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1. Introduction
If a group II operates on a topological space, the singular chain-complex

of the space is a graded H-module with derivation; the cycle, boundary, and
homology groups are also H-modules. It is clear that information about this
situation can be extracted from the representation theory of II.
There are however only scattered examples of such applications of repre-

sentation theory to topology, the most important perhaps being the fixed-
point theorem of P. A. Smith for periodic transformations of spheres ([5],
cf. also [3]). In the absence of a comprehensive theory, one more special
result may have some interest.
The situation studied in this note is that in which a group II (Z)

operates without fixed points on a connected space . Under suitable finite-
ness conditions on , viz., Hi(; Z) finite for all i, Hi(; Z) and Hi(/II; Z)
zero for sufficiently large i, inequalities involving the Betti numbers ;
dim Hi(; Z) will be demonstrated. These inequalities generalize results
of P. A. Smith and P. E. Conner.
The notation (m, n) will be used for the binomial coefficient (m -k n) !/m! n!

2. The representation theory
Let H be a group isomorphic to (Z) and f a field of characteristic p (which

might as well be the prime field), and denote by A the group algebra f(II).
In the category of left A-modules, A is indecomposable and injective. Thus
by a theorem of Nakayama [4] the free, projective and injective A-modules
coincide.
A A-module A will be called quasi-finite if it is a direct sum A0 -k X with

A0 finite-dimensional and X free. It is easy to see that if 0-- A’ -- A --A" -- 0 is a short exact sequence of A-modules and any two are quasi-finite,
then the third one is too.
The complete derived sequence/n(A) Jn(II, A), n 0, :kl, of a

h-module A is defined in [1, XII, 2]; the functors J form an exact con-
nected sequence, so that if 0 --. A’ - A - A" -- 0 is exact then

--, fl-(A") -- fl(A’) --, fl"(A) ---> fl’(A") -- tI’+(A’) ----...

is exact. The groups fl(A) are in fact vector spaces over f; if A is quasi-
finite, they are finite-dimensional vector spaces, and the integers s, A
dim/(A) are defined. If 0 A A -- A" ----) 0 is an exact sequence of
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quasi-finite modules, then

(2.1) snA <-_ snA’ - sA’.
Moreover, each/n vanishes on free A-modules.

just mentioned
Thus in the sequence

(2.2) s_l A" s A’ if A is free.

For the trivial A-module f these invariants are easily computed by
Kiinneth’s theorem and duality:

(2.3) s f (n, r) n 0

[.(-n- 1, r) n < 0.

Since every finite-dimensional A-module A contains a submodule iso-
morphic to f, induction on the dimension of A gives immediately

(2.4) sA<_ [n,r)dimA n_O

[(-n-- 1, r)dimA n <0.

3. Graded A-modules with derivation; topological application
Suppose X is a h-module graded by nonnegative degrees with a derivation

of degree -1. Suppose further that each Xi is free, that each Hi Hi(X)
is finite-dimensional, and that Hi and Hi(X (R) f) both vanish for i > m.

Since the modules Bi B(X) and Z Zi(X) fall into exact sequences
0 --+ Zi -+ Xi -+ Bi_l --+ 0 and 0 -+ Bi --+ Z -+ H --+ 0, it follows immedi-
ately that all the B and Z are quasi-finite. Since

Hi(X (R) A f) Tor -m-l(., Bin) 0

for i > m, all the Bi Z are free for i > m.
In addition it follows from (2.2) that sn Bj_l s._l Zj, and thus from

(2.1) that

(3.1) sk-’+ B_I sk_. B _-< s_ H..
If these equations are added from j 1 to j m -t- 1, and it is recalled
that Zo Xo so that s Bo s+l Ho, they yield the inequalities

(3.2) s+, Uo <-

_
sk_U

which, together with (2.4), give

s+ Ho <= _,. (k j, r)b -t- _,7-+ (j l 1, r)bi
where b. dim H.

Consider now the topological situation described in the introduction. The
singular chain-complex of with coefficients f is just such an object as the
X described above. In addition, H0(;/) f since is connected. Thus

(3.3) (]c -t- 1, r) __<

__
(It j, r)b. -t- -+ (j /c 1, r)I..
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4. The theorems of Smith and Conner
P. E. Conner has announced the following result [2], which generalizes an

older theorem of P. A. Smith [6]"
If has the cohomology ring, modulo p, of (Sn)r-l, then (Z) cannot

operate without fixed points on
For r 2, 3 he shows that the hypothesis can be weakened to the assump-

tion that has the homology groups, modulo p, of (Sn)r-1. This latter re-
sult may be slightly generalized, using (3.3) above.

THEOREM 1. If r <--_ 4 or if r <= 8 and n is suciently large, and if . has
the homology groups, modulo p, of (Sn)-, then (Z) cannot operate without

fixed points on

The reader will be spared the tedious computation of (3.3) for r 4,
k 2nandr 8,/c 4n.
Another mild generalization of Conner’s result is the following"

THEOREM 2. If has the homology groups, modulo p, of S" X S’, then
(Z,) cannot operate without fixed points on

If n >= m, substitution of r 3, lc n into (3.3) leads to a contradiction.
Amateurs of binomial coefficients may of course enlarge upon these very

naive applications.
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