi(Y) O, is.. is an isomor-
phism.

Proof. Consider the exact sequence 0 --, X -,/ Y 3 y _, 0, where i is
the injection map and j is defined by

j(xo -F Xl S + X2 S(2) + Xl + X2 S +
i and j commute with d, and we get the exact homology triangle and, in
particular, the exact sequence

Hi(Y)
d, is,, U(Y) -* 0.H2(X) H2(Y) --* g Hi(X) --*

Since a is a nonzero homology class, is an injection, and hence is., is a
surjection with kernel d,(HI(Y)). Clearly, if HI(Y) 0, then is., is an
isomorphism. About the kernel, let e H(Y) and suppose x e X1 represents. (Observe that X1 Y1 .) Computing d,() we find that it is represented
by xs and hence is equal to . Therefore the kernel of is,, is rH(X).

2.5 PROPOSITION. The map is.,’Hs(E) --> H2(F) is a surjection with
kernel (Hi(E)), is’Es --* F. being the injection map.

Proof. We get from E to F by a series of m steps, X1, X2, X F,
where X X-(S); dS s, s, s2, s,,, being a minimal generating
system for ZI(E) modulo BI(E). The is,, of the proposition is merely the
composition of the i.., 1 <__ j <-_ m. The lemma applies to each of these.
Hence is., is a surjection with kernel

or (H(E))S.
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2.6 LEMMA.
Hi(X) O.

o.

Let X be a differential graded algebra with Ho(X) K and
If a is a zero divisor of R, then X’ X/aX is such that

Proof. Set I {xeR lax 0}. Since a is a zero divisor,
I 0. Hence Hi(X/IX) O. Consider the exact sequence

O-+ X/IX
a J X’X -+0,

where "a" is multiplication by a and j is the natural map. a and j both
commute with d, and therefore we obtain the exact homology triangle and,
in particular, the exact sequence H.(Xr) --+ HI(X/IX) -+ H(X) 0 which
yields the result.
We are now in a position to prove the main result of this section.

2.7 THEOREM. Let R R’/A r, where R is a regular local ring and
A’ Mr2. Let E and F be as above. Then the following are equivalent"

(a) R is a local complete intersection,
(b) H(E) is the exterior algebra on H(E),
(c) H.(E)- (H,(E))",
(d) H,.(F) O.

Proof. (a) (b) is an immediate consequence of Theorem 6 of [3].
(b) (c)is obvious. (c) (d) is an immediate consequence of the proposition
above. Hence the theorem will be proved once we show that (d) (a). Let

E Rr(T, V, T’,,); dT t,
where tl, t,., tn minimally generate Mr. Then H(Er) 0 since R is

a) whereregular (and, of course, Ho(E’) K). Let A’ (ar, a,-.
m [A’/M’A"K]. Assume that al, a2,..., a s not an R’-sequence.
Let i0 be the maximal i such that a is zero divisor modulo
(a a_) Forma2

X’ (E’/(a a,. ,..., a,o_)E’)(S S S,0_}; dS s,

F. Z"where si ._-c.T., ai =c.t, the c’s being the
a, ai0_)-residues of the (d)’s, und similarly for the T’s. Forming

X/aio X’ we have by the lemma of 2.6 that H,.(X") O. Now,
H(X") is generated by ai0, represented by si .=lci0i T. Con-
sequently X’" X" (S0}; dS s is such that H(X"’) O, and hence
by the lemma of 2.4, H=(X’") H=(X") O. But now a0+ a is
an R’/(a,, ai0)-sequence and we can apply Theorem 3 of [3] and the
lemma of 2.4, successively factoring by a’, i > i0, and then killing the re-
sulting 1-cycle until we achieve F. We will have that H=(F) H2(X’") O,
thus proving the assertion.
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2.8 COROLLARY. Every local ring R with [M/M2"K] 1 __< codim R is a
local complete intersection. Moreover, if the ideal A of Rt, the regular local
ring of which R is a homomorphic image, is taken to be in Mt, it is principal.

Proof. Form E. The requirement assures us that H.(E) 0. Hence
clearly H.(E) (Hi(E)), and part (c) of the theorem yields the first asser-
tion. The second follows from the fact that codim R _-< dim R, since if
A

_
Mt, then [M/MS’K] dim R’, and because dim R equals dim R

less the number of generators of A’, this number must be less than or equal
to 1.

2.9 COROLLARY. Every regular local ring of dimension two is a unique
factorization domain.

Proof. Let R be a regular local ring of dimension two. It is enough to
prove that every minimal prime ideal of R which is contained in Mt is
principal. But for any such prime ideal pt, Rt/pt is an integral domain,
and M’/P’ is not zero. Thus codim Rt/P >- 1, and the above corollary
yields the result.

Remark. Since H(E), the homology of the Koszul complex of a local ring
R, is rich enough as a homological invariant to yield the codimension of R,
to give a criterion for regularity, and to distinguish local complete intersec-
tions, one might naturally ask whether it could be used to compute the
Krull dimension of R. The answer is no; i.e., there are local rings R and S
with differing Krull dimension with the property that H(ER) is isomorphic
(as an algebra) to H(Es).
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