THE STRUCTURE OF UNITARY AND ORTHOGONAL QUATERNION MATRICES

BY
N. A. Wiegmann

1. Introduction

It is known that a normal quaternion matrix (and hence a unitary quaternion matrix) is unitarily similar to a diagonal matrix with complex elements [2]. It is also known that a quaternion matrix is unitarily equivalent to a diagonal matrix with nonnegative real elements [4]. Also, the transpose of a unitary quaternion matrix is not necessarily unitary; a necessary and sufficient condition that the transpose, V^{T}, of a unitary quaternion matrix V be unitary is that there exist real orthogonal matrices U and W such that $U V W=$ D is a diagonal quaternion matrix [5].

In the present work two theorems are obtained concerning the structure of unitary and orthogonal quaternion matrices, respectively. An orthogonal quaternion matrix, P, is defined to be a matrix such that $P P^{T}=I\left(=P^{T} P\right)$, where P^{T} denotes the transpose of P. In each case the essential "quaternion character" of the matrix is clearly revealed by the form obtained; and in the unitary case the form obtained gives more meaning to the above quoted theorem concerning the transpose of a unitary matrix.

2. The structure of a unitary matrix

The following theorem will be obtained:
Theorem 1. Every quaternion unitary matrix P can be written in the form $P=U D W$, where U and W are complex unitary matrices and D is a quaternion diagonal unitary matrix; conversely, every matrix of this form is a quaternion unitary matrix.

Let $P=P_{1}+j P_{2}$ (where P_{1} and P_{2} have complex elements) be a unitary quaternion matrix. Then, since $P P^{C T}=I=P^{C T} P \quad\left(P^{C T}=P_{1}^{C T}-j P_{2}^{T}\right.$ denotes the quaternion-conjugate transpose of P), the following hold:

$$
\begin{aligned}
& P_{1} P_{1}^{C T}+P_{2}^{C} P_{2}^{T}=I=P_{1}^{C T} P_{1}+P_{2}^{C T} P_{2} \\
& P_{2} P_{1}^{C T}-P_{1}^{C} P_{2}^{T}=0=P_{1}^{T} P_{2}-P_{2}^{T} P_{1}
\end{aligned}
$$

By a known theorem [1] for the complex matrix P_{1} there exist two complex unitary matrices U_{1} and W_{1} such that $U_{1} P_{1} W_{1}=D$ is a real diagonal matrix with nonnegative elements along the diagonal. There is no loss in generality in assuming that like diagonal elements are arranged together so that $D=D_{1} \dot{+} D_{2} \dot{+}+D_{k}$ where $D_{i}=c_{i} I_{i}$ where c_{i} is nonnegative and real,

[^0]where $c_{i} \neq c_{j}$ if $i \neq j$, and where $c_{k}=0$ if zeros are present on the diagonal. From $P_{2} P_{1}^{C T}=P_{1}^{C} P_{2}^{T}$ and $P_{1}^{T} P_{2}=P_{2}^{T} P_{1}$ there follow:
\[

$$
\begin{gathered}
U_{1}^{C} P_{2} W_{1} W_{1}^{C T} P_{1}^{C T} U_{1}^{C T}=U_{1}^{C} P_{1}^{C} W_{1}^{C} W_{1}^{T} P_{2}^{T} U_{1}^{C T} \\
W_{1}^{T} P_{1}^{T} U_{1}^{T} U_{1}^{C} P_{2} W_{1}=W_{1}^{T} P_{2}^{T} U_{1}^{C T} U_{1} P_{1} W_{1}
\end{gathered}
$$
\]

Set $U_{1}^{c} P_{2} W_{1}=M$; then the above become $M D=D M^{T}$ and $D M=M^{T} D$. Therefore $M D^{2}=M D D=D M^{T} D=D D M=D^{2} M$, so that since $D^{2}=D_{1}^{2} \dot{+} D_{2}^{2} \dot{+} \cdots \dot{+} D_{k}^{2}$, it follows that $M=M_{1} \dot{+} M_{2} \dot{+}+M_{k}$, where M_{i} has the same order as D_{i}. Because of the nature of D, it follows that $M D=D M$ where $U_{1}\left(P_{1}+j P_{2}\right) W_{1}=U_{1} P_{1} W_{1}+j U_{1}^{c} P_{2} W_{1}=D+j M$.

Since $M D=D M^{T}, M_{i}\left(c_{i} I\right)=\left(c_{i} I\right) M_{i}$ so that $M_{i}=M_{i}^{T}$ for $i=1,2, \cdots$, $k-1$ where each M_{i} is a complex matrix. Also, from the above

$$
\begin{gathered}
U_{1}\left(P_{1} P_{1}^{C T}+P_{2}^{C} P_{2}^{T}\right) U_{1}^{C T}=D^{2}+M^{C} M^{T}=I, \\
W_{1}^{C T}\left(P_{1}^{C T} P_{1}+P_{2}^{C T} P_{2}\right) W_{1}=D^{2}+M^{C T} M=I,
\end{gathered}
$$

so that $M^{C T} M=I-D^{2}=M^{C} M^{T}$ is a real diagonal matrix and hence symmetric. Therefore $M^{C T} M=M^{C} M^{T}=\left(M^{C} M^{T}\right)^{T}=M M^{C T}$, and so $M_{i}^{C T} M_{i}=$ $M_{i} M_{i}^{C T}$ for $i=1,2, \cdots, k-1, k$, where $M_{k}^{C T} M_{k}=I$. Therefore, for $i=1,2, \cdots, k-1, M_{i}$ is a complex, normal, and symmetric matrix such that $M_{i} M_{i}^{C T}=I-c_{i}^{2} I$.

Let $A+i B$ be a complex matrix with these properties (where A and B are real matrices). Then $A^{T}+i B^{T}=A+i B$ implies that $A=A^{T}$ and $B=B^{T}$. Since

$$
\begin{aligned}
(A+i B)\left(A^{T}-i B^{T}\right)=(A+i B) & (A-i B) \\
& =A^{2}+B^{2}+i(B A-A B)=\left(1-c^{2}\right) I
\end{aligned}
$$

is a real scalar matrix, $A B=B A$. Two commutative real symmetric matrices can be diagonalized by the same real orthogonal matrix S, and so

$$
S(A+i B) S^{T}=D_{a}+i D_{b}
$$

where D_{a} and D_{b} are real diagonal matrices. Therefore, for $M_{i}, i=1,2, \cdots$, $k-1$, there exists a real orthogonal S_{i} such that $S_{i} M_{i} S_{i}^{T}=D_{i}^{\prime}$ is complex diagonal. Since M_{k} is unitary and since $D_{k}=0$, there exists a complex unitary matrix S_{k} such that $S_{k} M_{k} S_{k}^{C T}=D_{k}^{\prime}$ is complex diagonal. Form

$$
\begin{aligned}
& V_{1}=S_{1}+S_{2} \dot{+}+S_{k-1} \dot{+} S_{k}^{C} \\
& V_{2}=S_{1}^{T}+S_{2}^{T}+\cdots \dot{+} S_{k-1}^{T} \dot{+} S_{k}^{C T}
\end{aligned}
$$

V_{1} and V_{2} are complex unitary matrices tuch that $V_{1} U_{1}\left(P_{1}+j P_{2}\right) W_{1} V_{2}=$ $V_{1}(D+j M) V_{2}=D+V_{1} j M V_{2}=D+j D^{\prime}$, where $D^{\prime}=D_{1}^{\prime}+D_{2}^{\prime} \dot{+} \cdots \dot{+}$ D_{k}^{\prime} is complex diagonal, and $V_{1} U_{1}$ and $W_{1} V_{2}$ are complex unitary matrices.

It should be noted that in the above if $P_{2}=0$, then $U_{1} P_{1} W_{1}=D=I$ (and P_{1} is complex unitary), so that the above is essentially concerned with the case where $P_{2} \neq 0$. The converse follows immediately.

3. The structure of an orthogonal matrix

For this case the following holds:
Theorem 2. Every orthogonal quaternion matrix P can be written in the form $U(I \dot{+}) W$ where U and W are real orthogonal matrices, where I is an identity matrix, and where C is a direct sum of 2×2 matrices of the form

$$
\left[\begin{array}{cc}
q & b \\
-b & q
\end{array}\right]
$$

where b is real and nonzero and q is a nonzero quaternion of the form

$$
a_{1} i+a_{2} j+a_{3} i j
$$

where a_{1}, a_{2}, and a_{3} are real, and $q^{2}+b^{2}=1$; conversely, every matrix of this form is a quaternion orthogonal matrix.

Let $P=P_{1}+j P_{2}$ be an orthogonal quaternion matrix so that

$$
\left(P_{1}+j P_{2}\right)\left(P_{1}^{T}+j P_{2}^{T}\right)=I=\left(P_{1}^{T}+j P_{2}^{T}\right)\left(P_{1}+j P_{2}\right)
$$

where P_{1} and P_{2} are complex matrices. As a result,

$$
\begin{aligned}
& P_{1} P_{1}^{T}-P_{2}^{C} P_{2}^{T}=I=P_{1}^{T} P_{1}-P_{2}^{C T} P_{2} \\
& P_{2} P_{1}^{T}+P_{1}^{C} P_{2}^{T}=0=P_{2}^{T} P_{1}+P_{1}^{C T} P_{2}
\end{aligned}
$$

Let $P_{2}=T_{1}+i T_{2}$ where the T_{i} are real matrices.
Since $P_{2}^{C} P_{2}^{T}=P_{1} P_{1}^{T}-I, P_{2}^{C} P_{2}^{T}$ is a complex matrix which is hermitian and symmetric so that $P_{2}^{C} P_{2}^{T}$ is a real matrix.

$$
P_{2}^{C} P_{2}^{T}=\left(T_{1}-i T_{2}\right)\left(T_{1}^{T}+i T_{2}^{T}\right)=T_{1} T_{1}^{T}+T_{2} T_{2}^{T}+i\left(T_{1} T_{2}^{T}-T_{2} T_{1}^{T}\right)
$$

is real and so $T_{1} T_{2}^{T}-T_{2} T_{1}^{T}=0$. Since $P_{2}^{C T} P_{2}$ is also real, $T_{1}^{T} T_{2}=T_{2}^{T} T_{1}$.
Consider P_{2} first. According to the above-mentioned result due to Eckert and Young [1] if U is a unitary matrix which diagonalizes $A A^{C T}$ (where all matrices are complex), there exists a unitary matrix V such that $U A V=D$ is a diagonal matrix with nonnegative real elements. If A is itself real, U and V may be taken to be real orthogonal. (U can be real since $A A^{T}$ is real symmetric; if $V=V_{1}+i V_{2}$, and if $U A V=D$, then $U A=D V_{1}^{T}-i D V_{2}^{T}$ so $D V_{2}^{T}=0$, and if the first r diagonal elements of D are not zero while the last $n-r$ diagonal elements are zero, only the last $n-r$ rows of V_{2}^{T} may be nonzero so that the first r rows of $V^{C T}$ are real. Using these rows as the first r rows, a new real orthogonal matrix W can be constructed so that $U A=D W$.) Let U and W be real orthogonal matrices such that

$$
U T_{2} W=D_{1}=c_{1} I_{1} \dot{+} c_{2} I_{2} \dot{+}+c_{k} I_{k}
$$

where c_{i} are real, $c_{i} \neq c_{j}$ for $i \neq j$ and $c_{k}=0$ if zero appears on the diagonal. From the relations above involving T_{1} and T_{2} it follows that $U T_{1} W W^{T} T_{2}^{T} U^{T}=U T_{2} W W^{T} T_{1}^{T} U^{T}$ and $W^{T} T_{1}^{T} U^{T} U T_{2} W=$ $W^{T} T_{2}^{T} U^{T} U T_{1} W$ or, if $U T_{1} W=M, M D_{1}=D_{1} M^{T}$ and $M^{T} D_{1}=D_{1} M$. As
before, this means $M D_{1}^{2}=D_{1}^{2} M$ and also $M D_{1}=D_{1} M$ where $U P_{2} W=$ $M+i D_{1}$. Again, as before, if $M=M_{1} \dot{+} M_{2} \dot{+} \cdots \dot{+} M_{k}, M_{i}=M_{i}^{T}$ for $i=1,2, \cdots, k-1$. Let U_{i} be a real orthogonal matrix which diagonalizes $M_{i}, i=1,2, \cdots, k-1$, and let U_{k} and U_{k}^{\prime} be real orthogonal matrices such that $U_{k} M_{k} U_{k}^{\prime}$ is diagonal with nonnegative real elements. Let

$$
\begin{aligned}
& V_{1}=U_{1}+U_{2}+\cdots \dot{+} U_{k-1}+U_{k} \\
& V_{2}=U_{1}^{T}+U_{2}^{T}+\cdots \dot{+} U_{k-1}^{T}+U_{k}^{\prime}
\end{aligned}
$$

Then $V_{1} U P_{2} W V_{2}=V_{1}\left(M+i D_{1}\right) V_{2}=V_{1} M V_{2}+i D_{1}=D_{2}+i D_{1}$ where $V_{1} U$ and $W V_{2}$ are real orthogonal matrices and $D=D_{2}+i D_{1}$ is a complex diagonal matrix.

If d_{i} and d_{j} are two diagonal elements of D such that $d_{i}^{2}=d_{j}^{2}$, then $\left(d_{i}-d_{j}\right)\left(d_{i}+d_{j}\right)=0$ and either $d_{i}=d_{j}$ or $d_{i}=-d_{j}$. If d_{i} and $-d_{i}$ appear in D, any of the latter can be changed into d_{i} by multiplying D (on the right, say) by a (real orthogonal) diagonal matrix with +1 and -1 properly placed along the diagonal. Also, like diagonal elements may be grouped together so there exist real orthogonal matrices V_{3} and V_{4} such that $V_{3} P_{2} V_{4}=D=d_{1} I_{1} \dot{+} d_{2} I_{2} \dot{+} \cdots \dot{+} d_{t} I_{t}, d_{i}$ complex, $d_{i} \neq d_{j}$ for $i \neq j$, $d_{i}^{2} \neq d_{j}^{2}$ for $i \neq j$, and $d_{t}=0$ if present.

Next consider P_{1}. From the relations $P_{2} P_{1}^{T}=-P_{1}^{C} P_{2}^{T}$ and $P_{2}^{T} P_{1}=$ $-P_{1}^{C T} P_{2}$ there follow $V_{3} P_{2} V_{4} V_{4}^{T} P_{1}^{T} V_{3}^{T}=-V_{3} P_{1}^{C} V_{4} V_{4}^{T} P_{2}^{T} V_{3}^{T}$ and

$$
V_{4}^{T} P_{2}^{T} V_{3}^{T} V_{3} P_{1} V_{4}=-V_{4}^{T} P_{1}^{C T} V_{3}^{T} V_{3} P_{2} V_{4}
$$

Let $V_{3} P_{1} V_{4}=N$; then $D N^{T}=-N^{C} D$ and $D N=-N^{C T} D$. From the former $N D=-D N^{C T}$ and so $D^{2} N=D D N=-D N^{C T} D=N D^{2}$. Therefore $N=N_{1} \dot{+} N_{2} \dot{+} \cdots \dot{+} N_{t}$ where N_{i} has the same order as I_{i} from the nature of D and D^{2}, so that $D N=N D$. Since $P_{1} P_{1}^{T}-P_{2}^{C} P_{2}^{T}=I=$ $P_{1}^{T} P_{1}-P_{2}^{C T} P_{2}, V_{3} P_{1} V_{4} V_{4}^{T} P_{1}^{T} V_{3}^{T}-V_{3} P_{2}^{C} V_{4} V_{4}^{T} P_{2}^{T} V_{3}^{T}=I$ and

$$
V_{4}^{T} P_{1}^{T} V_{3}^{T} V_{3} P_{1} V_{4}-V_{4}^{T} P_{2}^{C T} V_{3}^{T} V_{3} P_{2} V_{4}=I
$$

or $N N^{T}-D^{C} D=I$ and $N^{T} N-D^{C T} D=I$ and so $N N^{T}=N^{T} N=I+$ $D^{c} D$ is a real diagonal matrix (and N and P_{1} are therefore always nonsingular, incidentally). For $i=1,2, \cdots, t, N_{i} N_{i}^{T}=N_{i}^{T} N_{i}=I_{i}+d_{i} \bar{d}_{i} I_{i}=r_{i} I_{i}$ where r_{i} is a positive real number. From this relation it follows that if $N_{i}=A_{i}+i B_{i}$, where A_{i} and B_{i} are real, the matrix coefficient of i in the products $N_{i} N_{i}^{T}$ and $N_{i}^{T} N_{i}$ ard zero so that $A_{i} B_{i}^{T}=-B_{i} A_{i}^{T}$ and $B_{i}^{T} A_{i}=$ $-A_{i}^{T} B_{i}$ for $i=1,2, \cdots, t$. Note also that $A_{i} A_{i}^{T}-B_{i} B_{i}^{T}=A_{i}^{T} A_{i}-B_{i}^{T} B_{i}=$ a diagonal matrix with positive real elements along the diagonal.

Consider the two cases:
(a) N_{i}, for $i=1,2, \cdots, t-1$, is such that $d_{i} I_{i} N_{i}=-N_{i}^{C T} d_{i} I_{i}$ (since $\left.D N=-N^{C T} D\right)$ so that $N_{i}=-N_{i}^{C T}=A_{i}+i B_{i}=-\left(A_{i}^{T}-i B_{i}^{T}\right)$ from which $A_{i}=-A_{i}^{T}$ and $B_{i}=B_{i}^{T}$. In this case (dropping subscripts momentarily) $A B=B A$. If R is a real orthogonal matrix such that $R B R^{T}=$
$b_{1} I+b_{2} I_{2}+\cdots+b_{s} I_{s}, b_{i}$ real, $b_{i} \neq b_{j}$ for $i \neq j$, and $b_{s}=0$ (if zeros are present along the diagonal), then $R A R^{T}=A_{1} \dot{+} A_{2} \dot{+}+A_{s}$ where A_{i} and I_{i} are of the same order. For each A_{i} there exists (see [3], Theorem 9.27, for example) a real orthogonal matrix S_{i} such that $S_{i} A_{i} S_{i}^{T}$ is a direct sum of zero elements and 2×2 matrices of the form

$$
\left[\begin{array}{cc}
0 & b \tag{i}\\
-b & 0
\end{array}\right]
$$

where b is real. If $S=S_{1}+S_{2} \dot{+}+S_{s}$, then $Q=S R$ is a real orthogonal matrix such that $Q(A+i B) Q^{T}=S_{1} A_{1} S_{1}^{T}+\cdots+S_{s} A_{s} S_{s}^{T}+i R B R^{T}$. For each N_{i} there exists such a real orthogonal matrix $Q_{i}, i=1,2, \cdots$, $t-1$. (It will be seen below that each $S_{i} A_{i} S_{i}^{T}$ here must be a direct sum of 2×2 matrices of the form (i).)
(b) N_{t} is such that $N_{t}^{T} N_{t}=N_{t} N_{t}^{T}=I$ and, as above, $A_{t} B_{t}^{T}=-B_{t} A_{t}^{T}$ and $B_{t}^{T} A_{t}=-A_{t}^{T} B_{t}$. As before, it can be shown that there exist real orthogonal matrices W_{1} and W_{2} such that $W_{1} B_{t} W_{2}=h_{1} I_{1}+h_{2} I_{2} \dot{+} \cdots \dot{+}$ $h_{p} I_{p}, h_{i}$ real, $h_{i} \neq h_{j}$ for $i \neq j$, and $h_{p}=0$, if present, while $W_{1} A_{t} W_{2}=$ $C_{1}+C_{2} \dot{+} \cdots+C_{p}$ where $C_{i}=-C_{i}^{T}$ for $i=1,2, \cdots, p-1$ and C_{p} is real where $C_{p}^{T} C_{p}=I . \quad C_{p}$ is then real orthogonally equivalent to an identity matrix, and each C_{i} for $i \neq p$ can be brought under a real orthogonal similarity transformation into a direct sum of 2×2 matrices of type (i) and zero elements. There exist, then, real orthogonal matrices Q_{t} and Q_{t}^{\prime} such that $Q_{t} N_{t} Q_{t}^{\prime}=D_{a}+i D_{b}$ where D_{b} is real and diagonal and D_{a} is a direct sum of matrices of form (i), of zero elements, and of +1 's.

Now $V_{3}\left(P_{1}+j P_{2}\right) V_{4}=N+j D$. Set

$$
\begin{aligned}
& V_{5}=Q_{1}+Q_{2}+\cdots+Q_{t-1}+Q_{t} \\
& V_{6}=Q_{1}^{T}+Q_{2}^{T}+\cdots+Q_{t-1}^{T}+Q_{t}^{\prime}
\end{aligned}
$$

then $V_{5} V_{3}\left(P_{1}+j P_{2}\right) V_{4} V_{6}=Z+j D$ where $V_{5} V_{3}$ and $V_{4} V_{6}$ are real orthogonal matrices, D is complex diagonal, and Z is a direct sum of 2×2 matrices of the form

$$
\left[\begin{array}{cc}
a i & b \tag{ii}\\
-b & a i
\end{array}\right]
$$

(where a and b are real), of +1 's, and of elements $c i$, c real. But the latter cannot appear. For $N N^{T}=I+D^{C} D$ and $V_{5} N N^{T} V_{5}^{T}=Z Z^{T}=I+D^{C} D$ which would mean that $(c i)^{2}=-c^{2}=1+\bar{d} d$, which is not possible. The diagonal elements of D which correspond to any matrix (ii) are alike and the form as described in the theorem is now obtainable. If P is real, the form obtained is the identity matrix I. If P is complex, the form is a direct sum of +1 's and matrices of the form (ii).

The converse follows immediately.

References

1. C. Eckert and G. Young, A principal axis transformation for non-hermitian matrices, Bull. Amer. Math. Soc., vol. 45 (1939), pp. 118-121.
2. H. C. Lee, Eigenvalues and canonical forms of matrices with quaternion coefficients, Proc. Roy. Irish Acad. Sect. A, vol. 52 (1949), pp. 253-260.
3. S. Perlis, Theory of Matrices, Cambridge, 1952.
4. N. Wiegmann, Some theorems on matrices with real quaternion elements, Canad. J. Math., vol. 7 (1955), pp. 191-201.
5. -_, On unitary and symmetric matrices with real quaternion elements, Canad. J. Math., vol. 8, (1956), pp. 32-39.

Washington, D. C.

[^0]: Received June 26, 1957.

