THE STRUCTURE OF UNITARY AND ORTHOGONAL QUATERNION MATRICES

BY

N. A. WIEGMANN

1. Introduction

It is known that a normal quaternion matrix (and hence a unitary quaternion matrix) is unitarily similar to a diagonal matrix with complex elements [2]. It is also known that a quaternion matrix is unitarily equivalent to a diagonal matrix with nonnegative real elements [4]. Also, the transpose of a unitary quaternion matrix is not necessarily unitary; a necessary and sufficient condition that the transpose, V^T , of a unitary quaternion matrix V be unitary is that there exist real orthogonal matrices U and W such that UVW =D is a diagonal quaternion matrix [5].

In the present work two theorems are obtained concerning the structure of unitary and orthogonal quaternion matrices, respectively. An orthogonal quaternion matrix, P, is defined to be a matrix such that $PP^{T} = I \ (= P^{T}P)$, where P^{T} denotes the transpose of P. In each case the essential "quaternion character" of the matrix is clearly revealed by the form obtained; and in the unitary case the form obtained gives more meaning to the above quoted theorem concerning the transpose of a unitary matrix.

2. The structure of a unitary matrix

The following theorem will be obtained:

THEOREM 1. Every quaternion unitary matrix P can be written in the form P = UDW, where U and W are complex unitary matrices and D is a quaternion diagonal unitary matrix; conversely, every matrix of this form is a quaternion unitary matrix.

Let $P = P_1 + jP_2$ (where P_1 and P_2 have complex elements) be a unitary quaternion matrix. Then, since $PP^{cT} = I = P^{cT}P$ ($P^{cT} = P_1^{cT} - jP_2^{T}$ denotes the quaternion-conjugate transpose of P), the following hold:

$$P_1 P_1^{CT} + P_2^{C} P_2^{T} = I = P_1^{CT} P_1 + P_2^{CT} P_2,$$

$$P_2 P_1^{CT} - P_1^{C} P_2^{T} = 0 = P_1^{T} P_2 - P_2^{T} P_1.$$

By a known theorem [1] for the complex matrix P_1 there exist two complex unitary matrices U_1 and W_1 such that $U_1P_1W_1 = D$ is a real diagonal matrix with nonnegative elements along the diagonal. There is no loss in generality in assuming that like diagonal elements are arranged together so that $D = D_1 + D_2 + \cdots + D_k$ where $D_i = c_i I_i$ where c_i is nonnegative and real,

Received June 26, 1957.

where $c_i \neq c_j$ if $i \neq j$, and where $c_k = 0$ if zeros are present on the diagonal. From $P_2 P_1^{CT} = P_1^C P_2^T$ and $P_1^T P_2 = P_2^T P_1$ there follow:

$$U_1^C P_2 W_1 W_1^{CT} P_1^{CT} U_1^{CT} = U_1^C P_1^C W_1^C W_1^T P_2^T U_1^{CT},$$

$$W_1^T P_1^T U_1^T U_1^C P_2 W_1 = W_1^T P_2^T U_1^{CT} U_1 P_1 W_1.$$

Set $U_1^c P_2 W_1 = M$; then the above become $MD = DM^T$ and $DM = M^T D$. Therefore $MD^2 = MDD = DM^T D = DDM = D^2 M$, so that since $D^2 = D_1^2 \dotplus D_2^2 \dotplus \cdots \dotplus D_k^2$, it follows that $M = M_1 \dotplus M_2 \dotplus \cdots \dotplus M_k$, where M_i has the same order as D_i . Because of the nature of D, it follows that MD = DM where $U_1(P_1 + jP_2)W_1 = U_1 P_1 W_1 + jU_1^c P_2 W_1 = D + jM$. Since $MD = DM^T$, $M_i(c_i I) = (c_i I)M_i$ so that $M_i = M_i^T$ for $i = 1, 2, \cdots$,

k - 1 where each M_i is a complex matrix. Also, from the above

$$U_1(P_1P_1^{CT} + P_2^{C}P_2^{T})U_1^{CT} = D^2 + M^C M^T = I,$$

$$W_1^{CT}(P_1^{CT}P_1 + P_2^{CT}P_2)W_1 = D^2 + M^{CT} M = I,$$

so that $M^{CT}M = I - D^2 = M^C M^T$ is a real diagonal matrix and hence symmetric. Therefore $M^{CT}M = M^C M^T = (M^C M^T)^T = M M^{CT}$, and so $M_i^{CT} M_i = M_i M_i^{CT}$ for $i = 1, 2, \dots, k - 1, k$, where $M_k^{CT} M_k = I$. Therefore, for $i = 1, 2, \dots, k - 1, M_i$ is a complex, normal, and symmetric matrix such that $M_i M_i^{CT} = I - c_i^2 I$.

Let A + iB be a complex matrix with these properties (where A and B are real matrices). Then $A^{T} + iB^{T} = A + iB$ implies that $A = A^{T}$ and $B = B^{T}$. Since

$$(A + iB)(A^{T} - iB^{T}) = (A + iB)(A - iB)$$

= $A^{2} + B^{2} + i(BA - AB) = (1 - c^{2})I$

is a real scalar matrix, AB = BA. Two commutative real symmetric matrices can be diagonalized by the same real orthogonal matrix S, and so

$$S(A + iB)S^{T} = D_a + iD_b$$

where D_a and D_b are real diagonal matrices. Therefore, for M_i , $i = 1, 2, \dots, k - 1$, there exists a real orthogonal S_i such that $S_i M_i S_i^T = D'_i$ is complex diagonal. Since M_k is unitary and since $D_k = 0$, there exists a complex unitary matrix S_k such that $S_k M_k S_k^{cT} = D'_k$ is complex diagonal. Form

$$V_1 = S_1 \dotplus S_2 \dotplus \cdots \dotplus S_{k-1} \dotplus S_k^C,$$

$$V_2 = S_1^T \dotplus S_2^T \dotplus \cdots \dotplus S_{k-1}^T \dotplus S_k^{CT}.$$

 V_1 and V_2 are complex unitary matrices tuch that $V_1 U_1(P_1 + jP_2)W_1 V_2 = V_1(D + jM)V_2 = D + V_1jMV_2 = D + jD'$, where $D' = D'_1 + D'_2 + \cdots + D'_k$ is complex diagonal, and $V_1 U_1$ and $W_1 V_2$ are complex unitary matrices.

It should be noted that in the above if $P_2 = 0$, then $U_1P_1W_1 = D = I$ (and P_1 is complex unitary), so that the above is essentially concerned with the case where $P_2 \neq 0$. The converse follows immediately.

3. The structure of an orthogonal matrix

For this case the following holds:

THEOREM 2. Every orthogonal quaternion matrix P can be written in the form $U(I \dotplus C)W$ where U and W are real orthogonal matrices, where I is an identity matrix, and where C is a direct sum of 2×2 matrices of the form

$$\begin{bmatrix} q & b \\ -b & q \end{bmatrix}$$

where b is real and nonzero and q is a nonzero quaternion of the form

$$a_1i + a_2j + a_3ij$$

where a_1 , a_2 , and a_3 are real, and $q^2 + b^2 = 1$; conversely, every matrix of this form is a quaternion orthogonal matrix.

Let $P = P_1 + jP_2$ be an orthogonal quaternion matrix so that

$$(P_1 + jP_2) (P_1^T + jP_2^T) = I = (P_1^T + jP_2^T) (P_1 + jP_2),$$

where P_1 and P_2 are complex matrices. As a result,

$$P_1 P_1^T - P_2^C P_2^T = I = P_1^T P_1 - P_2^{CT} P_2,$$

$$P_2 P_1^T + P_1^C P_2^T = 0 = P_2^T P_1 + P_1^{CT} P_2.$$

Let $P_2 = T_1 + iT_2$ where the T_i are real matrices.

Since $P_2^c P_2^T = P_1 P_1^T - I$, $P_2^c P_2^T$ is a complex matrix which is hermitian and symmetric so that $P_2^c P_2^T$ is a real matrix.

$$P_2^C P_2^T = (T_1 - iT_2) (T_1^T + iT_2^T) = T_1 T_1^T + T_2 T_2^T + i(T_1 T_2^T - T_2 T_1^T)$$

is real and so $T_1 T_2^T - T_2 T_1^T = 0$. Since $P_2^{CT} P_2$ is also real, $T_1^T T_2 = T_2^T T_1$.

Consider P_2 first. According to the above-mentioned result due to Eckert and Young [1] if U is a unitary matrix which diagonalizes AA^{CT} (where all matrices are complex), there exists a unitary matrix V such that UAV = Dis a diagonal matrix with nonnegative real elements. If A is itself real, U and V may be taken to be real orthogonal. (U can be real since AA^T is real symmetric; if $V = V_1 + iV_2$, and if UAV = D, then $UA = DV_1^T - iDV_2^T$ so $DV_2^T = 0$, and if the first r diagonal elements of D are not zero while the last n - r diagonal elements are zero, only the last n - r rows of V_2^T may be nonzero so that the first r rows of V^{CT} are real. Using these rows as the first rrows, a new real orthogonal matrix W can be constructed so that UA = DW.) Let U and W be real orthogonal matrices such that

$$UT_2W = D_1 = c_1I_1 + c_2I_2 + \cdots + c_kI_k$$

where c_i are real, $c_i \neq c_j$ for $i \neq j$ and $c_k = 0$ if zero appears on the diagonal. From the relations above involving T_1 and T_2 it follows that $UT_1WW^TT_2^TU^T = UT_2WW^TT_1^TU^T$ and $W^TT_1^TU^TUT_2W =$ $W^TT_2^TU^TUT_1W$ or, if $UT_1W = M$, $MD_1 = D_1M^T$ and $M^TD_1 = D_1M$. As before, this means $MD_1^2 = D_1^2 M$ and also $MD_1 = D_1 M$ where $UP_2 W = M + iD_1$. Again, as before, if $M = M_1 + M_2 + \cdots + M_k$, $M_i = M_i^T$ for $i = 1, 2, \cdots, k - 1$. Let U_i be a real orthogonal matrix which diagonalizes M_i , $i = 1, 2, \cdots, k - 1$, and let U_k and U'_k be real orthogonal matrices such that $U_k M_k U'_k$ is diagonal with nonnegative real elements. Let

$$V_{1} = U_{1} \dotplus U_{2} \dotplus \cdots \dotplus U_{k-1} \dotplus U_{k},$$

$$V_{2} = U_{1}^{T} \dotplus U_{2}^{T} \dotplus \cdots \dotplus U_{k-1}^{T} + U_{k}'.$$

Then $V_1 UP_2 WV_2 = V_1(M + iD_1)V_2 = V_1 MV_2 + iD_1 = D_2 + iD_1$ where $V_1 U$ and WV_2 are real orthogonal matrices and $D = D_2 + iD_1$ is a complex diagonal matrix.

If d_i and d_j are two diagonal elements of D such that $d_i^2 = d_j^2$, then $(d_i - d_j)(d_i + d_j) = 0$ and either $d_i = d_j$ or $d_i = -d_j$. If d_i and $-d_i$ appear in D, any of the latter can be changed into d_i by multiplying D(on the right, say) by a (real orthogonal) diagonal matrix with +1 and -1properly placed along the diagonal. Also, like diagonal elements may be grouped together so there exist real orthogonal matrices V_3 and V_4 such that $V_3 P_2 V_4 = D = d_1 I_1 + d_2 I_2 + \cdots + d_t I_t$, d_i complex, $d_i \neq d_j$ for $i \neq j$, $d_i^2 \neq d_j^2$ for $i \neq j$, and $d_t = 0$ if present.

Next consider P_1 . From the relations $P_2 P_1^T = -P_1^C P_2^T$ and $P_2^T P_1 = -P_1^{CT} P_2$ there follow $V_3 P_2 V_4 V_4^T P_1^T V_3^T = -V_3 P_1^C V_4 V_4^T P_2^T V_3^T$ and

$$V_4^T P_2^T V_3^T V_3 P_1 V_4 = - V_4^T P_1^C V_3^T V_3 P_2 V_4$$

Let $V_3 P_1 V_4 = N$; then $DN^T = -N^C D$ and $DN = -N^{CT} D$. From the former $ND = -DN^{CT}$ and so $D^2N = DDN = -DN^{CT} D = ND^2$. Therefore $N = N_1 + N_2 + \cdots + N_t$ where N_i has the same order as I_i from the nature of D and D^2 , so that DN = ND. Since $P_1 P_1^T - P_2^C P_2^T = I = P_1^T P_1 - P_2^{CT} P_2$, $V_3 P_1 V_4 V_4^T P_1^T V_3^T - V_3 P_2^C V_4 V_4^T P_2^T V_3^T = I$ and

$$V_4^T P_1^T V_3^T V_3 P_1 V_4 - V_4^T P_2^C V_3^T V_3 P_2 V_4 = I$$

or $NN^{T} - D^{c}D = I$ and $N^{T}N - D^{cT}D = I$ and so $NN^{T} = N^{T}N = I + D^{c}D$ is a real diagonal matrix (and N and P_{1} are therefore always nonsingular, incidentally). For $i = 1, 2, \dots, t, N_{i}N_{i}^{T} = N_{i}^{T}N_{i} = I_{i} + d_{i}\bar{d}_{i}I_{i} = r_{i}I_{i}$ where r_{i} is a positive real number. From this relation it follows that if $N_{i} = A_{i} + iB_{i}$, where A_{i} and B_{i} are real, the matrix coefficient of i in the products $N_{i}N_{i}^{T}$ and $N_{i}^{T}N_{i}$ ard zero so that $A_{i}B_{i}^{T} = -B_{i}A_{i}^{T}$ and $B_{i}^{T}A_{i} = -A_{i}^{T}B_{i}$ for $i = 1, 2, \dots, t$. Note also that $A_{i}A_{i}^{T} - B_{i}B_{i}^{T} = A_{i}^{T}A_{i} - B_{i}^{T}B_{i} = a$ diagonal matrix with positive real elements along the diagonal.

Consider the two cases:

(a) N_i , for $i = 1, 2, \dots, t-1$, is such that $d_i I_i N_i = -N_i^{c_T} d_i I_i$ (since $DN = -N^{c_T} D$) so that $N_i = -N_i^{c_T} = A_i + iB_i = -(A_i^T - iB_i^T)$ from which $A_i = -A_i^T$ and $B_i = B_i^T$. In this case (dropping subscripts momentarily) AB = BA. If R is a real orthogonal matrix such that $RBR^T =$

 $b_1I + b_2I_2 + \cdots + b_sI_s$, b_i real, $b_i \neq b_j$ for $i \neq j$, and $b_s = 0$ (if zeros are present along the diagonal), then $RAR^T = A_1 + A_2 + \cdots + A_s$ where A_i and I_i are of the same order. For each A_i there exists (see [3], Theorem 9.27, for example) a real orthogonal matrix S_i such that $S_iA_iS_i^T$ is a direct sum of zero elements and 2×2 matrices of the form

(i)
$$\begin{bmatrix} 0 & b \\ -b & 0 \end{bmatrix}$$

where b is real. If $S = S_1 + S_2 + \cdots + S_s$, then Q = SR is a real orthogonal matrix such that $Q(A + iB)Q^T = S_1A_1S_1^T + \cdots + S_sA_sS_s^T + iRBR^T$. For each N_i there exists such a real orthogonal matrix Q_i , $i = 1, 2, \cdots$, t-1. (It will be seen below that each $S_iA_iS_i^T$ here must be a direct sum of 2×2 matrices of the form (i).)

(b) N_t is such that $N_t^T N_t = N_t N_t^T = I$ and, as above, $A_t B_t^T = -B_t A_t^T$ and $B_t^T A_t = -A_t^T B_t$. As before, it can be shown that there exist real orthogonal matrices W_1 and W_2 such that $W_1 B_t W_2 = h_1 I_1 + h_2 I_2 + \cdots + h_p I_p$, h_i real, $h_i \neq h_j$ for $i \neq j$, and $h_p = 0$, if present, while $W_1 A_t W_2 = C_1 + C_2 + \cdots + C_p$ where $C_i = -C_i^T$ for $i = 1, 2, \cdots, p-1$ and C_p is real where $C_p^T C_p = I$. C_p is then real orthogonally equivalent to an identity matrix, and each C_i for $i \neq p$ can be brought under a real orthogonal similarity transformation into a direct sum of 2×2 matrices of type (i) and zero elements. There exist, then, real orthogonal matrices Q_t and Q_t' such that $Q_t N_t Q_t' = D_a + i D_b$ where D_b is real and diagonal and D_a is a direct sum of matrices of form (i), of zero elements, and of +1's.

Now $V_3(P_1 + jP_2)V_4 = N + jD$. Set

$$V_5 = Q_1 \dotplus Q_2 \dotplus \cdots \dotplus Q_{t-1} \dotplus Q_t,$$

$$V_6 = Q_1^T \dotplus Q_2^T \dotplus \cdots \dotplus Q_{t-1}^T \dotplus Q_t';$$

then $V_5 V_3(P_1 + jP_2)V_4 V_6 = Z + jD$ where $V_5 V_3$ and $V_4 V_6$ are real orthogonal matrices, D is complex diagonal, and Z is a direct sum of 2×2 matrices of the form

(ii)
$$\begin{bmatrix} ai & b \\ -b & ai \end{bmatrix}$$

(where a and b are real), of +1's, and of elements ci, c real. But the latter cannot appear. For $NN^T = I + D^c D$ and $V_5 NN^T V_5^T = ZZ^T = I + D^c D$ which would mean that $(ci)^2 = -c^2 = 1 + dd$, which is not possible. The diagonal elements of D which correspond to any matrix (ii) are alike and the form as described in the theorem is now obtainable. If P is real, the form obtained is the identity matrix I. If P is complex, the form is a direct sum of +1's and matrices of the form (ii).

The converse follows immediately.

References

- 1. C. ECKERT AND G. YOUNG, A principal axis transformation for non-hermitian matrices, Bull. Amer. Math. Soc., vol. 45 (1939), pp. 118-121.
- 2. H. C. LEE, Eigenvalues and canonical forms of matrices with quaternion coefficients, Proc. Roy. Irish Acad. Sect. A, vol. 52 (1949), pp. 253-260.
- 3. S. PERLIS, Theory of Matrices, Cambridge, 1952.
- 4. N. WIEGMANN, Some theorems on matrices with real quaternion elements, Canad. J. Math., vol. 7 (1955), pp. 191–201.
- 5. ——, On unitary and symmetric matrices with real quaternion elements, Canad. J. Math., vol. 8, (1956), pp. 32–39.

WASHINGTON, D. C.