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1. Introduction
A link proiection is said to be alternating if and only if it is connected and,

as one follows along any component of the link, undercrossings and over-
crossings alternate. A connected proiection with no crossings, is included as
alternating. Figure 1 below shows an alternating and a nonalternating pro-
iection. A link type is alternating according as it possesses or does not possess
an alternating proiection. For example, it is obvious that both proiections
of Figure 1 represent alternating types. Several interesting and important
theorems have been proved for link types of this class. In particular the
coniectures of asphericity and of the knot-theoretic formulation of Dehn’s
lemma, both now known to hold for all tame knot types [7], were first proved
for alternating link types [1, 3]. The question naturally arises as to whether
tame, nonalternating types exist. An affirmative answer was given by
Bankwitz in 1930 [2]. Unfortunately, his paper contains an error. How-
ever, a proof of his principal result by a completely different method is in-
cluded in the present paper (Theorem 5.5).

After the problem of existence comes the question of recognition: Can
one decide from a given link proiection whether or not it represents an al-
ternating type? The general answer is unknown; but a good place to begin
is with examples and a good place to find them is the Knot Table in the back
of Reidemeister’s Knotentheorie [8]. This Knot Table consists of 84 knot
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A link L of multiplicity is the union of ordered, oriented, and pairwise disjoint

topological circles (1-spheres) L imbedded in the 3-sphere S3. Two links L and L’
are equivalent if and only if ’ and there exists an orientation preserving homeo-
morphism f of $3 on itself such that fL L and f L is also orientation preserving,

1, . An equivalence class of links is a link type. A knot is a link of multi-
plicity 1. For any link L, we may select a "point at infinity" S L and
consider a Cartesian coordinate system R X R X R S . Theproection

p.S S

defined by p(o) and p(x, y, z) (x, y) is said to be regular if and only if (i) p L
is a homeomorphism except for at most a finite number of double points, and (ii) for
each double point p(a) p(b), a, b L, a b, L is linear in every sufficiently small
neighborhood of a and of b (the one of a and b with the larger z-coordinate is the over-
crossing and the other is the undercrossing). Condition (ii) is lust one of several ways
of insuring that each double point describes a genuine crossing. By the link type of
p is meant, of course, the link type of L. A given link type is tame if and only if it
possesses a regular proiection. The proection p is connected if and only if the image
P p(L) is connected. Finally, in this paper all link projections are assumed to be
regular and all link types, tame.
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102 RICHARD H. CROWELL

Figure 1

projections representing the 84 simplest, distinct, prime knot types. Of
these 84 projections, 73 are alternating and 11 are not. We shall prove that
7 of these 11 nonalternating projections represent nonalternating types.

It may be remarked that our statement of the Bankwitz theorem is a
generalization of the original to the extent that the basic inequality is here
proved for alternating types of arbitrary multiplicity. We also note that
we have used the phrase "spherical graph" throughout instead of "planar
graph." For example, the image of a link proiection obviously possesses a
decomposition as a spherical graph (cf. opening sentence of Section 3).

I should like to express my thanks to Professor R. H. Fox of Princeton
University, who supervised my doctoral thesis, for his encouragement and
interest in this research, which grew out of and is partially included in the
results of the thesis. I am also indebted to Dr. J. P. Mayberry, now of the
Radio Corporation of America, who first suggested that the matrix-tree
theorem (cf. (4.6) and preceding paragraph; also [6]) could be used to prove
the Bankwitz theorem.

2. Graph theory
The results of this section re based on Hssler Whitney’s important pper

Non-separable and planar graphs [11] which is hereafter referred to as HW.
By a graph we shall mean a finite set of points, called vertices, and open

arcs, called edges, together with incidence relations which make the collec-
tion a cell-complex. (Thus, formally, a graph is a finite CW complex of
dimension less than 2.) The underlying space of a graph G is denoted by
GI and the ih Betti number by p(G). A tree T is a connected graph such

that pl(T) 0. A graph G possesses a nontrivial factorization into sub-
graphs G1 and G2 if and only if G G1 u G, neither of G1 and G. is contained
in the other, and G1 and G intersect in a single vertex of G (called a cut ver-
tex). A graph G is nonseparable if and only if it is connected and possesses
no nontrivial factorization (possesses no cut vertex); otherwise, G is separable.
A loop is a graph containing exactly one edge and one vertex. The order of
a vertex v of a graph G is the number of edges of G to which v is incident
plus the number of loops containing v (thus, it is locally the number of edges
to which v is incident). An n-circuit is a connected graph containing exactly
n vertices each of which is of order 2. Thus, a 1-circuit is the same thing as
a loop. A graph is cyclic if and only if every edge lies in a circuit and strongly
cyclic if and only if it is cyclic and, in addition, contains no loops. An n-
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bridge of a graph G is a subset of G consisting of n W 1 edges and n vertices
each of which is incident to 2 edges of the bridge and, furthermore, is of order
2 in G. Intuitively a bridge is "an edge which may happen to be subdivided
by vertices"; a 0-bridge is just an edge. A spherical graph G is one imbedded
in a 2-sphere, i.e., GIc S2, and the regions of a spherical graph are the
components of S
The following result is essentially Theorem 18 of HW. The present formu-

lation is a trivial generalization and uses Theorem 10 of HW which states
that a nonseparable graph G with pl(G) 1 is a circuit.

(2.1) If G is a nonseparable graph with pl(G) > 0, there exists a bridge S
of G such that G S is a nonseparable graph.

From (2.1) it is a straightforward matter to obtain

(2.2) If G is a nonseparable graph with p(G) > 1 and S is any bridge of
of G, there exists a bridge S’ of G disjoint from S such that G S’ is a non-
separable graph.

Let G be a graph, V the set of vertices of G, and H any subset of G. We
define ex (G, H) to be the number of trees in G which contain H u V. For
connected graphs, ex (G, H) is simply the number of extensions of H to
maximal trees of G. The number of trees containing V, equal to ex (G, V)
or ex (G, ), will be written tr (G).

(2.3) If G is a nonseparable graph, , the number of vertices of G, and S
any n-bridge of G, then

ex(G,S) _>- - n- 1.

Proof (by induction on pl(G)). If p(G) 0, G is a tree. Obviously,
then, G is either void, or consists of a single point, or consists of a single edge
and two distinct endpoints (See HW, Theorem 8). In the first two cases
(2.3) holds vacuously. In the last, S is the single edge and n 0 and 2.
Thus,

ex (G,

If p(G) 1, G is a -circuit (HW, Theorem 10). Obviously,

ex(G,)= -(n/l).

We next assume that p(G) > 1. By (2.2) there exists an m-bridge S’ of G
such that G S’ is nonseparable and contains S. Since p(G S’)
pl(G) 1, we have by hypothesis of induction that

ex(G- S’, S) >= -m-n- 1.

-Notice the difference between Whitney’s definition of suspended chain and our
definition of bridge.
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Since each maximal tree of G S’ can be extended to a maximal tree of G
in exactly m d- 1 ways,

ex(G, S) => (m-t- 1) ex(G- S’, S)
(1) >__ (md- 1)(- m- n- 1)- n- 1 +m(- m- n- 2).
It is obvious that any bridge of a nonseparable graph whose first Betti num-
ber is greater than 1 must have distinct endpoints. Moreover, since the
bridge S is contained in G S’, we may conclude that its two endpoints
are included in (G S’) S. Hence,
(2) -- m-- n__> 2,

and (1) and (2) complete the proof.

(2.4) THEOnEM. If G is a nonseparable spherical graph with , >- 1 vertices
and p regions, then

tr(G)- 1 >- (- 1)(p- 1).

Proof (by induction on p(G)). If p(G) O, G is a tree, and

tr(G) p 1.

If p(G) 1, Gisa v-circuit (HW, Theorem 10), p 2, and tr(G) .
Thus, for p(G) _<- 1, the contended inequality holds as an equality. We
next assume that pl(G) 1. By (2.1) there exists an m-bridge S of G such
that G S is a nonseparable graph. As we remarked in the proof of (2.3),
it is obvious that any bridge of a nonseparable graph whose first Betti num-
ber is greater than 1 must have distinct endpoints. Hence, we have that

(3) m __> 2.

Since p(G S) p(G) 1, the number of regions of G S is p 1
(Alexander duality). By hypothesis of induction, therefore,

tr(G- S) >_- (-m- 1)(p-2)+ 1.
Clearly,

tr (G) (m -t- 1) tr (G S) + ex (G, S).

Combining these results with (2.3), we have

tr(G) >_- (m+ 1)((- m- 1)(p- 2) + 1)-l- - m- 1.
Then,

(tr (G)- 1)- (- 1)(p- 1) >= (m-t- 1)((- m- 1)(p- 2)+ 1)

+ -m- 1- (- 1)(p- 1) 1

(m -I- 1)(,p mp p 2u + 2m -t- 3) -t-" ’ m 3 ,p -!- p -I- v

m(,p-- mp-- p-- 2,-k- 2m-+- 3 o 4- 2 1)
m(p(,--m-- 2)- 2(u--m-- 2))
m(- 2)(- m- 2).
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Since p pl(G) - 1 (Alexander duality), we have that p > 2.
(3), we may conclude that

Thus, using

m(p- 2)(u-m- 2) >= 0,

and the proof is complete.
The preceding theorem is the principal result of this section. However, it

is also interesting to obtain a variant of (2.4) from which the Bankwitz in-
equality follows. Hence, we prove that

(2.5) If G is a nonseparable spherical graph with >- 1 vertices, d edges,
and p regions, then

(p-- i)(- i)q- 1 >__ d.

Proof. G determines a cellular decomposition of the 2-sphere; so

Hence
,-d+p-- 2.

(p- 1)(- 1)+ 1- d up- -p + 2- -p + 2

p(u-- 2)- 2(u-- 2)

(- 2)(- 2).

If pl(G) 0, then G consists either of a single point or of a single edge and
two distinct endpoints (HW, Theorem 8). Thus, p 1 and u 1 or 2.
Ifp(G) 1, thenp 2. Ifp(G) > 1, thenp > 2andGcontainsacir-
cuit which cannot be a loop; so u >= 2. In all cases, therefore,

(- 2)(,- 2) .>= o,
and the proof is complete.

Consider a nontrivial factorization of a graph G into subgraphs G1 and
It is easy to check that

If H is any nonseparable subgraph of G, then either H c GI or

(2.7) G is connected if and only if both G and G2 are connected.

(2.8) tr (G) tr (G1) tr (G2).

Notice also that, if G is connected, each of G and G must contain at least
one edge.

Starting with any graph G, we may obtain by successive factorization a
decomposition of G into subgraphs H1, ..., Hm each of which possesses
no nontrivial factorization. It is a consequence of (2.6) and induction that
any nonseparable subgraph of G lies wholly in one of H,.-., Hm.
Furthermore, it is easy to check that no one of H, H is contained
in any other. Let us assume, for the moment, that G is connected. By
(2.7) and induction, we may then conclude that each one of H, ..., H
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Figure 2

d--4
p--3

tr (G) 4

is nonseparable. It follows immediately that the decomposition is unique,
and we therefore call H1, Hm the nonseparable factors of the connected
graph G. The nonseparable factors of an arbitrary graph (not necessarily
connected) are defined to be those of its components. A consequence of the
last sentence of the preceding paragraph is that if G is connected and m >- 2,
then each of H1, H,, contains an edge. Since any nonseparable sub-
graph lies wholly in one of the nonseparable factors, we have the further
result that

(2.9) If rn >__ 2, each of the nonseparable factors H, H of a con-
nected, strongly cyclic graph must contain at least two edges.

The above mentioned variant of (2.4) is now

(2.10) THEOREM. If a spherical graph G containing d edges is connected
and strongly cyclic, then

tr (G) => d.

Proof. We may assume immediately that G is nonvoid since otherwise
tr (G) d 0. Let us denote the nonseparable components of G by

H1, ,H
and the number of edges of H by d, i 1, m. As a consequence of
(2.4) and (2.5), we may conclude that

(4) tr (H) >= d.
Thus, if m 1, we have Hx G and dl d, and the proof is complete.
So we next assume that m >= 2. From (2.8) and induction, we obtain

(5) tr (G) II_l tr (H)

and, from (2.9),

(6) d-> 2.

Since the product of integers greater than 2 is greater than or equal to their
sum, we may combine (4), (5), and (6) to obtain

tr (G) >= _1 d d.

Whitney calls them non-separable components.
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It should be remarked that (2.10) has really nothing to do with spherical
graphs as such; it is perfectly valid if the word "spherical" is dropped [3].
Notice also that the stronger inequality of Theorem (2.4) is false for separable
graphs. For an example, see Figure 2.

3. The graphs of a link projection
The image P p(L) of a link proiection may be characterized as a non-

void spherical graph, each of whose vertices is of order 4 or 2. The vertices
of order 4 are the crossings of P, i.e., the double points of the proiection.
Those of order 2 serve only to provide a true cellular decomposition of P
when some component of L contains no over- or undercrossing. It is a con-
sequence of the fact that no vertex is of odd order that the regions of P may
be shaded black and white so that adiacent regions are never of the same
color. This construction was used by Reidemeister [8], and we call a selec-
tion of one of the two possible shadings a Reidemeister shading.

Consider a connected link proiection and a Reidemeister shading of the
image P. In each black region we distinguish one point and denote the set
of points so chosen by V. Through each crossing of P we next draw an
open arc subject to conditions" (i) each arc, with the exception of the cross-
ing through which it is drawn, is contained in the union of the black regions,
(ii) the endpoints of each arc belong to V, (iii) distinct arcs are disioint.
We denote the set of arcs so constructed by E. It is obvious that the union
V u E is a nonvoid spherical graph which always exists and, to within iso-
morphism, is unique. We define the graph B B(P) V u E. Simi-
larly, starting with the white regions of P, we form the graph W W(P).
A few examples are given in Figure 3.

If P is not connected and has components P1,"’, Pr, the graphs
B(P), i 1, ..., r, are chosen to be pairwise disioint, and the same goes
for W(P), i 1, r. We then define

B B(P) U=IB(P),
(3.1)

W W(P)= U= W(P).

Thus, an n-tuply connected black or white region contains n vertices of B
or W, respectively. The graphs B and W are what we call the graphs of a
link projection with image P.

(a) (b) (c)
Figure 3
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We observe that

(3.2) A cut vertex of P is a crossing, i.e., must be a vertex of order 4.

Furthermore, it is a straightforward matter to check that

(3.3) The graphs of a link projection are nonvoid spherical graphs. They
are connected if and only if P is connected, and they are strongly cyclic if P is
nonseparable.

It is also true that, if P is connected, the graphs B and W are dual to each
other in the sense of determining dual cellular subdivisions of the 2-sphere
in which they lie. Incidentally, in what follows we shall generally make use
of only one of the two graphs of a given projection. However, the choice
of shading will be immaterial; it will not matter which graph we choose.

4. The quadratic form and determinant of a link projection
The quadratic form of a link proiection p is defined in this section to be a

certain symmetric integral matrix Q Q(p). Our definition differs slightly
from, but is fully equivalent to, the usual one (see Section 1 of Kyle’s paper
[5]; Q(p) is his --although his definition, as it stands, is presumably in-
tended to apply only to connected projections). We select a Reidemeister
shading of the image P and an orientation of the 2-sphere containing P and
construct the graph B B(P), whose vertices we denote by (1), (n).
For each edge e of B, the index (e) :1 is defined as is shown in Figure 4.
We set Ej, i, j 1, n, equal to the set of all edges of B whose end-

points are the vertices (i) and (j) of B. The quadratic form
Q Q(p) qij II, i,j, 1,..., n,

is then defined by the formula"

(4.1)
q _]’ ,(e), i j,

Notice that the definition of the index 7, and hence of the matrix Q, depends
on distinguishing at each crossing the overcrossing from the undercrossing.
It is for this reason that we write Q(p) instead of Q(P).

0: Rx R

(e)=-I

Figure 4
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Since the matrix Q has row and column sums equal to zero, it follows that
the determinants of all (n 1) X (n 1) minors of Q have the same ab-
solute value. This value is called the determinant of the link projection p
and is denoted by det (p) (it is understood that if n 1, then det (p) 1).
The specific matrix Q constructed from a proiection p depends on the choice
of the Reidemeister shading, the orientation of R R u , and the order-
ing of the vertices of the graph B(P). The determinant det (p), however,
is independent of these choices. In fact, it can be proved (cf. footnote 6)
that

(4.2) det (p) is an invariant of the link type of p.

By the trivial knot type we mean the link type of a connected projection
p0 having no crossings (obviously, p0 is the projection of a knot, i.e., multi-
plicity 1). Since the graph of p0 possesses just one vertex, i.e., n 1,
we have det (p0) 1. By (4.2), then

(4.3) The determinant of the trivial knot type equals 1.

If the image P has components P1, Pr, there obviously exist con-
nected projections pl,’-" pr with images P1,’" P, respectively. It
follows from the definition of the graph B(P) that the quadratic form is the
direct sum

Q(pl) 0

(4.4) Q(p) Zri-----I Q(pi) 0 Q(p2)

Q(p,)
Hence

(4.5) The determinant of a nonconnected linlc projection equals zero.

That is, a link which can be "pulled apart" has zero determinant.
The bridge between the determinant of a link projection and the theorems

of graph theory in the preceding section is provided by an important com-
binatorial theorem which expresses certain minor determinants of matrices
in terms of trees of graphs. This theorem, which is thus the keystone of
this paper, is apparently due to Kirchhoff; in any event it has been around
for a long time, and in [6] we have included some references. Its applica-
tion to a link projection p is as follows" We select the graph B of p and an
index 7. Let the set of all trees of B which contain all the vertices of B be
denoted by Tr and the set of all edges of B by E. Then,

(4.6) THE MATRIX-TREE THEOREM.

It is obvious, cf. Figure 5 and (3.3), that

(4.7) A lin projection is alternating if and only if it is connected and any
index is a constant.
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Figure 5

In fact, Aumann [1] uses (4.7) as the definition of an alternating projection.
Since all maximal trees of a connected graph have the same number of edges,
we conclude from (4.6) and (4.7) that

(4.8) If p is alternating, det (p) tr (B).

We recall from Section 2 that tr (B) is the number of trees of B which contain
all of the vertices of B.
The following lemma, with which we conclude this section, is the essence

of the Bankwitz theorem.

(4.9) If p is an alternating link projection whose image P is nonseparable
and has d crossings, then det (p) >= d.

Proof. Construct the graph B of P. By (4.8),

det (p) tr (B).

By (3.3), the graph B is spherical, connected, and strongly cyclic. The
number of edges of B is d. Hence, by (2.10)

tr(B) >- d,
and we are done.

5. The principal theorems
For any link type , we define its minimal crossing number () to be

the smallest integer d for which there exists a link projection of type having
d overcrossings (i.e., d number of overcrossings number of undercross-
ings number of crossings of the image of the proiection). It is obvious
that is an invariant of type and that

(5.1) A knot type K is trivial if and only if (K) O.

If the image of a link projection p has a cut vertex, we may obtain by a
single twist, cf. Figure 6, another projection p’ of the same type as p whose
image has one less cut vertex. By iterating this procedure, we obtain finally
a proiection p. of type p whose image contains no cut vertex. Clearly,

(5.2) p. is connected if and only if p is,

and, thus,

(5.3) If p is connected, the image of p. is nonseparable.
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p p
Figure 6

Furthermore,

(5.4) If p is alternating, then so is p,.

We now have the machinery assembled for proving the first of our prin-
cipal theorems.

(5.5) BANKWITZ THEOREM. The determinant of any alternating link type
is greater than or equal to its minimal crossing number.

Proof. There exists an alternating projection p of type . By (5.3) and
(5.4), p, is alternating, and its image is nonseparable (an alternating projec-
tion is connected by definition). Let d be the number of overcrossings of
p,, which equals the number of crossings of its image. By (4.9),

det (p,) -> d.

Since p, is of type 9, we have, by (4.2) and the definition of minimal cross-
ing number,

det det (p,) => d >- i(),

and the proof is complete.
The following three corollaries of the proof of the Bankwitz theorem are

interesting theorems in their own right. The assertion that (5.6) holds for
all (tame) link types is the result referred to in the introduction as the knot-
theoretic form of Dehn’s lemma.

(5.6) THEOREM. If the group of an alternating link type is infinite cyclic,
then is the trivial ]cnot type.

Proof. By the group of we mean the fundamental group 71-1(S L)
for any representative link L e 9. It can be shown (cf. footnote 6) that if
this group is infinite cyclic, then the determinant of equals 1. But we
know (cf. proof of (5.5)) that there exists a connected proiection p, of type
having d overcrossings for which d _-< det 1. Since the image of p, is

nonseparable, we may conclude that d 0 and, therefore, is the trivial
knot type.

(5.7) THEOREM. An alternating link type cannot be pulled apart (does not
have a disconnected projection).

There are at least two other proofs of this theorem [1, 3].



112 RICHARD H. CROWELL

Proof. This theorem, by virtue of (4.5), is equivalent to the assertion
that the determinant of an alternating link type is never zero. But if an
alternating link type has zero determinant, it also has (proof of (5.5)) a con-
nected projection with no crossings and, therefore, is the trivial knot type.
Since, by (4.3), the trivial knot type has determinant equal 1, the proof
is complete. The third corollary, observed by Reidemeister in [8], is an
immediate consequence of (4.3) and the same inequality det (p,) >- d.

(5.8) THEOREm. Any alternating projection p of the trivial knot type can
be effectively untwisted; in fact, the algorithm is simply the reduction p --> p,.

Let 1 and be two arbitrary link types of multiplicity ul and , respec-
tively. We shall describe the construction of a link type of multiplicity- 1 which we denote by , 2 and call the product of and ..
It is clear that we may select representative links L e 1 and L e 9.., whose
components are L, .,L and L L, respectively, and a regular
proiection p of the union L u L. which is such that the images P p(L)
and P p(L) are disjoint and such that the boundary of one of the regions
of P1 u P. contains points of both p(L) and p(L). We then join the com-
ponents L and L as shown in Figure 7 to form a single component L L.
The resulting link, whose components are L, -.., L-, L L, L,
is denoted by L1, L. and its link type, by , 9.. It is not hard to prove
that the product 2 is uniquely determined by and .. Furthermore,
multiplication is associative, and the trivial knot type is the identity. It is
an interesting fact that the knot types form a commutative, cancellation
subsemigroup with a homomorphism onto the semigroup of nonnegative
integers [9].
A link type is prime if and only if it is not the trivial knot type and is not

the product of two link types neither of which is the trivial knot type. We
have introduced this concept in order to prove

(5.9) If an alternating link projection of prime type has a nonseparable
image P, then the graph B(P) is also nonseparable.

Proof. We contend, first of all, that if a connected spherical graph G
has a cut vertex v, then there exist a topological circle C which contains v
and is contained in (S G) u v, and a nontrivial factorization of G at v
into subgraphs G and G such that G1 v is contained in the interior, and

L,U
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’igure 8 Figure 9

G2 v in the exterior, of the circle C. To prove this contention, it is obvi-
ously sufficient to prove that the number of regions of G which contain v on
their boundary is less than the order of v. But if these numbers were equal,
the boundary modulo 2 of every such region would constitute a circuit con-
taining v. Since this conclusion clearly contradicts the assertion that v is a
cut vertex, we are done.
Suppose that B is separable. Since P is nonseparable, it and, by (3.3),

also B are connected. Hence B possesses a cut vertex . The vertex v
belongs to one of the black regions of P, whose boundary, since P is non-
separable, is a simple closed curve containing m crossings. Since v is a cut
vertex of B, we have m >= 2. Finally, because p is alternating, we may con-
clude that the example shown in Figure 8, or its mirror image, illustrates
the proiection in the neighborhood of v in complete generality (except that
in the picture m 5). By virtue of our preliminary contention, we know
that B possesses a nontrivial factorization at v into subgraphs B1 and B.
such that B1 v and B2 v can be separated by a Jordan curve passing
through v. Consider now a link proiection p’ obtained by changing p as
is shown in Figure 9. It follows from the construction of B and B. that
the image of p’ is disconnected. Thus, p’ determines link proiections p
and p2 the product of whose types is the link type of p. It only remains to
show that neither p nor p. is of trivial knot type, and, by (4.3), this con-
clusion will follow if neither has determinant equal to 1. But it is obvious
from Figure 9 that both proiections are alternating and that their images
are nonseparable. The number of crossings of the image of p, i 1, 2,
which we denote by d, is the number of edges of B. Since B is strongly
cyclic, we may conclude that d 2. Hence, by (4.9),

det (p) >= d >- 2.

Consequently, p is not of prime type, and the proof is complete.
The next theorem is the central result of this paper. In it we obtain, for

prime link types, a considerable improvement of the Bankwitz inequality.

(5.10) THEOREM. Any prime, alternating lintc type has an alternating

We assumed this result in describing the algorithm p p*; cf. Figure 6.
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projection whose image P and graph B(P) are both nonseparable and for which

det- 1 (p- 1)(- 1),

where p and , are the number of regions and vertices, respectively, of B.

Proof. There exists an alternating projection p of type . Since an al-
ternating projection is ipso facto connected, the projection p., also of type, is alternating, and its image P is nonseparable (cf. (5.2), (5.3), (5.4)).
Thus, since is prime, the graph B(P) is also nonseparable (cf. (5.9)). We
know B is spherical and nonvoid (cf. (3.3)). Hence (cf. (2.4)),

Since
tr(B)- 1 >__ (o- 1)(- 1).

det det (p,) tr (B)

(cf. (4.2), (4.8)), the proof is complete.

6. Examples of nonalternating knots

In this section we shall apply Theorem (5.10) to the eleven nonalternating
projections which appear in the Knot Table in an attempt to prove that the
knot types which they determine are nonalternating. The attack succeeds
in seven out of the eleven examples. Of the seven, only two are nonalternat-
ing by virtue of the Bankwitz theorem. It is stated in the Introduction
that the projections which appear in the Knot Table represent distinct,
prime knot types. We shall use the additional fact that the number of cross-
ings of each proiection in the Table is the minimal crossing number of the
knot type it represents. Incidentally, the Table includes representatives of
all prime knot types for which

_
9.

It is convenient to eliminate one easily recognizable possibility from the
outset. To this end, we define a link type to be an elementary torus type
if and only if it has a projection one of whose graphs (i.e., either B or W)
is a circuit. Examples are shown in Figure 10. It is obvious that

(6.1) The trivial knot type is an elementary torus type.

(6.2) Any elementary torus type is alternating.

Furthermore,

(6.3) If is not an elementary torus type, then the graph B of any non-
separable image of a link projection of has at least three regions and three
vertices.

Proof. Suppose the number of regions of B, denoted by p, is less than 3.
Since B is nonvoid and connected (cf. (3.3)) we know (Alexander duality)
that p pl(B) W 1. Thus, we are assuming that p(B) -< 1. (3.3) also
tells us that B is strongly cyclic. Hence, either B is a point and is the
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Figure 10

trivial knot type, or B is a circuit and is an elementary torus type. Since
both possibilities are contrary to hypothesis, we conclude that p _-> 3.
Finally, since the two graphs B and W are dual to each other, the number
of vertices of one is the number of regions of the other. Since that graph
which is W for one Reidemeister shading is B for the other, we conclude
that the number of vertices of each is also at least three, and the proof is
complete.

(6.4) THEOREM. If and B are as in (6.3), then the minimal crossing
number is of and the numbers p and ,, of regions and vertices, respectively, of
B satisfy the inequality

(p- 1)(- 1) >__ 2(is- 2).

Proof. Let the number of edges of B, which equals the number of over-
crossings of the projection, be denoted by d. The graph B, being connected
(cf. (3.3)), determines a cellular decomposition of the 2-sphere; hence by the
Euler-Poincar formula and the definition of is, we have

By (6.3)
(p-- 1) q- (-- 1) d >- iS.

(p- 1) >- 2 and (- 1) >- 2.

Hence, for some nonnegative e and 7,

Thus,
(p- 1) 2+ e, (-- 1) 2q-,,

(p-- 1)(-- 1) 4q- 2(eq- 7) q- ey

>- 4 q- 2(is-- 4)

2(is- 2),
and the proof is complete.
The next theorem, which is the result of combining Theorems (5.10) and

(6.4), provides the principal inequality used in our subsequent applications
to the nonalternating projections of the Knot Table.

(6.5) THEOREM. If is any prime, alternating link type which is not an
elementary torus type, then the determinant det and the minimal crossing
number is of satisfy the inequality is <- (det q- 3)/2.

Proof. The theorem is a direct corollary of (5.10) and (6.4).
We now consider the problem of recognizing whether or not a particular
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8ta 82o

942 943 944 945

9s 947 4s 949

Figure 116

is an elementary torus type. For this purpose, we mention briefly another
invariant of link type, the Alexander polynomial A(t) of .7 This poly-
nomial is an element of the ring of Laurent polynomials in one variable
over the integers (by "Laurent" we mean that negative powers of are per-
mitted), and it is defined only up to a unit factor of -4-tn, where n is arbitrary.
It is sufficient for our purposes to know that A(t) is effectively calculable
from any link projection of and that

(6.6) The Alexander polynomial A(t) of an elementary torus type of multi-
plicity one is of the form 1. - - - (- 1)"t for some integers n.

We come finally to the nonalternating projections of the Knot Table.
These are pictured in Figure 11, and the notation for each projection is that

This figure is reproduced from [8] with the kind permission of Springer-Verlag and
Professor Reidemeister.

A(t) is actually what I have called in [3] the reduced Alexander polynomial of .
If the multiplicity of is one, A(t) is the customary Alexander polynomial [4, 8, 10].
If u > 1, it is shown in [3] that A(t) (1 t)A(t, t), where A(tl, t) is the
usual Alexander polynomial of . The invariance of the determinant of a link type
follows from the invariance of its polynomial A(t) and the fact that det IA(--1)
That this equation is valid was first pointed out to me by J. P. Mayberry. His doc-
toral thesis contains a proof that A(--1)[ is the order of the first homology group of
the two-sheeted branched covering space of any link of type . That det equals this
order is a well known result for knots, and the proof is presumably the same for links.
In addition, I have worked out a direct proof of the above equation which shows that
the quadratic form of any link projection is the homomorphic image of an Alexander
matrix [3, 4] of the given link under the group ring homomorphism determined by set-
ting t -1, i 1, . (In lectures on knot theory at Princeton, R. H. Fox has
also given similar calculations which imply this result.) Since, for an infinite cyclic
group, A(t) 1 [4], it follows that det 1 if the group of is infinite cyclic.
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of the Table, e.g., 821 is the 21st of those proiections in the table which have
8 crossings. The relevant knot-theoretic properties are conveniently tabu-
lated in Table 1.
As a result of the summary in Table 1, we have

(6.7) (Corollary of the Bankwitz theorem, (5.5)). Projections 819 and
942 represent nonalternating knot types.

All of the types represented in the Knot Table are prime. From (6.6) we
see that none of the types represented in Table 1 is an elementary torus
type. Hence, consideration of (6.5) and the last two columns of Table 1,
yields

(6.8) (Corollary of Theorem (6.5)). Projections 819, 820, 94., 94, and
946 represent nonalternating knot types.

Although 8. and 944 fail to satisfy the criterion provided by (6.5), it is
still fairly easy to prove that they represent nonalternating types. Let us
assume that they are in fact proiections of alternating types. From (5.10)

TABLE 1

Knot Type

819
820
82
942
943
944
945
946
947
948
949

Alexander Polynomial A (t)

d- + 1
2t d’- 3F- 2t -t" 1
4t + 5t 4t -+- 1

4- 2t -- 2- 2t + 1- 3t-b 2t*- 3-l- 2t- 3t + 1
4- 4t -- 7t2- 4t-{-- 1
*- 6t -I- 9t- 6t -I- 1
2t 5t -- 2
4- 7t + 11t*- 7t -- 1
6- 4t-+’6t4- 5t 4- 6t2- 4t -- 1

3t4- 6t + 7t- 6t -- 3

Determinant
det

3
9
15
7
13
17
23
9

27
27
25

Min crossing
nO.

3
6
9
5
8
10
13
6
15
15
14

TABLE 2

Knot Type

821

944

dfp--u--2

8
9
7X

9
10
8X
8X



118 RICHARD H. CROWELL

and (6.4), we may then conclude that each has an alternating proiection
whose graph is nonseparable and satisfies the inequality

(1) det-1

_
(p- 1)(- 1)

_
2(- 2),

which becomes

(2) 14 _-> (p- 1)(- 1)>= 12

and

(3) 16 >- (p- 1)(- 1) >- 14

for 8, and 9,, respectively. We denote, as usual, by d the number of edges
of the graph of each projection, which is thus the number of crossings of each
projection. Recalling the duality between p and and that (by (6.3))

d=d, + d, + d 3

Figure 12

TABLE 3

10

det &d -t- dds dd

13
17
19
20
21

15
20
23
24
24
26
27

17
23
27
29
28
31
32
33
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Figure 13 Figure 14

p, , >= 3, we have that the only possibilities satisfying (2) and (3) are shown
in Table 2. The requirement d ->_ eliminates the cases marked with an X.
The generic spherical, nonseparable graph with 3 regions, d edges, and

vertices ( d- p W 2 d- 1) is pictured in Figure 12. It is easy
to see that the number of maximal trees of such a graph is given by

Thus, we obtain the simultaneous Diophantine equations

det dl d W d d -t- da dl,

(5) d d -t- d W da,

to be solved for positive d, d., d in the four cases indicated in Table 2"
(i) for8,det 15, d 8; (ii) for 8., det 15, d 9; (iii) for 944,
det 17, d 9; (iv) for 944, det 17, d 10. Notice that the ordering
of dl, d2, d3 is immaterial; (d, d2, d3) (1, 2, 6) yields the same type as
(d, d., d3) (6, 1, 2). Thus, we may assume that

(6) d -< d _-< da.

The solutions to (5) and (6) are given for d 8, 9, 10 in Table 3. As a
result we conclude that d 1, d 1, da 7 is the only possibility for 821
and d 1, d 1, da 8 is the only possibility for 9. Thus, if 8 and
944 represent alternating types, they are of the knot types of the projections
shown in Figures 13 and 14, respectively. It is, however, a simple matter
to check that the projections of Figures 13 and 14 are not of the types of
821 and 944. One way is to calculate their Alexander polynomials. The
proiections of Figures 13 and 14 both have polynomials of degree 2 while
three of 821 and 944 are of degree 4. We conclude that

(6.9) Projections 8 and 94 represent nonalternating knot types.

The inequalities with which our results have been obtained are apparently
not good enough to handle the remaining four projections easily. Whether
or not they can be sharpened to do the job is an open question. At present,

Since A(t) is defined only to within a factor :i:t ", we define the degree of h(t) to be
the difference between the highest and the lowest power of t.
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however, it seems rather unlikely that the methods of this paper will yield
any general criterion for deciding whether or not an arbitrary proiection
represents an alternating type. We coniecture, naturally enough, that the
remaining 945,947,94s, and 949 are nonalternating. It seems probable that
any proiection which does not obviously represent an alternating type is in
fact of nonalternating type.
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