ABELIAN GROUPS OF UNIMODULAR MATRICES'

BY
EvererT C. DADE

This paper offers a generalization of the theorems of K. Goldberg (1], O.
Taussky and J. Todd [2], and H. S. M. Coxeter [3] on the possible structures
of abelian subgroups of the group I',(K) of n X n restricted unimodular ma-

trices over an algebraic number field K. The basic result (see Theorem 3
below) is

The rank r(@) of an abelian subgroup G of T',(K)is < [#°/4] [K:Q]. The
minimum number S(@) of generators of the periodic subgroup of Gis £ n — 1.

We also obtain a bound on the order of any finite abelian subgroup, and
a bound for (@) depending on S(G) which shows that, when S(G) is large,
r(@) must be small, and vice versa.

The idea of the proof is to consider an abelian subgroup of the group A.(K)
of extended unimodular matrices as a subgroup of the group of units in an
order of an abelian subalgebra of the n X n matrix algebra. After some pre-
liminary definitions and notations in Section 1, we investigate the structure
of such unit groups in an abstract algebra in Section 2. Then we consider
an algebra with a faithful module in Section 3 and find bounds for the struc-
tural constants of the unit group in terms of the dimension of the module
and the structure of the field K. Finally, in Section 4, we consider sub-
groups of A,(K) and T',(K), passing from the former to the latter by means
of their centers. We also give several examples in this section to show that
various bounds are best possible.

1. TFor the purposes of this paper, we shall adopt the following notations:

Q is the field of rational numbers.

7 is the ring of rational integers.

K, K, K,, --- are algebraic number fields.

O(K) is the ring of integers of K.

U(K) is the group of units of K (i.e., of O(K)).

[V:K] is the dimension of the vector space V over the field K.

A, A, Ay, --- are commutative, finite-dimensional algebras with identities

over Q.

[z] is the largest element of Z which is not larger than the real number z.

Let V be a finite-dimensional vector space over Q. By a lattice L in V we
shall mean an additive, finitely-generated subgroup of V, spanning V over Q.
We shall use the fact that any lattice L in V has a Z-basis of n = [V:Q]
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12 EVERETT C. DADE

elements e, -- -, e, e L, such that any element of L may be expressed in
one and only one way as the sum z,¢; + -+ + 2, e, with 2, ¢ Z. We shall
also use the fact that, for any v ¢ V, there is an z ¢ Z such that zv ¢ L, or,
otherwise stated, if W is a subspace of V, then L n W is a lattice in W.

If G is any abelian group, we define Tor(G) to be the subgroup of all ele-
ments of finite order in G,® and the rank of G, 7(G), to be the number, from 0
to « inclusive, of Z-independent elements of G. We define S(G) to be the
smallest number of elements of Tor(@) which can generate Tor(G). If Tor(G)
is trivial, then S(G) = 1.

If we make the usual conventions about operations with «, and if G and
H are abelian groups, then we have

(1) G S H implies r(H) = r(H/Q) + r(G).

It follows that (@) < r(H) and r(H/G@) < r(H). If H is a direct product
H = G ® F, then (1) implies that

(2a) (G ® F) = r(@) + r(F).

In this case, we also have

(2b) Tor(G ® F) = Tor(G) ® Tor(F),

and, if Tor(G) and Tor(F) are finite,

(2¢) Max(8(@), 8(F)) £ S(G ® F) £ S(G) + S(F).

If G is finitely generated, it has a free abelian subgroup G’ on r(G@) < =
generators, such that @ = G ® Tor(G@). In this case, Tor(G) is finite.
A lattice L in a vector space V, considered as an abelian group, has

3) r(L) = [V:Q], and Tor(L) = (0).

By an order O in an algebra A, we shall mean a subring of A, containing the
identity, whose additive group is a lattice in A. Trivially, every A possesses
at least one order.

We shall use the notations:

0,0,,---,0, --- for orders in various algebras,

U(O) for the group of ring units in O,

Tor(0) for Tor(U(0)),

r(0) for r(U(0)),

8(0) for S(U(0)).

If K is considered as an algebra over @, then O(K) is an order in

K. U(OK)) = U(K) is the usual group of units of K. From algebraic
number theory we know that

Tor(O(K)) = W(K), the cyclic group of roots of unity in K,
rOK)) =rK)=rn+r.— 1,

2 This is also known as the periodic subgroup of G.

(4)
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where r; is the number of real, r; the number of complex, infinite primes
of K.

Finally, let w(K) denote the order of the group W(K).

2. An algebra A is called primary if it has but a single maximal ideal P.
P must then be the radical of A, and hence nilpotent. The quotient A/P = K
is the algebraic number field associated with 4. By a theorem of Wedder-
burn, we may regard K as imbedded in A, with the unit of A also the unit of
K. In this case, we may write A as the direct sum of vector spaces
A = K + P. Hence we may regard O(K) as contained in A.

Let O be any order of A containing O(K). Then the group U(K) is a
subgroup of U(0). Foreach: = 1,2, ---,let V; =14 (P'n0). Since
1 €0, V, is exactly the set of all elements z of O with z = 1 (mod P%). V;
is evidently closed under multiplication. Let # = 1 4+ yeV:, ye P ' nO.
Then thereisa ¢ = 1 such that 4t = 0. Soa" =1 —y + ¢ — -+ &
vy eV, since each ' e P'n 0. Hence V., is a multiplicative subgroup of O,
or V., & U(0).

Lemma 1. U(0) = UK) ® V.

Proof. Consider the endomorphism z — E(z) of A onto K & A with
kernel P. This is just the projection onto the first factor of the vector direct
sum 4 = K 4+ P. Since O is a finite Z-module, so is E(0). Hence any
element of E(0) is integral over Z, and E(0) & O(K). It follows at once
that E(U(0)) & U(K). On the other hand, U(Q) 2 U(K) and E is the
identity map on U(K) & K. Thus E(U(0)) = U(K). The kernel of the
endomorphism induced by E on U(O) is clearly 1 4+ P = V;. And E is
identity on U(K) = E(U(0)). It follows at once that U(K) n V; = (1) and
U(K)-V; = U(0), which imply the desired result.

The structure of U(K) is given by (4) of §1. The structure of V; is given
by

LEmMA 2.V, is a free abelian group on [P:Q] generators.

Proof. Consider a fixed 7 = 1 with P* » (0). Since O is a lattice in the
vector space A, and P’ is a Q-subspace of 4, P*n O is a lattice in P’. Since
P is a Q-subspace of P', (P'n0)/P™™ is a lattice in P'/P**, Let ¢ =
[P:Q] — [P™:Q] = [P/P™:Q]. Pick e, --+, e eP'nO0, such that
e + P ... e, 4+ P are a Z-basis of (P°n0)/P**". Consider the ele-
ments y;, -,y =1+e,---,1+eeV,. If my,- -+, neZ are not
all zero, then

y?l y:“ = (]_ + el)"l e (1 + et)”‘
A+ mnme)- - A+ n;e) (mod Pm)
14 (me+ -+ + nser) (mod P**).

I



14 EVERETT C. DADB

Since ey, -+ , e; are additively independent mod P**, it follows that

nyey+ oo+ nge, 0O (mod P™)
and

yit eyt # L

Thus the y1, - -+, y: are multiplicatively independent units in V;. Let
U, = (y1, -, y:) be the subgroup of V; generated by y1, -+, y¢. Then
U, is a free abelian group on ¢ generators, and U;n Vi = (1).

Let yeV,. Theny = 1 + p, peOnP’. By the choiceof e, ---, e,
there are n; , - -+ , n, € Z such that

p=me+ o +ne (mod P*),
and
y- (it -y
=01+mea+ - +me)l —me — -+ — nge) (mod P
=1 (mod P*™),

Thusy eU; - Vijaand V; = U; ® V. By induction, we get
Vi=Uh® V=0 ®U:0® Vs = =U:®0:® --- ® U,,

where s is the minimum integer such that P°** = (0). (If s = 0, then P =

(0), and the lemma is trivial, since V1 = (1).) Since each U, is free abelian,
sois V;, and

(Vi) = r(Uy) + -+ + r(Us) (by (2))
= (P:Q] — [P:Q]) + (IP*:Q] — [P:Q])) + ---
= [P:Q] — [P"":Q] = [P:Q].
By Lemma 2, r(V;) = [P:Q] and Tor(V;) = (1). Hence, by Lemma 1
and equations (2)
®) 7(0) = r(K) + [P:Q] = [4:Q] + r(K) — [K:Q],
Tor(0) = Tor(U(K)) = W(K).
Now let us turn to the case of a general algebra A. First we show
LemMma 3. If O, O’ are two orders of A, then r(0) = r(0’).

Proof. Let i, xs, - - be a set of #(0") independent units of U(0’). Since
0, O’ are lattices in the finite-dimensional vector space A over @, there is an
integer s > 1 such that sO’ & 0. The quotient ring O’/sO’ is a finite ring
with unity, since 1/s ¢ O’. Hence its group of units has finite order g. Each
z,, being a unit in O’, is congruent mod sO’ to a unit of 0'/sO’. Hence
z? = 1 (mod s0’), for each 7. Since 1 € 0, and sO’ & O, this implies 27 € O,
for each 4. Similarly, (%)™ = (73)? € 0. Thus the z; are 7(0’) independent
units of O, and r(0) = r(0’).

By symmetry, r(0) = r(0’).
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It is known (see [4]) that any algebra A is a unique direct sum 4 = 4, @
<.+ @ A, of primary subalgebras A;. Let K; & A; be the field associated
with A;. Let O be any order of 4, and let O; be its image under projection
from A to A;. Let O; be the module product O(K;)-0;. Then 0; is an
order of A; containing O(K;), to which we may apply the discussion above
leading to equations (5).

Let O =01 @ --- ® O.. Then O’ is an order of A containing O.

=2, ® - ® ,isa unit in O’ if and only if each x; is a unit in 0; . Thus
U(0’) is a direct product:

U©') = U0) ® --- ® U0,).
By Lemma 3 and equations (2),
7(0) = r(0") = r(01) + -+ + r(0y).
Since 0 & 0, Tor(0) & Tor(0’). Hence
Tor(0) E Tor(07) ® --- ® Tor(0;).
Combining these results with equations.(5), we get

TaeorEM 1. Let A = A, @ --- @A, beadirect sum of primary subalgebras
A, , with associated algebraic number fields K; & A;. Let O be any order of A.
Then

r(0) = [4:Q] + i (n(Ki) — [Ki:Q)),
Tor(0) & W(Ky) ® -+ ® W(K,),
S(0) = s.
The last statement follows immediately from the preceding one.
3. Now assume that A is an algebra over K as well as Q. As above,
A=A4,® --- ® A,, where the 4, are now also K-algebras. If K, is the

field corresponding to A;, then K; is also a K-algebra, i.e., an extension field
of an isomorphic image of K.

Let V be a unitary A-module, i.e., one such that the unit 1 of A gives the

identity map of V. Then V is a K-vector space, and we shall assume
[V:K] < .

Let 1 = ¢ @--- @ ¢, be the decomposition of 1 into orthogonal idem-
potents. Then we get a corresponding decomposition of ¥ as an A-module:

V=V1=Ve® - - @Vee=V:® --- @ V,,
where V; = Ve;. These V,; have the properties:
ViAd; = Ve, A; = V-(0) = (0) if 2 # 7,
Vi A'i g Vi,

(ved)es = vled) = ve; foranyveV.
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Thus each V; is a unitary A;-module, and therefore a K;-vector space. The
structures of V; as K- and K,-vector spaces match up with the imbedding
of an isomorphic image of K in K;, so that

[Vi:K] = [V, :K;][K; :K].

Now assume that V is a faithful A-module. Then each V; is a faithful
A;module. A; can be considered as a commutative algebra of K-linear
transformations of the vector space V,;. By a theorem of Schur (see [5]),
this implies that

[4::K] = 1+ [ni/4],
where n; = [V; :K]. Summing over ¢, we get
(6) [4:K] = 2ia[d::K] £ s + 2 ia [ni/4l.

Since V; is a faithful A, module, [V, :K;] = 1. If we put n = [V:K],
we have

) no= D gt = g i [Vi:K]K;:K]l 2 D> ialKi:K] 2 s.

We reduce the sum on the right side of (6) to a more manageable form by
using

LemMA 4. If x, y € Z are both =1, then
/4] + [v'/4] = (& + y — 1)*/4].
Proof. 1If one of z, y, say x, is equal to 1, then
[°/4] + [v*/4] = [y*/4] = [(= + y — 1)*/4],

and the inequality is trivially satisfied.
Assume both zx and y > 1. Then

2@ — 1)y —-1)—1=21>0.
Since the only quadratic residues mod 4 are 1 and 0, we also have
[°/4] + ['/4] = (" + ¥")/4].
Combining these inequalities, we have
[*/4] + /4] = (& + ¢")/4 S (@ + " + 2 - Dy — 1) — 1)/4]
= = +y — 1)Y/4.
Sincen; = 1fors = 1, - - -, s, this lemma implies that
[ni/4] + -+ + [ne/4] < [(u 4 ny — 1)°/4] 4+ n3/4] + -+ + [n5/4]
v S+ e+ ne — s+ 1)7/4]
[(n — s+ 1)°/4].

A NIA

IIA



ABELIAN GROUPS OF UNIMODULAR MATRICES 17

Substituting this in (6), we obtain
®) [A:K] £ s + [(n — s + 1)°/4].
Let x = 2 in Lemma 4. Then we get
Ify 21, then 1+ [y"/4] < [y + 1)/4].
If s < n, thenn — s + 1 = 1, so this implies that
s+ln—s+1/4 = (s = 1)+ [(n — (s = 1) + 1)/4],

or
9 s + [(n — s + 1)?/4] increases as s decreases.

(8) gives us an estimate for one term of the expression for (0) in Theorem
1. To estimate the other term, we use

LemMmA 5. Let K' be an extension field of K. Then
r(K') — [K':Q] = r(K) — [K:Q] < 0.

Proof. Let R be the set of real infinite primes of K, R, the set of imaginary
mﬁmte primes. Let Ri, R; be the correspondmg sets for K/. Let r, 72,
71, s be the cardinals of Ry, Rz, R, R;, respectlvely Let [K':K] = m.

Each prime in R, splits in K’ into m primes in R>. Number the primes
in R, in sore order. Suppose that the jt* prime in R, splits in K’ into n;
primes in Ry and m; primes in R:. Then

n;+ m; < n;+ 2m; =m for all 7,
’ !
= Za=l N, re = m-re + E;1=1 m;,

[K':Q] = m-[K:Q].
Using (4), we have

r(K') — [K:Ql = ri+ 7 — 1 — m-[K:Q)]

m-ry + D ojka (nj + my) — 1 — m-[K:Q]

m-ry +mry — 1 — m-[K:Q)

(m — 1)-(rn + 7 — [K:Q]) + (1 + 2 — 1) — [K:Q)]
r(K) — [K:Q)],

A IA

IIA

since
rn+re 2+ 2r = [K:QL
This last statement, however, also implies that
rK)=rn+r—1=5[K:Q —-1<I[K:Q]

or
r(K) — [K:Q] < 0.
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Applying (8) and Lemma 5 to the expression for (0) in Theorem 1, we get
r(0) = [4:Q] + 2 i (n(KJ) — [K, :Q))

[A:K][K:Q] + s-(r(K) — [K:Q])

(10) (s + [(n — s 4+ 1)°/4)-[K:Q] + s+ (r(K) — [K:Q))

(11) = (v — s+ 1)/4]-[K:Q) + s-r(K).

By (9) and the second inequality of Lemma 5, both terms in (10) increase
as s decreases. So the same holds for (11), i.e.,

IA

IIA

(12) If s = n, then the expression in (11) increases as s decreases.
In particular, the last statement of Theorem 1 gives

1< 80) = s.
Thus

r(0) = [(n — 8(0) + 1)’/4]-[K:Q] + 8(0)-7(K)
< [0/4)-[K:Q) + r(K).

By the second statement of Theorem 1, the order of Tor(O) is not larger
than

(13) ITi- w(Ks).

We wish to find the least upper bound (possibly infinite) w(n, K) for the
expression (13) under the conditions

(11")

K is an extension of K, i=1,-,5
S K :K] £ n.

By (7), this will give us an upper bound for the order of Tor(0).

For the rest of this section, we are going to manipulate and construct sev-
eral extension fields of K. For simplicity, we shall assume that all fields lie
in a fixed algebraic closure of K. We also adopt the following notation:
If K’ is a field and N is any positive integer, then K’'{N} is the field obtained
by adjoining a primitive N* root of 1 to K'.?

Consider any set of fields K, - - - , K, satisfying (14). Each K; contains
a primitive w(K;)* root of 1, and hence K{w(K;)}. Thus

[K{’LD(KJ}:K] = [Ki:K]a T = Ly

3 On reading the proofs, it occurred to me that the argument from here until Theorem
2 would have been less tortuous had I defined K'{N} to be the field obtained from
K’ by adjoining a primitive Nt root of —1 (instead of +1 as above). Most of the
difficulties of exposition are caused by the fact that, as it is defined now, w(Q{N})
may be either N or 2N depending upon the residue of N modulo 4. In the new def-
inition w(Q{N}) would always be 2N, so that no distinct treatment of the two cases
would be necessary, as it is now in several places below. This change in notation, of
course, would not modify the straightforward reduction argument in the text.

(14)
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so the fields K{w(Ky)}, ---, K{w(K,)} also satisfy conditions (14). But
w(K{w(K:)}) = w(K;). Thus, if we replace K; by K{w(K:)}, i =1, -, s,
(13) is not reduced. Therefore

In calculating w(n, K), we may assume that each K; = K{N}, for some
N;.

Let K’ be the largest absolutely abelian subfield of K. Let N be some
positive integer, and let K be some absolutely normal extension of K{N}.
Let G; be the subgroup of the Galois group of K/Q corresponding to K, and
G, the subgroup corresponding to K'{N}. Since K’ is absolutely abelian,
sois K’{N}. Hence G;is a normal subgroup. By the isomorphism theorems

G1 Gy /Gy = G /(Gin Gy).

G1 G, is the subgroup corresponding to K’ = K n K’'{N}, and G1 n G; is the
subgroup corresponding to K{N} = KK'{N}. The isomorphism above
implies that

[K'{N}:K'] = [K{N}:K].

If K{N.}, - - - , K{N,} is a set of fields satisfying (14), with N; = w(K{N}),
then, by this equation, K'{Ny}, - -+, K'{N,} is a set of fields satisfying (14)
with K replaced by K’. Since

N; = w(K{N}) = w(K'{N.}),
replacing K{N;} by K’'{N.} leaves (13) unchanged. Therefore
w(n, K) = w(n, K').

Now assume K absolutely abelian. Then it is a subfield of some cyclotomic
field Q{N}. Since Q{N:1} n Q{N,} = Q{(N1, N,)}, there is a smallest cyclo-
tomic field containing K. Let this be Q{M}, where we assume that M is
also minimal, i.e., that M #£ 2 (mod 4). Then M is divisible by exactly the
ramified primes of K.

Suppose an integer N is divisible only by primes unramified in K. Then
(N, M) = 1, so that

Q{M-N}:Q{M}] = ¢(N) = [Q{N}:Q).
Since @ & K & Q{M}, and since K{N} = Q{N}-K, this implies that
(15) [K{N}:K] = ¢(N).

Notice that this holds for any absolutely abelian field K and any N prime
to the discriminant of K.

Now let N be any integer. Then N = N; N, where N, is divisible only
by primes unramified in K, and N, only by primes ramified in K. Any
prime dividing N, is unramified in K and in Q{N,} (since (N1, Np) = 1),
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and hence is unramified in the absolutely abelian field K{N.}. Applying
(15) to both K{N,} and K, we get

[K{N1N,}:K] = ¢(N1)-[K{N.}:K],
[K{N1}:K] = ¢(Ny).

Since 2 divides only one of Ny, N and since we may assume without loss of
generality that N #£ 2 (mod 4), we have N; # 2 (mod 4). Hence N; > 1
implies ¢(N1) > 1. K{N,} = K if and only if N, | w(K). In that case we
might as well take N, = 1. Otherwise [K{N.}:K] = 2. Hence we have

[K{N}:K] = 2¢(N1) = 2[K{N.}:K] if Np = 1,
[K{N}:K] = 2[K{N.}:K] if Ny = 1,
(16) [K{N}:K] = [K{N1}:K] + [K{Ns}:K]  if both Nyand N, = 1.

Now notice that (15) implies that w(K{N}) = N,w(K{N.}). For, if
w = w(K{N}), we may split up w = w, w, as we did N. By (15)

[K{N}:K] = [K{w}:K] = ¢(w1)-[K{we}:K].
But K{w,} 2 K{N.}, since clearly N, |w,. Thus

d(N)IK{N,}:K] = [K{N}:K] 2 ¢(w)-[K{N:}:K],
or
d(N1) = o(wy).

But Ni|w,. So either w; = N; or wy = 2N;, according as 2 is or is
not ramified in K.

Since ¢(N1) = ¢(w;), we must have K{w,} = K{N,}. Since K{N.} &
Q{MN,}, the only primes which may divide w(X{N,}) are those dividing M
and 2. So W(K{N.}) = W(K{N})n K{N.} must have order ws or 2w,
according as 2 is or is not ramified. In the former case w; = N;i, and in
the latter w; = 2N;. So, in either case, w(K{N}) = N, -w(K{Ns}).

Applying this last argument to N and to N;, we get

w(K{N}) = Ni-w(K{Ns}),
w(K{N1}) = N1 w(K).
Thus
w(K{N;Ny}) = N1-w(K{N,}) < Ny-w(K) - w(K{N.})
= w(K{N1}) - w(K{N:}).

From this and (16), it follows that, if Ny # 1 and N, # 1, then we may
replace K{N;N,}, whenever it appears among the K;, by the two fields
K{N,} and K{N.} and increase the expression (13) without increasing (14).
Thus we have shown

In caleulating w(n, K), we need only consider fields K{N;} where either
no prime dividing N; ramifies or every prime dividing N; ramifies.
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Assume N prime to the discriminant of K. As above, w(K{N}) = Nw(K).
But w(K) = 2 implies that w(K)*® = Nw(K), except when w(K) = 2
and N = 3. So, with that single exception, we may replace K{N} with
¢(N) = [K{N}:K] copies of K. The sum (14) remains unchanged while (13)
increases. Hence, the only time we have to consider such an N is when
w(K) = 2and N = 3.

Assume that only primes dividing M divide N. Then

[Q{M}{N}:Q{M}] = N/(M, N) = [Q{N}:Q{(M, N)}.
Since Q{(M,N)} & K{M,N)} & Q{M}, and since K{N} =
Q{N}-K{(M, N)}, this implies that
[K{N}:K{(M, N)}] = N/(M, N).

Suppose 2 does not ramify in K. Then 2 does not ramify in K{N}. Let
w = FwE{N}), wi = 3wE{(M,N)}). Then WEK{M,N)}) =
W(K{N})n W(Q{M}) implies w, = (w, M). Since K{N} & Q{NM}, the
only primes dividing w are ramified in K. Therefore, as above,

[K{w}:K{(w, M)}] = w/(w, M) = w/w, .
But K{w} = K{N}, K{(w, M)} = K{(M, N)}. Hence

w/w = N/(M’N),

or

w(K{N}) = (N/(M, N))-wK{(M, N)}).

A similar proof shows the same result if 2 ramifies.
If we replace K{N} by N/(M, N) copies of K{(M, N)}, then (14) does
not change. But w(K{(M, N)}) = 2 imples that

wE{(M, \HYMY =z (N/(M, N))-w(K{(M, N)}) = w(K{N}),
so (13) increases. Hence the only such N we have to consider are the di-

visors of M.

Finally, notice that, if Y, [K; :K] < n, we may always add enough copies
of K to make it equal n. We have shown

w(n, K) = Max (J[ics w(K{N})),
17 where either N; | M, or N; = 3 and w(K) = 2,
S KN K] = n.

Notice that, since there are only a finite number of N; to consider, there
are only a finite number of products to consider, and w(n, K) must be finite.

Incidentally, we may compute the odd part of M without going outside of
K. For an odd prime p divides M exactly to the exponent ¢ = 1 if and only
if

(1) p ramifies in K,

(2) p° ' is the degree of wild ramification of p in K.
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We have noted condition (1) above. For (2), let p1, ---, p: be the odd
primes dividing M, and let po = 1 if 24 M and po = 4 if 4| M. Then
K{pop: - - - ps} lies between Q{M} and Q{pop: - - - p:}. But, by the choice
of p;, the only such intermediate fields are cyclotomic. Since Q{M} is the
smallest cyclotomic field containing K, we must have

Kipops--- p} = Q{M}.

In passing from K to K{po - -+ ps-1}, P+ does not ramify, and in passing
from K{po « -+ psa1} to K{po - -- p:}, it ramifies tamely if at all, so the de-
gree of wild ramification of p; in K is the same as its degree of wild ramifica-
tion in Q{M}, which is p; ", where p} exactly divides M.

If 4 | w(K), a similar result holds for p = 2. But if w(K) = 2 (mod 4),
there seems to be no such easy method of computing the power of 2 divid-
ing M.

Collecting our results from (7), (11’) and (17), we have

TaEOREM 2. Let A be an algebra over K. Let V be a faithful, unitary A-
module with [V:K] = n. Let O be an order in A. Then

1 = 800) = n,
r(0) = [(n — 8(0) + 1)*/4]-[K:Q] + 8(0)-r(K)
< */41-[K:Q] + r(K),
and the order of Tor(0) s bounded by
w(n, K) = Max ([Tt w(K{N})),

where the N satisfy D [K{N.}:K] = n and either N;| M, or N; = 3 and
w(K) = 2, and where M s the smallest posttive element of Z such that Q{M} n K
18 the maximal absolutely abelian subfield of K.

4. If n is any natural number and K any algebraic number field, we de-
fine the general unimodular group A,(K) to be the multiplicative group of
all n X n matrices with elements in O(K) whose determinants are in U(K).

Let G be any abelian subgroup of A,(K). Then G is an abelian multi-
plicative subgroup of the full matrix algebra M.(K) over K. Let A be the
subalgebra of M,(K) generated over K by G. Then A is a commutative
subalgebra with identity. The imbedding of 4 in M,(K) makes a faithful,
unitary A-module of K-dimension n out of whatever K-vector space one
considers M,(K) as acting on.

Let O be the set of matrices in A whose elements are in O(K). Then O
is an order of A. If u e U(O), then both u and «™* have elements in O(K).
So uelA,(K) and U(O) is an abelian subgroup of A,(K). Evidently
G & U(0), so that

(@) = r(0), Tor(@) & Tor(0), S8(G) £ S(0).
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Applying Theorem 2 and (12), we get

(18) r(@) = [(n — 8(@) + 1)*/4]-[K:Q] + 8(G)-r(K)
(18" < /4] [K:Q] +r(K),
(19) 1= 8@ = mn,

and the bound w(n, K) for the order of Tor(®).
Some examples will show that these are the best possible bounds.
Example 1. Let n = 2m be even. Consider all matrices of the form

I, On
Y al.)’

where I,, is the m X m identity matrix, 0,, is the m X m zero matrix, z is any
element of K, and Y any element of M, (K). These matrices form a com-
mutative algebra A over K of dimension (n’/4) + 1 = m® 4+ 1. The ideal
P of matrices with # = 0 is the radical of A and has K-dimension m’. A
is primary, and K is the field associated with A. The imbedding of K in A
is given by  — zI,, for x e K. Let O be the set of all matrices in A with
x ¢ O(K) and each element of Y in O(K). O is clearly an order of A contain-
ing O(K), so Theorem 1 applies, giving

r(0) = 1K) — [K:Q] + [4:Q] = r(K) + ["/4]-[K:Q).

Since each element of O has K-integral entries, U(O) & A.(K). Hence
A,(K) has an abelian subgroup of rank r(K) + [n?/4]-[K:Q].

Example 2. Let n = 2m + 1 be odd. Consider the set of all matrices of
the form

xI,,,+1 0m+l,m\
Y i J’

where I, , I,,41 are identities of the indicated orders, Omy1,misan (m + 1) X m
zero matrix, x ¢ K, and Y is an arbitrary m X (m + 1) matrix with elements
in K. The analysis is the same as in Example 1, except that the radical has
K-dimension m(m + 1) = (n* — 1)/4 = [n’/4]. Again A,(K) has an abelian
subgroup of rank r(K) + [n*/4]-[K:Q].
From these two examples it follows that (18') is a best possible estimate.
Example 3. Consider all matrices of the form

.
M,
21
]

Ls—1
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where Miisany (n — s + 1) X (n — s 4+ 1) matrix of the type of Example
1 or 2, whichever applies, x;, 22, * -+ , Z,—1 are any elements of K, and the
blank spaces are zeroes. These matrices form an algebra over K. If A; is
the subalgebra generated by the M, then

A4, ®KOK® -+ @K,

where there are s — 1 K’s. The elements of A with integral entries form
an order O in A. By Theorem 1

r(0) = [4:Q] + s-(r(K) — [K:Q))
=(n—s+1)/4] + 14 -+ + DK:Q] — s:[K:Q] + s-7(K)
= [(n — s + 1)’/41-[K:Q] + s-r(K),
Tor(0) = W(K) ® --- ® W(K) (s factors).

Since W(K) = (1), we see immediately that S(O) = s. It follows that (18)
is also a best estimate. Since we may take s = n, (19) is best, too.

Exzample 4. Let Ny, ---, N, be positive integers such that
2 K{N}:K]l=n
and N; = wK{N;}), 7 =1,---,s Let f; (X) be the monic irreducible

polynomial satisfied over K by some primitive N;* root of 1. Then f; has
degree [K{N,}:K], and, since the roots of unity are algebraic integers, f,
has coefficients in O(K). Let C; be the companion matrix of the polynomial
fi. Since f,(C;) = 0, C; is a matrix of multiplicative order N; :C"} = I.
C; has coefficients in O(K), as does its inverse C" .  Hence C; € Aigqn;):x1 (K).
Consider all matrices of the form

z
ct

z
cs

where the blank spaces are zeroes and the x; ¢ Z satisfy 0 < z; < N;, 7 = 1,
-+ ,s Since > [K{N;}:K] = n, these matrices have order n. They all
have integral elements, and they form an abelian group of order
Ni- -+ N, = [] w(K{N;}). Hence w(n, K) is a best possible bound on
the order of Tor(G).

At first glance, w(n, K) may not appear to be a very calculable bound.
Actually it is fairly easy to compute once we know how K fits into Q{M}
(if we assume K absolutely abelian, which we can do without loss of gen-
erality). For example, if K = Q{M} is itself cyclotomic, then for all
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N|M, K{N} = K, so, by (17), we need only consider the case N = 1, or
N = 3if w(K) = 2. Thus we get

If K = Q{M} is cyclotomic, then

wn, K) = w(K)" K = Q
= 6" K =@, neven
= 2.6 K = Q, nodd.

For a more complicated example, consider the field @{3*-7}. Let G be its
Galois group over . Let a be a generator of the cyclic subgroup (a) cor-
responding to Q{7}, b a generator of the cyclic subgroup corresponding to
Q{3’}. Then a, b both have order 6, and G = {(a, b) is the direct product of

the subgroups (@), (b). The cyclotomic subfields of Q{3?-7} then correspond
to the subgroups

Q{3*-7} « (1)
Q{73 ©{a)
Q3" < b
Q3} < (d,b)
Q{3:7} « (")
Q < {a, b).

Let K be the field corresponding to the subgroup {ab). Since a, b both
have order 6, it is clear that this subgroup contains none of the proper sub-
groups listed in (20). Hence no cyclotomic field smaller than Q{3°-7} con-
tains K, and we must have M = 3°.7. For the significant N | M, we have

K > (ab)

K{7} < (ab)n (@) = (1)
K{3} < (ab) n (a’, b) = (a’ V)
K{3"} < (ab) n (b) = (1).

For any field K, w(K) is the largest positive integer w such that Q{w} & K.
So the inclusion relations among the subgroups in (20) and (21), and the
relative indices of the subgroups in (21) give

K:K] = 1, w(K) = 2,
[K{7}:K] =6, wK(7}) = 2-37,
[K{3}:K] =2, w(K{3}) =2-3.

Since 2°-3* > 2-3°.7, we may replace K {7} by three copies of K{3} wherever
it appears. Hence we get w(n, K) = w(n, @).

(20)

(21)
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We noted in the last paragraph that, if p,, - - - , p; are the distinet ramified
primes in the absolutely abelian field K, and if 2 does not ramify,
then K{p; --- p:} = Q{M}. In the example above we had K{7} = Q{M},
so some of the p; may be superfluous. Also note that K {3} = K{3%}, so the
following statement is not true: K({p;} contains a primitive pi** root of 1,
where p; exactly divides M. You must adjoin all the p; roots of 1 before
this happens.

We define the restricted unimodular group T,(K) to be the subgroup of
An(K) consisting of those matrices of determinant 1. Let D,(K) be the
center of A,(K), C.(K) the center of T',(K). Then D,(K) consists of all
matrices zI,, where x ¢ U(K). So D,(K) is isomorphic to U(K). C.(K)
consists of all 2I, , where z» = 1. 8o C.(K) & D.(K), and C,(K) is cyclic
of order (w(K), n).

If G is any abelian subgroup of I',(K), then G commutes elementwise
with the center D,(K) in A,(K). Since Gn D,(K) & G n C.(K) & Tor(G),
we have

7(G-Du(K)) = 1(G) + r(Du(K)) = (@) + r(K).
Also G & G-D,(K) implies
8(G) = 8(G-Du(K)) = n.
Using this, (18), and (12), we get

(@) = r(G-D(K)) — r(K)

[(n — S(G-Du(K)) + 1)’/4]-[K:Q] + (8(G-Dn(K)) — 1)-r(K)
< [(n — 8(@) + 1)°/4]-[K:Q] + (8(@) — 1)-7(K)

< [n"/4]-[K:Ql.

IIA

That this last bound on r(G) is a best possible result may be seen by con-
sidering the intersections with T',(K) of the groups of Examples 1 and 2.

If H is a finite abelian subgroup of A,(K) with S(H) = n, then H is equiva-
lent to a subgroup of the group of all matrices of the form

(a1
X2

Ln

where z;, - -+, x, e W(K), and the blank spaces are zeroes. Since equiva-
lence preserves determinants, H n T',(K) must be equivalent to a subgroup
of the group F of all such matrices with z; 25 -+ 2, = 1. This group F has
S(F)=n—1,s0 S(HnT,(K)) <n — 1. Thus, for any abelian subgroup
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G of Tw(K), we must have
S@ =n—1.

The example of F shows that this bound is best possible.

Since C.(K) & T.(K), we may assume that C.(K) & G. Then
Tor(G-D.(K)) = Tor(G)-Tor(D,(K)) has order w(K)/(n, w(K)) times the
order of Tor(G). Hence we have the bound

w(n, K)-(n, w(K))/w(K)
for the order of Tor(@).
Collecting these statements with those of (18) and (19), we finally come to

TuaroreM 3. Let G be an abelian subgroup of A(K). Then

1=8@G)=n, *
r(@) = [(n — 8(G) + 1)"/4]-[K:Q} + S(G)-r(K) *
< [#*/4]-[K:Q] + r(K), *
order of Tor(@) = w(n, K). *
If G is also a subgroup of T (K), then

1=8@) =sn-1, *

7(@) = [(n — 8(@) + 1)°/4]-[K:Q] + (8(&) — 1)-r(K)
< [n'/4]-[K:Q), *

order of Tor(@) = w(n, K)-(n, w(K))/w(K).
The bounds marked * are best possible.
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