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1. Introduction

In one of his fundamental papers on Frobenius algebras, Nakayama proved
that if M is a finitely generated free left module for a quasi-Frobenius ring R,
then Hom (M, M) is also a quasi-Frobenius ring. It is not necessarily true,
however, that M is also a free Hom (M, M)-module. This lack of sym-
metry is removed in the main result of this paper, which states that if M is a
faithful finitely generated proiective left module for a quasi-Frobenius ring
R, then Hom (M, M) is a quasi-Frobenius ring, and M is a proiective
Hom (M, M)-module. An example is given to show that Hom (M, M) is
not always quasi-Frobenius if M is not required to be a proiective R-module.

In 3 the theorem is applied to obtain sufficient conditions on a group G
of automorphisms of finite reduced order of a simple ring with minimum
condition in order that the subring of fixed elements be a quasi-Frobenius
ring. A formula is derived for the reduced order of G in terms of the height
and index relative to of the indecomposable right ideal direct summands of
the fixed ring I(G) of G. These results constitute a first step towards a classifi-
cation of the subrings of a simple ring with minimum condition which are the
fixed rings under groups of automorphisms of the simple ring. A quasi-
Frobenius ring seems to be a logical candidate for a subring of fixed elements
because it has the property that the double centralizer of any faithful module
coincides with the set of scalar multiplications by elements of the ring, a
property which any ring which is to play a role in the Galois theory must
possess. The main problem remains unsolved, namely to characterize those
quasi-Frobenius subrings of a simple ring with minimum condition which are
the subrings of fixed elements of groups of automorphisms. We have also
mde no attempt to solve these problems for rings without chain conditions.
The author is indebted to Professor G. Azumya for some helpful suggestions

nd comments on the subject of this paper, and to the referee for pointing out
some important simplifications in the proofs of Theorems 1 and 4.

2. A theorem on the structure of the centralizer of a module
Let R be a ring with an identity element, and let R satisfy the minimum

condition for left and right ideals. We shall be concerned with left and right
R-modules on which the identity element of R is always assumed to act as
identity operator. We shall use without further comment the result that any
finitely generated left or right R-module satisfies both chain conditions for
submodules.
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A left module M is called projective whenever M is a direct summand of a
free left R-module. M is projective if and only if every exact sequence of left
modules

0-+ P-+ Q-M- 0

splits (see [1], Chapter I, Theorems 2.2, 2.4). It can be proved in general
([6], Theorem 1), and it follows easily from the Krull-Schmidt theorem in case
M is finitely generated, that the following characterization of projective
modules is valid.

(2.1) M is projective if and only if M is a direct sum of submodules which
are isomorphic to left ideal direct components Re, e e, of R.
The next result contains the first information on the centralizer of M.

(2.2) Let M be a finitely generated projective left R-module, where R is any
ring with an identity element which satisfies the minimum condition for left and
right ideals. Then Horn. (M, M) also satisfies the minimum condition for left
and right ideals.

Since M is finitely generated and projective, (2.1) implies that M is a direct
summand of a finitely generated free R-module F. Then Hom (M, M) --eAe, where A Hom (F, F) and e e A is a projection of F upon M. Since
F is finitely generated, A is isomorphic to a full matrix ring over R, and conse-
quently A satisfies the minimum condition for left and right ideals. An easy
computation shows that the chain conditions also hold in eAe, since e is
idempotent. This completes the proof of (2.2).

Remark. The author’s work on the subject of this paper stems in part
from the observation that many of the usual theorems (see [3], Chapters VII
and VIII) concerning a finite-dimensional vector space over a division ring
admit clean generalizations to a finitely generated projective left R-module.
We include a brief outline of these results, which yield in particular an alterna-
tive proof of (2.2). Proofs will be omitted. First of all the dual module
M’ of M is defined to be Hom (M, R); as in the vector space situation, M’
is a right R-module. M’ also turns out to be finitely generated and projective.
If x . M, f M’, then the mapping :f - f(x) is an element of M"
Hom (M’, R), and x -- is an isomorphism of M onto M. Now let
C =Hom. (M, M). Then M is a right C-module, M’ a left C-module, and
M’ @. M a two-sided C-module. If we define

(f (R) u)(g (R) v) f (R) g(u)v, f, g eM’, u, v eM,
then M’ (R) M becomes a ring. For eachf e M, u e M, we define an endomor-
phism f X u e C by the formula

x(f u) f(x)u.

Because M is projective, it follows that the mpping

_-’f, (8) u,---, f, X u,
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is a ring isomorphism, and a two-sided C-isomorphism of M’ (R) R M onto C.
Finally a one-to-one correspondence between the set of left ideals in C and
the set of all R-submodules in M (and a similar one between right ideals in C
and R-submodules of M’) can be established by an argument similar to the dis-
cussion in [3], Chapter VIII. The last result, of course, contains (2.2).

DEFINITION. A quasi-Frobenius ring R is a ring with an identity element,
satisfying both chain conditions for left and right ideals, with the property
that

(1) l(r(I)) I, r(l(J)) J

for every left ideal I and every right ideal J, where r(S) and l(S) denote the
right and left annihilators, respectively, of a subset S of R.

Various other sets of conditions are known to be equivalent to (1) for rings
satisfying the chain conditions (see [5], [8], and [9]). The most important one
for our purposes is proved in [8], and will be restated as follows.

(2.3) A ring R which satisfies the minimum condition for left and right ideals
is quasi-Frobenius if and only if the additive group of R, viewed as a left R-module,
is an injective left R-module.
The following result has been proved for algebras by Nesbitt and Thrall

[10].

(2.4) Let R be quasi-Frobenius, and let M be afinitely generated left R-module.
Then M is faithful if and only if every indecomposable left ideal Re, e e, in
R is isomorphic to some direct summand of M.

First let M be fithful, nd let e be primitive idempotent in R. Then Re
contains unique minimal subidel K, nd because M is fithful, Ku 0
for some u e M. Then b bu is n R-isomorphism of Re onto Ru (cf. [10],
Lemm II-A, p. 558). Since Re is direct summnd of R, Re is n injective
module by (2.3); hence Ru is iniective, and is direct summnd of M.

Conversely, suppose that every indecomposble left ideal Re is isomorphic
to some direct summnd of M. Let a be n element of R such that aM O.
Let e be n rbitrry primitive indempotent in R, nd let 0:Re Q be an
isomorphism of Re onto submodule Q of M. Then aQ 0 implies
o-(aQ) aO-(Q) are O. Since R hs an identity element which is
sum of primitive idempotents, the lst equation implies that a 0. There-
fore M is faithful.

Before we come to the min result of the pper, we record useful identity.
Let R nd S be rings, P nd Q left R-modules, and let P be t the sme time
right S-module such that r(xs) (rx)s for 11 r in R, x in M, s in S. Briefly
we my sy we hve the situation (RPs, Q). Then Hom (P, Q) is left
S-module if we define (sf)(x) f(xs), s in S, f in Hom (P, Q), x in P. In
prticulr if P Q nd S is the ringHom (P, P), then the composition wehve
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just defined is identical with left multiplication in the ring S. Let e be an
idempotent in S; then Pe is an R-direct summand of P, and Hom (Pe, Q)
may be viewed as a subgroup of Hom (P, Q). If Q happens to be a right
S-module, then Hom (P, Q) is a right S-module, and Hom (Pe, Q) is an
S-submodule of the right S-module Hom (P, Q). With either interpreta-
tion, as subgroup or submodule, we have

(2.5) Hom (Pe, Q) e Hom (P, Q).

Later in the paper we shall use alternative versions of (2.5) without always
stating them explicitly. Now we can state our main result.

THEOREM 1. Let M be a faithful, finitely generated, projective left module
for a quasi-Frobenius ring R. Then M is a finitely generated, projective, right
Hom (M, M)-module, and Hom (M, M) is a quasi-Frobenius ring.

We begin the proof by expressing the identity element 1 in R as a sum of
primitive idempotents, 1 7’._=1 e, and M M., where the M. are
indecomposable R-direct summands of M. By (2.1) there exists for each j
at least one integer i(j), 1 =< i(j) <= r, such that Mj Re(j) as left R-modules.
Then we have by (2.5) and some elementary properties of the functor "Hom"
the following identity"

C Hom (M, M)
_

Hom (M, M)

(2) . HomR (Re(, M)

j@ ei(j) Hom (R, M) ei(j)M,

as right C-modules. Since C is a free right C-module, all the C-modules
ei(.) M are projective. Now we use the fact that M is faithful. By (2.4),
every Rei, 1 <= i <- r, is isomorphic to one of the M.. Therefore every
idempotent e, 1 =< i -< r, is an idempotent e(.) corresponding to an inde-
composable My, and we conclude that every ei M is a projective right
C-module. Thus M ._=1@ ei M is a projective right C-module. By
(2.2), C satisfies the minimum condition and hence the maximum condition
for left and right ideals. By (2), M is isomorphic to the direct sum of a finite
number of right ideals in C, and hence M is a finitely generated right C-module.
By (2.3) the proof will be completed if we can show that whenever we have

the situation (,Ps, ,Q), where P is a projective right S-module, and Q an
injective left R-module, then Home (P, Q) is an injective left S-module.
(In our case, P M, S C Horn, (M, M), Q M.) The required result
is Proposition VI.1.4 in [1]; we shall indicate how the argument may be traced
back to the definitions. The definition of iniective module ([1], p. 8) requires
that for every exact sequence of left S-modules

(3) 0--*A e ;B;
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we prove that there exists a group homomorphism such that the sequence

(4) 0-- Homs (A, HomR (P, Q)) )Homs (B, HomR (P, Q))

is exact and (f)(a) f(a) for all a in A and f in Homs (A, HomR (P, Q)).
Starting from (3), since P is projective, we obtain the exact sequence

(5) O--- P (R)sA -1 @ ; p (R)sB.

Because Q is injective as a left R-module, we have an exact sequence

(6) 0-- Hom (P (R) s A, Q) Hom (P (R) s B, Q)

such that for all T e Hom (P (R) s A, Q), p e P, a e A,

(7) (T)(p (R) a) T(p (R) a).

We observe next that there exists an isomorphism of Hom (P (R) s A, Q)
onto Horns (A, HomR (P, Q)) such that for all T in Hom (P (R) s A, Q), a in
A, p in P, [(T)a](p) T(p (R) a). Similarly there is an isomorphism of
HomR (P (R) s B, Q) onto Horns (B, HomR (P, Q)). Then it is immediate that
the mapping ,-1 gives rise to the exact sequence (4) and has the re-
quired extension property. This completes the proof of Theorem 1.

COROLLARY 1. Let R be a quasi-Frobenius ring, and let e be an idempotent
in R such that Re is a faithful left R-module. Then Re is a projective right eRe-
module, and eRe is quasi-Frobenius.

Since eRe _. Hom (Re, Re), Theorem 1 is immediately applicable.

COOLLAaY 2. Let M be a commutative group, and let * be the family of all
quasi-Frobenius subrings R of the full ring of endomorphisms of M which con-
tain the identity endomorphism, and for which M is a finitely generated projective
let module. Then R--. Horn. (M, M) (R) is a one-to-one mapping
of * onto itself.
The result is an immediate consequence of Theorem 1 and the fact that

((R)) R for all R in O;*. The proof of the latter statement has been
given by Nesbitt and Thrall ([10], p. 560) for algebras, and is applicable to
rings as soon as it is known that every finitely generated, faithful left module
for a quasi-Frobenius ring contains the reduced regular representation of R
as a direct summand. This fact is a direct consequence of (2.3) and (2.4).

3. Automorphism groups of simple rings
In this section we assume familiarity with some parts of the Galois theory

of simple rings with minimum condition. The notation we use, and proofs of
some elementary facts we require, can be found in Jacobson’s book [2],
Chapter VI, 8-10. Let be the ring of all linear transformations on a left
vector space M over a division ring A, and let G be a group of automorphisms
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of . To each automorphism - l’ in G there corresponds a semilinear trans-
formation s acting on M such that l’ s-lls for all e 9. We shall denote the
automorphism --. l’ s-lls by A8 then Ast A, At and A, At if and
only if s i. for some element 8 e A. The algebra (G) of G is the subring
of 9 generated by all invertible elements a e such that Aa e G. We shall
denote by Go the invariant subgroup of G consisting of all inner automorphisms
belonging to G; then (G) (Go). (G) contains Z, the center of A, and
may be viewed as an algebra over Z. The ring generated by the semilinear
transformations s such that A, e G and the elements of AL is called the endo-
morphism ring II(G) of G. Evidently (G) is a subring of 1I(G). The group
G is said to be of finite reduced order if the index (G:Go) of Go in G and the di-
mension ((G) :Z) of (G) over Z are both finite; the product of these numbers
is called the reduced order of G. The subring of consisting of those elements
left fixed by all the automorphisms in G is called the fixed ring I(G) of G;
I(G) turns out to be Homu()(M, M). Throughout this section we shall
view M as a right -module, and as a right lI(G)-module. (The results of 2
apply equally well to right modules.)

THEOREM 2. Let G be a group of automorphisms offinite reduced order of the
full ring of linear transformations on a finite-dimensional space M over A.
If the algebra (G) of G is quasi-Frobenius, then II(G) is quasi-Frobenius. If
M is a projective right (G).AL-module, then M is a projective right ll(G)-
module if and only iffor some X e I(Go),

(8) =, ai(X) 1,

where h is a set of coset representatives of Go in G. If (G) is quasi-
Frobenius, M a projective right (G). A-module, and if (8) holds, then I(G) is a
quasi-Frobenius ring, and M is a finitely generated projective right I(G)-module.

Let 9 be the ring (G). A. We shall prove that II(G) is a Frobenius ex-
tension of in the sense of Kasch [4], and then apply certain results of [4].

(3.1) Let A,, 1 <= i <= h. Then every element of II(G) can be ex-
pressed uniquely in the form
(9)

Moreover s si c , and if we denote the automorphism r -- s=lrs of by
then

(10) rsi si ai(r),

and for each (i, j) there is a k such that

(11)

where a. is an invertible element of .
Let a A, eG;thenA, A,Aaforsomeiandsomeae(G). Then

s s a, for some e A, and it follows that every element of II(G) has the
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form (9). For a proof of the uniqueness of the coefficients of the expressions
(9), we refer to the proof of Proposition 1, 10, Chapter VI of [2]. For the
second statement, let Aa e Go, a e (G). Then for each i, A-18 Aa As
A87.1a, eGo and -1 -1s ass e (G). Since ss is semilinear, s L ss e AL Since
9 (G)A, we have s-lgss c 9. The formula (10) is immediate from the
definition of as. For the proof of (11), consider a pair of indices (i, j); then
there is a unique k such that

A,, A, A,kAa,

where A, e Go. Thus s-[lss si a, =- as e 9 since a e (G), e A; thus (11)
is proved.
By (3.1) we see that II(G) is a free left 9-module and a free right 9-module.

If(G) is a Frobenius extension of 9 in the sense of Kasch [4] if we can produce
a function f: II(G) -- 9 such that

f(x + y) f(x) - f(y)

f(rx) rf(x), f(xr) f(x)r,

for all x, y e ll(G), r e 9, and whose kernel contains no right or left ideal
different from zero. The mapping f is then called a Frobenius homomorphism
of II(G) into 9; and the associated 9-bilinear mapping

F’F(x, y) f(xy),

the scalar product determined by f. If II(G) possesses a left basis {us} over
9 and a right basis {vi} over 9, then {us} and {vs} are orthogonal relative to
the scalar product F if

F(u v) si (Kronecker delta)
for all i and j.

(3.2) ll(G) is a Frobenius extension of 9 with Frobenius homomorphism
--1f:f( ss rs) rl where we assume that A,, 1. The sets {s-1, s and

{s, sa} are orthogonal left and right bases of II(G) relative to the scalar
product determined by f.
By (3.1) the mapping f is well defined and bilinear. Let u ’ ss r be

an element of II(G) such that f(vu) 0 for all v e II(G). Then for each
j, f(s s-lu) 0 implies ri 0, and u 0. Therefore the kernel of f contains
no left ideal different from zero. A similar argument, using (10), establishes
that no right ideal 0 is in the kernel of f. Since As- A,- is a set of

--1 --1coset representatives of Go in G, it follows from (3.1) that s s s a
left basis of II(G) over 9. The bases {sT1} and {ss} are orthogonal by the
definition of .f.

(3.3) If (G) is a quasi-Frobenius algebra, finite-dimensional over Z,
then 9 is a quasi-Frobenius ring.

We have 9 (G)A, and ait ita for all a e (G), e A. Since (G) is
finite-dimensional over Z, it follows that 9 is a finite-dimensional right vector
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space over A. From the proof of Proposition 1, 10, Chapter VI of [2], it
follows that a Z-basis of (G) is a A-basis of 9. Hence 9 is isomorphic to
the Kronecker product (G) (R) z A, and (3.3) is a consequence of a theorem
of Nakayama ([9], Theorem 14); it is also a direct consequence of (2.3).

Finally we come to the proof of Theorem 2. The first statement follows
from (3.3), (3.2), and Theorem 10, p. 468 of [4]. Before proving the second
statement we recall that a right lI(G)-module is projective relative to 9 if every
exact sequence

O -- P -- Q - M --> O

of ll(G)-modules which splits when the modules are viewed as -modules
also splits with respect to II(G). Theorem 12 of [4] states that M is pro-
jective relative to 9 if and only if the condition (8) holds. Now let (8) hold,
let M be a projective 9-module, and let (G) be quasi-Frobenius. Then
M is a faithful finitely generated projective right ll(G)-module, and If(G)
is quasi-Frobenius. By Theorem 1, I(G) is quasi-Frobenius, and M is a
finitely generated projective right I(G)-module.
We sketch two further results in the Galois theory. The first may be

stated as follows.

THEOREM 3. Let be the family of all groups of automorphisms of which
are complete in the sense that G implies that G contains every inner auto-
morphism of determined by an invertible element of (G), and for which II(G)
is quasi-Frobenius and M a finitely generated projective right lI(G)-module.
Let be the family of all quasi-Frobenius subrings 9 of such that M is a finitely
generated projective right 9-module. Then G I(G) is a one-to-one mapping
of 9 into .
By Theorem 1 the mapping G -- I(G) is a mapping of 9 into ft. To show

that it is one-to-one it is sufficient to prove that, in the terminology of [11],
p. 446, the Galois group of 9 over I(G) is G, and for this it is sufficient to
prove that G is the group of automorphisms of 9 determined by the semilinear
transformations which are units in If(G). For this argument in exactly the
form we require, we refer to [11], (4.8)-(4.18) and (4.20).
The counterexample given in [2], p. 147 shows that the mapping defined

in Theorem 3 is not onto ft.
The second result is a formula for the reduced order of a group G e (see

[11], Proposition 4 or [2], Proposition VI.10.1).
Let be a subring of 9, and let E be an idempotent in . We define the

(right) index i(E, ) of E in to be the number of minimal right ideals of
in a direct decomposition of the right ideal E9 into minimal -ideals. By

Proposition III, 7.4 of [2], we see that if E and F are isomorphic right
-ideals, where E and F are idempotents in , then E and F9 are iso-
morphic as right -ideals, and hence i(E, ) i(F, ).

This is the terminology of [11]; Jacobson uses the term N-group ([2], p. 140.)
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By Theorem 1, if G e 9 and I(G), M is a projective right -module,
and hence to each indecomposable right ideal direct summand E of we
can assign a positive integer h(E, ) called the height ofE in which counts
the number of indecomposable -direct summands of M which are isomorphic
to E. In case is a simple subring of with minimum condition, the
concepts of height and index which we have defined coincide with the usual
definitions (see [2], p. 135).

THEOREM 4. Let G e g, and let N be the reduced order of G. Let
E I(G), Eq I(G) be a full set of nonisomorphic indecomposable right ideals

of I(G) generated by idempotents E, Eq. Then

(12) ’q= h(E, I(G), )i(E I(G), ) N.

The rings tl(G) and I(G) are both elements of the family if* defined in
Corollary 2 of Theorem 1, and are centralizers of each other in the full ring
of endomorphisms of M. In our situation, M is a right tl(G)-module and a
right I(G)-module. We shall write Hom(a)(M, M), and view M as a
left -module. Then is anti-isomorphic to II(G) and contains the ring
of scalar multiplications x -. ax written as left operators, which is isomorphic
to h and will be identified with A. By Proposition VI.10.1 of [2], it is sufficient
to prove that the expression on the left side of (12) is equal to the left dimen-
sion of over A.

Let E1, Eq be the full set of primitive idempotents given in the state-
ment of the theorem, and let M 1AI M. be a decomposition of
M into indecomposable right I(G)-modules, where the M. are indexed in
such a way that for each i, M E I(G) for all j, and M -- Mk if and
onlyifi /. Then

(13) h(E I(G), 9) n,, 1 -< i _-< q.

Now let E, I(G) F , where the Fj are minimal right ideals in
generated by orthogonal idempotents F.. Then ME MFj,

where the MF are one-dimensional A-subspaces of M. Hence

(14) i(E I(G), ) [ME,"

Now let e. e Homx(a) (M, M) be the projection of M upon M. deter-
mined by the decomposition M M.. We obtain for each i and
j the identifications

MEt --- Homx() (I(G), M)E Hom(e) (E I(G), M)
__-- Hom(a) (M, M) Hom() (e. M, M)

Hom(o) (M, M)e e,
as left -modules, by the use of two versions of (2.5). Since A, the
-isomorphism of ME with e is also a A-isomorphism, and we have

For this argument, see [11], p. 440.
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(15) [ME’zX] [ge’zX], 1 _-< i

_
q, 1 =< j -< n.

Upon combining (13), (14), and (15) we obtain

[:/],. Y.. [ei" A] Y]. n[ME" A]. h(E I(G), g)i(E I(G), ),
as required.

Remark. Theorem 2 gives one set of sufficient conditions in order that
a group G of automorphisms of g belong to . Another sufficient condition
is that (G) be a finite-dimensional semisimple algebra over Z. For then,
as Rosenberg and Zelinsky observe ([11], p. 446), II(G) is a semisimple ring,
and M is a finitely generated projective lI(G)-module.

4. Example
We give an example to show that the hypothesis that the module M be

projective cannot be omitted from the statement of Theorem 1.
We present first a few simple results in the theory of a single linear trans-

formation which may be of some independent interest. Let T be a linear
transformation on a finite-dimensional space over a field K, and let
R KIT]. We shall use the notation and results on the elementary divisor
theory of T in the form in which they are presented in [3].

(4.1) The indecomposable ideal direct summands of the ring R K[T] are
R-isomorphic to the primary components of any cyclic R-submodule of M whose
order is the minimum polynomial ,(X) of T. These components all possess unique
minimal submodules.

Let **(X) r(X) r(,), where the r(X) are distinct primes in K[X].
Let {u} be the cyclic submodule whose order is u(X). Then {u} {u}

{u,}, where {u} is a cyclic indecomposable submodule whose order
is r(X)’. The mapping f(T) -+ uf(T), f e K[X], is an R-isomorphism between
K[T] and {u} since u(X) is the minimum polynomial of T. Now consider a
fixed {u}, and let N # 0 bea submoduleof {u}. Let 0 # uo(T) eN.
Write o(X) r(X)k(,), where r(X) and (X) are relatively prime, and
m > 0. It follows that u r(T)eN, and hence ur(T)- eN, and
{u r(T)-a} is the unique minimal submodule of {u}.

COrOllARY. R K[T] is a symmetric algebra, and afortiori a quasi-
Frobenius algebra.

It is sufficient to consider a single ideal direct summand I of R; then I has
a unique minimal subideal N # 0. Any hyperplane in R which does not
contain N cannot contain any ideal different from zero. Hence R is a Fro-
benius algebra, and since R is commutative, R is a symmetric algebra.

(4.2) Let T be a linear transformation with minimum polynomial
(X) r(X)... r(X)’, where the (X) are distinct primes. Then M is a
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projective K[T]-module if and only if every elementary divisor 5.(,)r, r _<_ e., of T
has the property that r e.
The proof is immediate from (4.1) and (2.1).
In particular the linear transformation with elementary divisors h, ), yields

a module whichis not projective. We prove that the centralizer HomR (M, M)
fails to be quasi-Frobenius. For a suitable basis, the linear transformation
has a matrix of the form

0
0

The set of matrices commuting with this matrix is the algebra C of all matrices

b
d

where , b, c, d, e are arbigrary in K. Le I be ghe right ideal e C, where
e. denoges a matrix unig. Then I Ke ;/(I) Ke.. -t- Ke -t-- Ket -I- Ke,
and r(l(I)) Ke nt- Ke. I. Therefore C is not quasi-Frobenius.

Added in proof. Theorem 1 of this paper has also been proved by K. Morit in his
recent article, Duality for modules and its applications to the theory of rings with mini-
mum condition, Science Reports of the Tokyo Kyoiku Diguku, Section A, vol. 6 no.
150 (1958), pp. 83-142; see in prticulr Theorem 16.6, p. 133.
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