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Introduction and summary
The object of this note is to complete the solution to several problems posed

by S. Bnch [5] nd by E. Mrczewski [12]. These problems concern re-
lations between wrious conditions related to stochastic independence. The
problems cn be summarized as follows.

If {(Y, glut, t)} (t e ) is n rbitrry t-lest-countble fmily of prob-
ability -mesure spces, wht re the relations between the four conditions
below?

(Co) The glut} re o--independent, i.e., 1 ]o A t whenever At e glt
for ll i nd t t;. for i j.

(C) The {glUt} re stochaslically independent with respect to the #t, i.e.,
there exists -mesure # (called the stochastic extension of the tt) on$(Ut glut)
such that (1 ’ Ate) H t(At) whenever At . glt for 1 i --< n nd
t t. when i j.

(C) The {glZt} re almost z-independent with respect to the /t}, i.e.,
1 At 0, whenever t(At) 0 and 0 At e: t for ll i; nd t ts
for/ j.

(C) The /glUt} re quasi-o--independent with respect to the {t}, i.e.,
At 0, whenever I] t(At) O, nd 0 At glt for ll i; nd

t t.fori j.
From the definitions it is esily seen that (Co) -- (C.) -- (C). Further,

since ny set of positive mesure is nonempty nd ech -mesure is con-
tinuous from bove, it follows that (C) -- (C). Finally, Bnch [5], Sikorski
[21], Sherman [16] nd the uthor [4], pp. 66-68, hve demonstrated that
(Co) (C,).

Therefore, in order to complete the solution to the original problem one
must nswer the following two questions.

(A) Wht is the relationship between (C) nd (Cs)?
(B) Are ny two of the conditions equivalent?
The nswers to these nd related questions lie in the product -mesure

spce (Z, , ) Xt (Y, glut, ut). It is seen (Theorem 1) that (C) is stis-
fled if nd only if the {(Y, glut, ut)} generate z-mesure spce which is the
mesure a-homomorphic image of (Z, , ,); nd (Theorem 2) that it is
possible to construct the desired z-homomorphism whenever (Cs) is stisfied.
The fct that no two of the conditions re equivalent is demonstrated by a
set of examples.
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The results can be summarized as follows.

(C.) -+ (C1) [Theorem 2],

(Ca) - (C1) [Example 5], (C1) - (C.) [Example 4],
(C) - (Co) [Example 3].

The paper is divided into four sections. Examples of the various types of
independence are presented in Section 1. In Section 2 the terminology,
notation, and preliminaries are introduced. The product representation is
constructed in Section 3; and Section 4 contains the main theorem.

1. Examples of independence
By virtue of their construction, product spaces provide the best examples

of independence. In fact, it can be shown that any space exhibiting in-
dependence is in some way an image of product space.
Example 1. Let (Yt St, ut) (t e ) be any at-least-countable family of

probability a-measure spaces. (See Section 2/). Form the product space,
i.e., let Z Xt Yt ;/t0 Xt At, where

Yt for t0
At for all Bto e Sto and all to e ;

Bto for to

{/t ]Bt e St} for all e ; and ’t(.t) tt(Bt) for all Bt . $ and all

Then (Z, St, ’t) is a well-defined probability z-measure space for all e .
Further, it is well known (e.g. [2], pp. 90-92) that there exists a unique prob-
ability a-measure on S(Ot(R)t), the least z-algebra containing all t,
with the property that (f’l/ti) 1-I] ’ti(.t) for each z-constituent
f’l ]o/t of ((Jr (R)t), i.e., whenever/t e t for all i, and t t- for i j.
(See Section 2a). Consequently, the {(R)t} are stochastically independent
with respect to the t, i.e., satisfy (C1).

It is also known that Xt Bt is empty if and only if one of the Bt is empty.
But the a-constituent f3 /t X At where

Yt if e {tl, t.,
At

Bt if t, i 1, 2, ....
Consequently, a a-constituent fl ’/t is empty if and only if one of the/t is
empty. Therefore, the {t} satisfy conditions (Co), (C2), and (Ca).
Example 2. Let I be the unit interval. For each n, let In be the set of all

points of I whose dyadic expansions contain 1 as the nth digit. (If a point has
two different expansions, only the terminating one will be considered.) For
each n, the least a-algebra$({In}) {I, 0, I’n In, I I I}. (See
Section 2a.) Define gn(I’) gn(I) 1/2, g(I) 1, and gn(9) 0 for all n.
Each g is, therefore, a probability a-measure, and each (I, S({I}), g.) is a
probability a-measure space.
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Now, for any arbitrary sequence /jl, j., ja, ""} of O’s and l’s,
x jn/2ne 1 I. Consequently, each ]o i. is nonempty, and con-
ditions (Co), (C:), and (Ca) are satisfied.

Further, it is known (e.g. [3], p. 159) that the Lebesgue measure is the
stochastic extension of the {n}. Hence, (C1) is satisfied.
Example 3. Let I and In be the same as in Example 2; let C* be the set of

all points of I whose dyadic expansions contain an infinity of O’s; I* In n C*
and n(An)= 1 or 0 according as the point 0 e An or not, for all
An eS({I*}) {C*, 0, I*, (i,.)0} and all n. Each n is, then, a probability
a-measure.

Since I’ll’ I* C* ngl’ In , the {$({I*})} do not satisfy (Co). On the
other hand, since the sets of positive measure are exactly those sets which
contain 0, any intersection of sets of positive measure is nonempty. There-
fore, (C2) and (Ca) are satisfied.

Further, if X(A)= 1 or 0 according as the point 0 e A or not for all
A e $(U ]o S({I*})), then is a probability a-measure, which is the stochastic
extension of the {n}. (C1), then, is satisfied.
Example 4. Let I, In, I,*, C*, S({In }), S({I* }), {n }, etc. be the same as in

Examples 2 and 3. Let ,n(I*) ( I* 0)(n) 1/2, n(C*) 1, andn(0) 0
for all n. is, then, a probability z-measure on $({I*}) for all n.

Since I* C* l ]o In 0, the least a-algebras {S({I* }) do not
satisfy (Co), and do not satisfy (C2) with respect to the
However, since the {n} nd {n} coincide with Lebesgue measure on their

respective domains of definition; since each set of [J ]o S({ I* differs from a set
of (d] S(lI}) by a set of Lebesgue measure zero; and, since the {$(
satisfy (C1) and (C) with respect to the {}, it can be easily demonstrated
that the /S({I*})} do satisfy (C) and (C) with respect to the {n}.
Example 5. Let I, I, , etc., be the same as in the preceding examples;

R, the set of rational numbers in the unit interval; R- In n R and
pn(R An) n(An) for all An e $({In }) and all n.
Then S({Rn}) {R, , Rn, Rn} and pn is a probability a-measure on

$({Rn }) for each n.
Now if {j, j., is ny sequence of O’s and l’s such that x _, jn/2

is an irrational number, then gl ]o R. R a ]o i. 0. Consequently, the
S(IR }) do not satisfy (Co), and do not satisfy (C) with respect to the

Further, if p were stochastic extension of the {Pn}, then p must assign
mesure II p,(R) 0 to each rational number jn/2n} R;
and measure 1 to R which is a countable union of rational numbers. There, of
course, can exist no such probability a-measure, and hence, condition (C) is
not satisfied.
On the other hand, one finds that II] pn(Bn) > 0 if and only if all but

a finite number of the Bn R; that any finite intersection of nonempty
elements of U o S({Rn}) contains at least one set of the form [’l R; and
that each 1’R contains the rational number x ’-jn/2 d- 1/2+
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nd is, hence, nonempty. From these considerations one can conclude that
the {S({R satisfy (C3) with respect to the P }.

2. Terminology, notation, and preliminaries
In the product representation of Section 3 certain known results concerning

Mgebras, measures nd homomorphisms will be used repeatedly. These
results and pertinent definitions re presented in this section.

(o) Algebras and semialgebras. A spce, Y, is nonvoid collection of
objects. 0 will denote the empty subset of each space. A collection, S, of
subsets of Y is called z-algebra if is closed under countable unions and
complementation. A semialgebra, 3C, of subsets of Y is a class containing Y,
closed under finite intersections, nd satisfying the chain condition ():
whenever M and N re elements of
finite subclass {No, N1, N} of
NI c Nn M nd Fi Ni N_ e gC for i 1,2, .-.,n.
To understand the structure of z-algebrgs and semialgebras it is expedient

to introduce two entities, the constituent and z-constituent, first used by
Marczewski [11].

If 5C is n rbitrary class of subsets of some space Y, then each set which can
be represented in the forml AwhereAie, A Y- A,Ai A,
nd j 0 or 1 for i 1, 2, n, is clled a constituent of 5C; a set which
can be represented in the form ]o A is called a z-constituent of 5C; nd the
A re called sides of the [z-] constituent.

It is esily proved (e.g. [4], p. 56) that
(i) the class 3C(3C) of gll constituents of 3C is a semiglgebra.
Further, it is known (e.g. [6], pp. 485-486) that
(ii) there exists a least z-algebra $() containing gO; that ech element of

$(gC) is g union of z-constituents of
Since Section 3 will del with families of z-algebras, it is worthwhile to put

some of the sets and classes above in a form more dapted to work with
families of z-algebras.

If {t} (t e ) is fmily of z-lgebms of some spce, Y, then because
each z-algebra is closed under complementation and countable unions, it is
possible to represent each constitutent of (U t) in the form A t nd ech
z-constituent in the form ]o A t where A t t and t: , for ll i, nd
t t.forij.

(Throughout the sequel it will be understood thgt any set represented in
one of the above forms, i.e., gl A t or 1 Ate, is a constituent or z-con-

stituent, respectively, of the designated union of fmilies of z-algebras.
Further, unless something to the contrary is specified, it will be understood
that is the index set for the indices t. Italic capitals will denote sets, nd
script cgpitgls will denote classes of sets in the sequel.)
As one might scertain from the statements of conditions (C) nd (C),

it will be necessgry to employ some special properties of measures in the in-
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vestigation of these conditions. For that reason these measure properties
will be discussed next.

() Measures.
A probability a-measure is a real-valued, nonnegative, countably additive set

function defined on a semialgebra of subsets of some space, with the added
properties that the measures of the whole space and the empty set, 0, are
respectively, 1 and 0. A triplet (Y, S, /) is called a probability z-measure
space, whenever S is a z-algebra of subsets of Y and is a probability
measure on .
The measure theorem which is most important to the product representa-

tion is essentially due to von Neumann ([1], p. 94). It is as follows:
(iii) If is a probability a-measure on a semialgebra 5C, then there exists

a unique probability a-measure on $() such that coincides with
This unique extension theorem allows one to work with the semialgebras

and still obtain measure theorems applicable to the generated a-algebras.
Since measures, constituents, etc., have been defined, it is now possible to

restate the independence conditions in terms of these.

(.) Independence conditions. If {Y, 9Et, t} is an arbitrary at-least-
countable family of probability a-measure spaces, the new statements are as
follows:

(C1) (Stochastic Independence) There exists a probability a-measure on
$(UolZt) such that t(N [’ A ti) H #ti(Ati) for each constituent A ti of
(U t).
(C) (Almost a-independence) Each a-constituent of (Urct) with all

sides of positive measure is nonempty.
The next step is to phrase these conditions in terms of properties of the

product space which will be constructed. However, before the construction
can be effected, two types of transformations need to be introduced.

() Homomorphisms. A a-homomorphism of a class of subsets of Z onto
a class 2 of subsets of Y is defined to be a transformation, , of X onto such
that can be extended to a countably multiplicative complementative trans-
formation, , of $(,) onto g(2).

It is easily proved (e.g. [6], p. 487) that
(iv) each a-homomorphism , of a a-algebra g(X) of subsets of Z onto

a-algebra S(2) of subsets of Y, is countably additive and subtractive; and,
further, (Z) Y and q(0) 9. Also, ((91Z)) $((NZ)) for all subclasses
9 of .

Besides this it has essentially been shown by Sikorski [17], [20] and the
author [6] that

(v) a transformation of, onto is a a-homomorphism of ;E onto if
and only if, for every a-constituent f’l] A of ,, f’l [(Ai)] 9 whenever
1A =9.
This result can be extended to the case of a family of a-homomorphisms.
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When it is extended, it takes on the following form which will be employed ia
Section 3.

(vi) If is a (r-homomorphism of (r-algebra !Ft of subsets of Z onto
a-algebra of subsets of Y for all e , then the {} have a common ex-
tension which is a a-homomorphism of $(U !t) onto $(U t) if and only if,
for each a-constituent l ] At of (U 91Zt), 3 t,(t) fl whenever gl ] t ft.
The extension is unique in either case.

(iv)-(vi) concern only the preservation of the algebraic properties. In
view of the measure aspect of the problem, one must consider homomorphisms
which preserve measure.

(c) Measure homomorphisms. A transformation is a measure a-

homomorphism of (Z, (R), v) onto (Y, $, t) if is a (r-homomorphism of onto
$ and if v() (q()) for all .

In view of (iii), will be a measure (r-homomorphism if it preserves measure
on an appropriate semialgebra, i.e.,

(vii) a a-homomorphism q of onto $ is a measure a-homomorphism of
(Z, , ) onto (Y, 8, ) if () t(q()) for all e :, where is a semi-
algebra which generates (R), i.e., $() .
With these definitions and theorems it is now possible to effect the desired

product representation.

3. Product representation

Let {(Y, )t, gt)} (t e ) be any at-least-countable family of probability
(r-measure spaces with the same space Y. Form the product space, i.e., let
Z X Y. Z can be considered the union of all @-sequences of points of Y.
The cylinder sets of Z are those product sets of the form Bto X At where

for # to

for to

If, now, for each e , !IJt {/t Bt e flt} vt(t) It(Bt) and 9,(/t)
for all B e VEt, then one can conclude that Lemma 1 below is valid.

LEMMA 1. :;t is a (r-algebra of subsets of Z; t is a probability z-measure on

Jt qt is a measure (r-homomorphism of (Z, Jt, vt) onto (Y, t, ttt) for all

The {t} are called the cylinder (r-algebras; and (R) $(U t) is the product
a-Mgebra.

It is well-known (e.g. Example 1; and [2], pp. 90-92) that there exists a
product probability a-measure on (R) $(U !Ft); and that the a-constituents
with nonempty sides are onempty. Consequently,

LEMMA 2. The {fftt} are a-independent; and are almost a-independent,
stochastically independent, and quasi-a-independent with respect to the {vt};
i.e., they satisfy conditions (C0)-(Ca).
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Since the {fftt} are a-independent a-algebras, the {ot} satisfy the hypotheses
of (vi), and the following lemma holds.

LEMMA 3. There exists a unique (r-homomorphism o of $([J 92t) onto
$ $([Jt) with the property q(f] t) f] t,(t,) for each (r-constituent, of ().

Since it is known (Lemma 2) that the {!fftt} are stochastically independent
with respect to the {t}, one is led to suspect that the same situation will hold
for the {t} and the {t}, if is a measure a-homomorphism of (Z, ,
onto (Y, $, ) for some measure . The necessity and sufficiency of this
condition are established below.

THEOREM 1. (C1) holds if and only if (a) there exists a probability (r-measure

on such that o is a measure (r-homomorphism of (Z, , ,) onto (Y, $, t).

Proof. (a) -- (Ca). Let # be the probability a-measure on $ satisfying
(a). If now, l At is an arbitrary constituent of ([Jt), then

( .) A,
and .(n; At.) ; II; H:
Therefore, is the desired stochastic extension of the {t} and (C) holds.

(C) -- (a). If (C) holds, let t be the stochastic extension of the
is a probability a-measure on $. In view of (vii) it will be sufficient to prove

that and coincide on a semialgebra which generates . From (i), (ii),
and the definition of (R), one can conclude that the class 59 of all constituents of
(U Jt) is such a semialgebra.
But for an arbitrary element n fi_, of , ((n z,)) (n qt,(,))

#(n Ati) H ttti(Ati) H Yti(ti) Y(n ti). Consequently,
(a) holds. . The main theorem
The main result can now be established in terms of . It will be shown that

whenever (C.) holds, it is possible to construct a probability a-measure on
the semialgebra 3C of all constituents of ([J;t) such that #(o()) () for
all e @, the semialgebra of all constituents of ([JO)t); and that (C) then
follows from (vii) and Theorem 1.
The following three lemmas will be needed.

LEMMA 4. If the 9t satisfy (C) with respect to the {tt and if A t and
Bt are twoa-constituents of ([J t) such that At Bt and t(A,)

for all i, then tt(At Bt) 0 for all i, i.e., t(At) tt(At Bt) for all i.

Proof. From the hypotheses it is seen that for an arbitrary integer
tc, ) (At, Bt)= 0 and, hence, at least one of {#t(At,)} (i tc) or
ut(At B) is zero. But since the tt(At) are nonzero, then

(A B) 0.

Since/ was chosen arbitrarily, the conclusion follows.
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LEMMA 5. /f the 9gt satisfy (C,.) with respect to the {} and if, further,
n A and B are -cons#uens of (U) such ha At Bt and
(A) > 0 for all i, hen (A)= (B) for all i and, consequently,

Proof. From Lemm 4 one cn conclude that ,(A m B) 0 nd, hence
(A,) (A, B,) for ll i. But A, m B, B, nd, hence,
,(B,) ,(A, B) t(At) > 0 for ll i. On pplying Lemm 4
with the roles of the {B,} nd [Ate} interchanged, one finds that,(B, m A) 0 nd, therefore, ,(A, m B,) (B,) for M1 i. The
second prt of the conclusion follows immediately from the first prt.

LEMMA 6. U the {t satisfy (C) with respect to the {t ff At, and
Bt are z-constituents of (t) such that A t Bti and if J is a

nonempty set of natural numbers such that ti(Ati) O for i e J and ti(Ati) > 0
for i e J, then H7 ,t,(At,) H7 ,(B,).

Proof. For each e J, (B n A) 0. Therefore, at least one of
{u,(B,)} (ieJ) or {u,(B n A)} (1 e J) is ero. But for 11 e J,
u(Ba n A) u(B), since u(Aa) 0. Therefore, t least one of the

It is now possible to define the desired stochastic extension nd prove the
theorem.

THEORE 2. (C=) (C), i.e., almost a-independence implies stochastic
independence.

Proof. In view of Theorem 1, the definition of a measure -homomorphism,
nd (vii), it will be sufficient to prove that whenever (C) holds, there exists
a probability measure u on the semialgebra, , of 11 constituents of (U)
with the propery that u nd v coincide on the semialgebra of all con-
stituents of (U).
For each element fig A of define the set function u as follows"

Without loss of generality one may assume that ny two different repre-
sentations of the same element of re in the forms g A nd B.
In this case (flA n+ Y) (flB, n +, Y), nd Lemmas 5 nd 6
guarantee that

u(n At,) H7 ,t,(At,). H:+ 1 H ut,(At,). H:+

where {/.+,, t,+,...} is ny collection of the l’s of other than
{ta, t, .}. Therefore, is well-defined on .
Now, for any arbitrary element A of , (( : ,)) u( : A)

H: u,(A,) v(a) v(: ,). Therefore u and v coincide
on .
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Further, since (3) , nd is nonnegtive nd rel-vlued on @, then
t is nonnegtive nd rel-vlued on . Also, (Y) ((Z)) (Z) 1,
nd () (()) () 0.

Therefore, in order to demonstrate that is a probability -measure it will
be sufficient to show that g is countbly dditive on . This demonstration
will complete the proof of the theorem.

Let [A} be an arbitrary countable collection of mutually disjoint elements
of , whose union is also n element of . Let [} be a collection of ele-
ments of @ such that () A for ll i. Then for each pair of natural
numbers k nd j such that j, A A , nd ( a )
( ) (A A) (0) 0, nd, hence ( ) ()

However, is not necessarily n element of @, and, hence, is not
necessarily defined on . But, e and has a unique extension

which is a probability a-measure on and which coincides with on .
Therefore u(U A) ,((U )) ((U )) (U) ()

(()) (A) nd is countbly dditive on . This com-
pletes the proof.

The solution to the original problem can be summarized as follows" No two of
the conditions are equivalent; and (C0) (C) (C) (C).
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